Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,265)

Search Parameters:
Keywords = byproduct wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2793 KB  
Concept Paper
Engineered Microbial Consortium Embedded in a Biodegradable Matrix: A Triple-Action, Synthetic Biology Framework for Sustainable Post-Wildfire Restoration
by Markos Mathioudakis, Rafail Andreou, Angeliki-Maria Papapanou, Artemis-Chrysanthi Savva, Asimenia Ioannidou, Nefeli-Maria Makri, Stefanos Anagnostopoulos, Thetis Tsinoglou, Ioanna Gerogianni, Christos Giannakopoulos, Angeliki-Argyri Savvopoulou-Tzakopoulou, Panagiota Baka, Nicky Efstathiou, Soultana Delizisi, Michaela Ververi, Rigini Papi, Konstantina Psatha, Michalis Aivaliotis and Spyros Gkelis
SynBio 2026, 4(1), 3; https://doi.org/10.3390/synbio4010003 - 26 Jan 2026
Abstract
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the [...] Read more.
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the potential for natural regeneration. Traditional reforestation approaches such as seed scattering or planting seedlings often fail in these conditions due to extreme aridity, erosion, and lack of biological support. To address this multifaceted problem, this study proposes a living, biodegradable hydrogel that integrates an engineered soil-beneficial microorganism consortium, designed to deliver beneficial compounds and nutrients combined with endemic plant seeds into a single biopolymeric matrix. Acting simultaneously as a biofertilizer, soil conditioner, and reforestation aid, this 3-in-1 system provides a microenvironment that retains moisture, supports microbial diversity restoration, and facilitates plant germination even in nutrient-poor, arid soils. The concept is rooted in circular economy principles, utilizing polysaccharides from food industry by-products for biopolymer formation, thereby ensuring environmental compatibility and minimizing waste. The encapsulated microorganisms, a Bacillus subtilis strain and a Nostoc oryzae strain, are intended to enrich the soil with useful compounds. They are engineered based on synthetic biology principles to incorporate specific genetic modules. The B. subtilis strain is engineered to break down large polyphenolic compounds through laccase overexpression, thus increasing soil bioavailable organic matter. The cyanobacterium strain is modified to enhance its nitrogen-fixing capacity, supplying fixed nitrogen directly to the soil. After fulfilling its function, the matrix naturally decomposes, returning organic matter, while the incorporation of a quorum sensing-based kill-switch system is designed to prevent the environmental escape of the engineered microorganisms. This sustainable approach aims to transform post-wildfire landscapes into self-recovering ecosystems, offering a scalable and eco-friendly alternative to conventional restoration methods while advancing the integration of synthetic biology and environmental engineering for climate resilience. Full article
Show Figures

Figure 1

25 pages, 7370 KB  
Article
Strength Enhancement of 3D-Printed Phosphogypsum Concrete Based on Synergistic Activation of Multi-Solid Wastes
by Junjie Li, Yangbo Li, Xianqiang Ge, Ke Li, Yahui Yang and Shuo Wang
Materials 2026, 19(3), 482; https://doi.org/10.3390/ma19030482 - 25 Jan 2026
Abstract
Phosphogypsum (PG) is the main by-product of wet-process phosphoric acid production. Its annual global production reaches about 200 million tons, yet its utilization rate remains low. Consequently, long-term stockpiling of large PG volumes poses immense pressure to the ecological environment. To mitigate negative [...] Read more.
Phosphogypsum (PG) is the main by-product of wet-process phosphoric acid production. Its annual global production reaches about 200 million tons, yet its utilization rate remains low. Consequently, long-term stockpiling of large PG volumes poses immense pressure to the ecological environment. To mitigate negative environmental impacts, the utilization of PG is imperative. Despite progress in PG utilization and 3D-printing technology, there is still a significant lack of understanding about the synergistic activation mechanisms in multi-solid-waste systems. In particular, the composition design, microstructure evolution, and structure–property relationships of 3D-printed PG-based composites are not well-studied, which limits their high-value engineering applications. Three-dimensional-printed phosphogypsum concrete (3DPPGC) is proposed here, promoting PG resource utilization by leveraging the expanding applications of 3D-printed concrete (3DPC). However, the strength of 3DPPGC needs to be enhanced to meet engineering requirements. This study designed the mix proportion of 3DPPGC and fabricated the corresponding test specimens. The optimal Cement Replacement Ratio (CRR) was determined through experimental testing, and the mechanism behind the strength enhancement of the 3DPPGC was elucidated. The results indicated that the 3DPPGC’s mechanical properties peaked at the 70% CRR. Compared with cast specimens, 3DPPGC exhibited a 1.52% increase in 28-day flexural strength in the y-direction, reaching 4.69 MPa. The early-age compressive strength, flexural strength, and later-age compressive strength of 3DPPGC were significantly enhanced when PG, blast-furnace slag (BS), fly ash (FA), and silica fume (SF) were used to partially replace cement. This study provides a theoretical and experimental basis for the large-scale, high-value application of PG in intelligent construction. Full article
Show Figures

Figure 1

27 pages, 4135 KB  
Article
The Model and Burner Development for Crude Glycerol and Used Vegetable Mixing: Cube Mushroom Steaming Oven
by Anumut Siricharoenpanich, Paramust Juntarakod and Paisarn Naphon
Eng 2026, 7(2), 56; https://doi.org/10.3390/eng7020056 - 25 Jan 2026
Abstract
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable [...] Read more.
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable oil as low-cost alternative energy sources. The experimental investigation assessed boiler thermal efficiency, combustion efficiency, exhaust-gas composition, temperature distribution, steam generation, and combustion-gas dispersion within the furnace. In parallel, analytical modeling of pressure, temperature, and gas-flow behavior was performed to validate the experimental observations. Five fuel compositions were examined, including 100% used vegetable oil, 100% crude glycerol, and blended ratios of 50/50, 25/75, and 10/90 (glycerol/vegetable oil), with all tests conducted in accordance with DIN EN 203-1 standards. The results demonstrate that blending used vegetable oil with glycerol significantly improves flame stability, increases peak combustion temperatures, and suppresses incomplete-combustion byproducts compared with pure glycerol operation. Combustion efficiencies of 90–99% and boiler thermal efficiencies of 72–73% were achieved. Among the tested fuels, the optimal balance between combustion stability, efficiency, and cost was achieved with a 25% glycerol and 75% used vegetable oil mixture. Economic analysis revealed that the proposed mixed-fuel system offers superior viability compared with LPG, reducing annual fuel costs by approximately 50%, shortening steaming time by 2 h per batch, and achieving a payback period of only 3.26 months. These findings confirm the feasibility of the proposed waste-to-energy system for small- and medium-scale agricultural applications. To further enhance sustainability and renewable fuel utilization, future work should focus on improving air–fuel mixing for higher glycerol fractions, scaling the system for larger farms, and extending its application to other agricultural thermal processes. Full article
34 pages, 4308 KB  
Article
Low-CO2 Concrete from Oil Shale Ash and Construction Demolition Waste for 3D Printing
by Alise Sapata, Ella Spurina, Mohammed H. Alzard, Peteris Slosbergs, Hilal El-Hassan and Maris Sinka
J. Compos. Sci. 2026, 10(2), 62; https://doi.org/10.3390/jcs10020062 - 24 Jan 2026
Viewed by 46
Abstract
To meet 2050 climate targets, the construction sector must reduce CO2 emissions and transition toward circular material flows. Recycled aggregates (RA) derived from construction and demolition waste (CDW) and industrial byproducts such as oil shale ash (OSA) show potential for use in [...] Read more.
To meet 2050 climate targets, the construction sector must reduce CO2 emissions and transition toward circular material flows. Recycled aggregates (RA) derived from construction and demolition waste (CDW) and industrial byproducts such as oil shale ash (OSA) show potential for use in concrete, although their application remains limited by standardisation and performance limitations, particularly in structural uses. This study aims to develop and evaluate low-strength, resource-efficient concrete mixtures with full replacement of natural aggregates (NA) by CDW-derived aggregates, and partial or full replacement of cement CEM II by OSA–metakaolin (MK) binder, targeting non-structural 3D-printing applications. Mechanical performance, printability, cradle-to-gate life cycle assessment, eco-intensity index, and transport-distance sensitivity for RA were assessed to quantify the trade-offs between structural performance and global warming potential (GWP) reduction. Replacing NA with RA reduced compressive strength by ~11–13% in cement-based mixes, while the aggregate type had a negligible effect in cement-free mixtures. In contrast, full cement replacement by OSA-MK binder nearly halved compressive strength. Despite the strength reductions associated with the use of waste-derived materials, RA-based cement-free 3D-printed specimens achieved ~30 MPa in compression and ~5 MPa in flexure. Replacing CEM II with OSA-MK and NA with RA lowered GWP by up to 48%, with trade-offs in the air-emission, toxicity, water and resource categories driven by the OSA supply chain. The cement-free RA mix achieved the lowest GWP and best eco-intensity, whereas the CEM II mix with RA offered the most balanced multi-impact profile. The results show that regionally available OSA and RA can enable eco-efficient, structurally adequate 3D-printed concrete for construction applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

35 pages, 920 KB  
Review
Hemp (Cannabis sativa L.) Phytochemicals and Their Potential in Agrochemical, Cosmetic, and Food Industries: A Review
by Daniela Trono
Int. J. Mol. Sci. 2026, 27(3), 1146; https://doi.org/10.3390/ijms27031146 - 23 Jan 2026
Viewed by 72
Abstract
Hemp is a high-yield crop traditionally cultivated for fiber used in products such as paper, textiles, ropes, and animal bedding, and more recently for sustainable applications in biofuels, insulation, and bioplastics. Beyond fiber, hemp is rich in phytochemicals. More than 500 compounds including [...] Read more.
Hemp is a high-yield crop traditionally cultivated for fiber used in products such as paper, textiles, ropes, and animal bedding, and more recently for sustainable applications in biofuels, insulation, and bioplastics. Beyond fiber, hemp is rich in phytochemicals. More than 500 compounds including cannabinoids, terpenes, phenolics, phytosterols, and tocopherols are accumulated in leaves, flowers, and seeds, which are typically considered waste products in the fiber industry. These compounds exhibit antioxidant, anti-inflammatory, neuroprotective, and antimicrobial properties, which have stimulated research into their pharmaceutical potential. However, hemp phytochemicals also find applications in other industrial sectors, including agrochemistry as natural insecticides, cosmetics for skin and hair care, and food and dietary supplements due to their associated health benefits. In light of this, the present review aims to give an overview of the available literature on the most common applications of hemp tissues, hemp extract, and purified hemp phytochemicals in agrochemical, cosmetic, and food sectors. This will be helpful to critically assess the current state of knowledge in this field and contribute to the ongoing debate over the natural and sustainable applications of hemp by-products. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

28 pages, 3362 KB  
Article
Application of Multi-Ribbed Composite Wall Structure in Rural Housing: Seismic, Carbon Emissions, and Cost Analyses
by Yanhua Wu, Yue Wang, Haining Wang, Meng Cong, Hong Zhang, Francis Deng Clement, Yiming Xiang and Chun Liu
Buildings 2026, 16(2), 465; https://doi.org/10.3390/buildings16020465 - 22 Jan 2026
Viewed by 54
Abstract
Sustainable development is crucial worldwide. Under the Paris Agreement, countries commit to Nationally Determined Contributions (NDCs) assessed every five years. China, a major contributor to global warming, has made significant efforts to reduce carbon emissions and achieve carbon neutrality, a key strategy for [...] Read more.
Sustainable development is crucial worldwide. Under the Paris Agreement, countries commit to Nationally Determined Contributions (NDCs) assessed every five years. China, a major contributor to global warming, has made significant efforts to reduce carbon emissions and achieve carbon neutrality, a key strategy for sustainable development. However, there is a lack of adequate attention to embodied emission reduction in rural residential construction, despite a surge in building to improve living standards. This paper evaluated the feasibility of applying a multi-ribbed composite wall structure (MRCWS) in rural China through a village service project. A full-scale shaking table test was conducted to study its seismic performance. Carbon emissions were analyzed using process-based life cycle assessment (P-LCA) and the emission-factor approach (EFA), while costs were estimated using life cycle costing (LCC) and the direct cost method (DCM). These analyses focused on sub-projects and specific structural members to validate the superiority of this prefabricated structure over common brick masonry. MRCWS blocks were prefabricated by mixing wheat straw with aerocrete, utilizing agricultural by-products from local farmlands, thus reducing both construction-related carbon emissions and agricultural waste treatment costs. Results show that this novel precast masonry structure exhibits strong seismic resistance, complying with fortification limitations. Its application can reduce embodied carbon emissions and costs by approximately 6% and 10%, respectively, during materialization phases compared to common brick masonry. This new prefabricated building product has significant potential for reducing carbon emissions and costs in rural housing construction while meeting seismic requirements. The recycling of agricultural waste highlights its adaptability, especially in rural areas. Full article
Show Figures

Figure 1

20 pages, 1190 KB  
Article
Compositional Group Analysis of Biocrude Oils Obtained from Swine Manure by Slow Pyrolysis
by Lenia Gonsalvesh, Stefan Marinov, Maya Stefanova, Jan Czech, Robert Carleer and Jan Yperman
Processes 2026, 14(2), 382; https://doi.org/10.3390/pr14020382 - 22 Jan 2026
Viewed by 42
Abstract
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the [...] Read more.
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the production of biogas and char, the latter of which can be further converted into activated carbon. Two samples were considered: de-watered cake and solid product from anaerobic digestion of swine manure. Biocrude oils were fractionated into weak acidic, strong acidic, alkaline and neutral oil fractions. Subsequently, the neutral oil fraction was separated into paraffinic–naphthenic, slightly polar and polar fractions. All fractions were analyzed by GC–MS. The major identified compositional groups were: (i) for de-watered cake: steroids (40.7%), fatty acids, FAs (23.7%) and n-alkenes/n-alkanes (23.3%); (ii) for solid product from anaerobic digestion: FAs (31.0%), phenols/methoxy phenols (26.6%), n-alkenes/n-alkanes (10.8%) and steroids (10.6%). A variety of short-chain FAs (i.e., linear saturated, mono- and di-unsaturated, cis (i-), trans (ai-), isoprenoid, phenyl alkanoic, amongst others) and methyl esters (FAMEs) were identified as well. FA distribution, nC12nC20, was similar for both manures studied with nC16 and nC18 as major compounds. FAMEs (nC14nC28, with even carbon number dominance) in the slightly polar fraction of both samples were accompanied by considerable amounts of oleic (nC18:1) and linoleic (nC18:2) acids, and corresponding methyl esters. Hydrocarbons, i.e., n-alkenes/n-alkanes, were in the range of nC15nC34, with nC18 maximizing. Anaerobically digested manure has resulted in (i) an increase in the portion of longer homologues of hydrocarbons and FAMEs and (ii) the appearance of new FAs series of long chain members nC22:1nC26:1, ω-9. The comprehensive analysis of the biocrude oils obtained from the slow pyrolysis of swine manure indicates their potential for use as biodiesel additives or as feedstock to produce value-added materials. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
Show Figures

Figure 1

21 pages, 2347 KB  
Article
Experimental Evaluation of Sheep Wool Fibres as Sustainable Reinforcement in Eco-Friendly Cement Mortars
by Carlos Ruiz-Díaz, Guillermo Guerrero-Vacas, Óscar Rodríguez-Alabanda, Manuel Cabrera and Julia Rosales
Materials 2026, 19(2), 427; https://doi.org/10.3390/ma19020427 - 22 Jan 2026
Viewed by 29
Abstract
Sheep wool is a low-value agricultural by-product with potential to contribute to more sustainable cementitious materials. This study investigates Segureña sheep wool fibres as reinforcement in cement mortars, comparing washed wool (W) and cement-encapsulated wool (E) at the same oven-dry raw wool dosages [...] Read more.
Sheep wool is a low-value agricultural by-product with potential to contribute to more sustainable cementitious materials. This study investigates Segureña sheep wool fibres as reinforcement in cement mortars, comparing washed wool (W) and cement-encapsulated wool (E) at the same oven-dry raw wool dosages (0.5, 1.0, and 3.0 g per batch), and benchmarking against polypropylene (PP) fibres. Flexural and compressive strength were evaluated at 1, 7, and 28 days, whereas apparent density, water absorption, and thermal conductivity were assessed at 28 days. An intermediate dosage (1.0 g per batch) provided the most favourable mechanical response, while the highest dosage (3.0 g per batch) reduced performance, plausibly due to dispersion limitations and void formation. At 28 days, W-1 reached 9.65 ± 0.50 MPa in flexure (very close to PP-1) and 59.70 ± 1.05 MPa in compression, exceeding PP-1 in compression. Wool incorporation also reduced apparent density and yielded an observed reduction in thermal conductivity of up to ~18% at the highest dosage (single specimen per series). Overall, optimally dosed washed wool can deliver competitive mechanical performance while improving thermal behaviour, supporting circular-economy valorisation of waste wool in eco-mortars. Full article
Show Figures

Graphical abstract

15 pages, 4702 KB  
Article
Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation
by Lingjin Zhu, Yahu Yao, Chuncheng Cai, Rongqiang Qiao, Xilin Ji, Yazhou Zhang, Zhennan Niu, Shengqi Zhou, Yingshuang Zhang, Baiye Li and Zhiyi Zhang
Processes 2026, 14(2), 370; https://doi.org/10.3390/pr14020370 - 21 Jan 2026
Viewed by 77
Abstract
Fly ash (FA), a major by-product of coal combustion, has long been regarded as a challenging industrial solid waste. Its inherent abundance of alkaline-earth oxides positioned it as a promising candidate for CO2 sequestration through mineral carbonation. This study systematically investigated the [...] Read more.
Fly ash (FA), a major by-product of coal combustion, has long been regarded as a challenging industrial solid waste. Its inherent abundance of alkaline-earth oxides positioned it as a promising candidate for CO2 sequestration through mineral carbonation. This study systematically investigated the effects of key operational parameters, including time, stirring rate, ultrasonic treatment, and solid-to-liquid ratio, on the leaching efficiency of calcium ions and subsequent CO2 fixation. Ultrasonic treatment, a solid-to-liquid ratio of 1:7, a stirring speed of 600 rpm, and 7% monoethanolamine (MEA) collectively enhanced the calcium leaching efficiency (χe) to 16.7%, thereby supplying a substantial reservoir of calcium ions for CO2 fixation. Additionally, the CO2 injection into fly ash slurry and the slurry spraying into CO2 gas were investigated to optimize reactor configurations. The latter method demonstrated superior performance, attaining a CO2 fixation efficiency of 7.23%. This corresponds to a carbonation conversion efficiency (ηc) of approximately 44.5%, indicating that nearly half of the leached calcium ions were successfully converted into stable carbonates. Advanced characterization techniques (SEM-EDS, XRD, FTIR) confirmed the formation of stable carbonates and highlighted the role of additives in enhancing reactivity. The environmental benefit of this approach is addressing fly ash wastes and transforming fly ash into a CO2 fixation material. These findings provided critical insights for calcium leaching and CO2 fixation of fly ash. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

15 pages, 568 KB  
Review
Trends and Opportunities in Crustacean Shell Waste Valorization: Towards Sustainable Application in Packaging Materials and Wastewater Treatment
by Zorica Tomičić, Senka Popović, Nevena Hromiš, Dragana Lukić, Vesna Vasić and Ivana Čabarkapa
Environments 2026, 13(1), 54; https://doi.org/10.3390/environments13010054 - 20 Jan 2026
Viewed by 199
Abstract
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable [...] Read more.
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable resource for creating functional materials due to their high content of chitin, protein, and calcium carbonate. These compounds can be extracted and processed to create various products, such as the biopolymer chitosan, antioxidants like astaxanthin, and adsorbents for water treatment, aligning with a circular economy approach by converting waste into valuable by-products. Chitosan films from crustacean waste are promising active packaging materials developed over the last decade, featuring enhanced antimicrobial and antioxidant properties. Extensive research confirms that crustacean shell waste is an excellent, low-cost adsorbent for removing heavy metals from water. This review analyzes current trends and opportunities for crustacean shell waste utilization in packaging materials and wastewater treatment. Key applications include replacing conventional plastic in biodegradable packaging and improving water treatment, which enhances resource efficiency and minimizes environmental pollution. Full article
Show Figures

Graphical abstract

24 pages, 1959 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 - 19 Jan 2026
Viewed by 95
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
Show Figures

Figure 1

14 pages, 3220 KB  
Article
Effect of Stone Powder Content on the Properties and Microstructure of Nuclear Power-Manufactured Sand Concrete
by Xiangqin Du, Zhilong Liu, Rongfei Chen, Zhenhua Zhao, Xiaobo Hao, Xiaofan Peng and Hongmei Wu
Crystals 2026, 16(1), 66; https://doi.org/10.3390/cryst16010066 - 19 Jan 2026
Viewed by 160
Abstract
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone [...] Read more.
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone powder (GP) to nuclear power concrete by replacing manufactured sand, investigating its effect on the workability, compressive strength, splitting tensile strength, impermeability, and freezing resistance of nuclear power concrete. The mechanism was further elucidated through thermogravimetric (TG), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) techniques. The results show that with the increase in GP content, the slump, compressive strength, and splitting tensile strength of concrete increase first and then decrease, and the seepage height under pressure water decreases first and then increases. The workability, strength, and impermeability of concrete are optimal when GP content is 11.0%. Reasonable GP content improves the compactness of concrete by filling pores and optimizing aggregate gradation, resulting in decreases in porosity, with the size being the most probable and average pore size. Full article
Show Figures

Figure 1

43 pages, 12092 KB  
Article
Sustainable Valorization of Spent Garnet Wastes in Construction Eco-Materials: Validation Stage of Performance Assessment
by Cornelia Baera, Ana-Cristina Vasile, Aurelian Gruin, Paula Sfirloaga, Claudiu-Sorin Dragomir, Raul Zaharia, Ionel Balcu, Corina Macarie and Doru Buzatu
Sustainability 2026, 18(2), 1000; https://doi.org/10.3390/su18021000 - 19 Jan 2026
Viewed by 147
Abstract
Spent garnet (SG) wastes are generated in significant quantities by several industrial activities, including abrasive waterjet cutting (AWJ), abrasive blasting, and filtration and powdered media applications. These wastes represent a promising secondary raw material for the production of sustainable construction materials, particularly green [...] Read more.
Spent garnet (SG) wastes are generated in significant quantities by several industrial activities, including abrasive waterjet cutting (AWJ), abrasive blasting, and filtration and powdered media applications. These wastes represent a promising secondary raw material for the production of sustainable construction materials, particularly green mortars and concretes, through their partial replacement of natural sand in cementitious systems. Such applications are relevant to both hydraulically setting inorganic binders (cement-based materials) and alkali-activated cementitious materials (AACMs). The valorization of SG wastes offers multiple benefits, notably a dual environmental advantage: reducing the consumption of natural aggregates and diverting industrial waste from disposal by integrating it into a new life cycle as a value-added by-product. Additional potential advantages include reduced production costs and possible improvements in the overall performance of mortars and concretes. Despite these benefits, the use of SG as an aggregate replacement remains insufficiently explored, with existing studies providing only preliminary and fragmented evidence of its feasibility. This paper presents an overview of a comprehensive four-year research program investigating SG wastes derived from single-cycle AWJ processes and their incorporation into conventional mortars as partial fine aggregate replacement in cement-based construction composites. The validation stage of the performance assessment expands the range of SG sources by including new sampling from the original suppliers, enabling verification of the repeatability and reproducibility of earlier findings. A broad set of physical, mechanical, and durability properties—particularly resistance to freeze–thaw cycles—is evaluated to achieve a robust and comprehensive material characterization. These results are further correlated with chemical and microstructural analyses, providing critical insights to support the technological transfer of SG-based construction materials to industrial applications with reduced carbon footprint. Full article
Show Figures

Figure 1

19 pages, 1214 KB  
Article
Primary Fermentation in Wine Production Influence on Phenolic Retention and Valorization Potential of Berry Skin By-Products
by Audrone Ispiryan and Elvyra Jarienė
Plants 2026, 15(2), 296; https://doi.org/10.3390/plants15020296 - 19 Jan 2026
Viewed by 125
Abstract
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black [...] Read more.
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black chokeberry (Aronia melanocarpa L.), lingonberry (Vaccinium vitis-idaea L.), rowanberry (Sorbus aucuparia L.), and cranberry (Vaccinium macrocarpon L.). Non-fermented and fermented skin fractions were analysed using Folin–Ciocalteu and HPLC to determine total and individual phenolic profiles. Primary fermentation induced significant species-dependent changes in phenolic composition. Blackcurrant, lingonberry, and rowanberry skins exhibited substantial decreases in total phenolics (−66%, −26%, and −57%, respectively), driven by strong losses of flavan-3-ols and hydroxycinnamic acids. In contrast, cranberry and chokeberry skins showed net increases in phenolic content (+47% and +18%, respectively), associated with the release of bound phenolics and the appearance of new low-molecular-weight phenolic acids such as gallic acid. Across all species, fermentation enhanced biotransformation into simpler phenolics while reducing major native anthocyanins and catechins. These results demonstrate that the influence of primary fermentation on berry skins is not uniform but dictated by their inherent phenolic architecture. Berries rich in polymeric or conjugated phenolics benefit from fermentation through increased phenolic extractability. The findings provide a comparative basis for optimizing fermentation and post-processing strategies to enhance the valorization potential of berry by-products in food and nutraceutical applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

17 pages, 1782 KB  
Article
Production of Antimicrobial and Antioxidant Metabolites by Penicillium crustosum Using Lemon Peel as a Co-Substrate in Submerged Fermentation
by Arely Núñez-Serrano, Refugio B. García-Reyes, Juan A. Ascasio-Valdés, Cristóbal N. Aguilar-González and Alcione García-González
Foods 2026, 15(2), 348; https://doi.org/10.3390/foods15020348 - 18 Jan 2026
Viewed by 176
Abstract
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors [...] Read more.
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors and sustainable availability as an agro-industrial byproduct. Crude extracts, aqueous and organic fractions, and molecular-weight partitions were assessed for antioxidant activity using the DPPH assay and for antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Semi-purified extracts from co-substrate fermentations exhibited enhanced bioactivity, showing MIC values of 185 µg/mL against P. aeruginosa and 225 µg/mL against MRSA, along with strong ABTS radical-scavenging capacity (238.95 ± 2.17 µmol TE). RP-HPLC-ESI-MS profiling revealed phenolic acids, flavanones, flavonols, and lignans, including ferulic acid 4-O-glucoside, bisdemethoxycurcumin, secoisolariciresinol, and quercetin 3-O-xylosyl-glucuronide. These findings demonstrate that lemon peel supplementation promotes the biosynthesis of antimicrobial and antioxidant metabolites by P. crustosum. This approach supports sustainable agro-waste valorization and offers a promising strategy for obtaining natural bioactive compounds with potential applications in food preservation and health-related formulations. Full article
Show Figures

Figure 1

Back to TopTop