Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation
Abstract
1. Introduction
2. Materials and Methods
2.1. FA Samples Reagents
2.2. Fixation System
2.3. Leaching and Fixation Operation
2.4. Sample Characterization
2.5. Calculation Methods
3. Results and Discussion
3.1. FA Samples
3.2. Ion Leaching
3.2.1. Influence of Leaching Time
3.2.2. Influence of Solid-to-Liquid Ratio
3.2.3. Influence of Reactor Design
3.2.4. Influence of Agent Concentration
3.2.5. Characterization of Leaching FA Samples
3.3. CO2 Fixation
3.3.1. Effects of Contact Modes and MEA on FA CO2 Fixation Efficiency
3.3.2. Characterization of Mineralizing FA Samples
4. Process Analysis and Economic Considerations
4.1. Analysis of Rate-Limiting Steps and Reactor Performance
4.2. Economic Assessment and the Role of MEA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. CO2 Emissionsins in 2023; IEA: Paris, France, 2024; Available online: https://www-iea-org-s-154.libdb.csu.edu.cn/reports/co2-emissions-in-2023 (accessed on 1 January 2024).
- Lu, J.W.; Wang, Z.H.; Su, S.; Liu, H.; Ma, Z.W.; Ren, Q.Q.; Xu, K.; Wang, Y.; Hu, S.; Xiang, J. Single-step integrated CO2 absorption and mineralization using fly ash coupled mixed amine solution: Mineralization performance and reaction kinetics. Energy 2024, 286, 129615. [Google Scholar] [CrossRef]
- Zhao, K.Y.; Jia, C.Q.; Li, Z.H.; Du, X.Z.; Wang, Y.B.; Li, J.J.; Yao, Z.C.; Yao, J. Recent Advances and Future Perspectives in Carbon Capture, Transportation, Utilization, and Storage (CCTUS) Technologies: A Comprehensive Review. Fuel 2023, 351, 128913. [Google Scholar] [CrossRef]
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Sun, B.B.; Ye, G.; De Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Wei, H.J.; Wan, H.F.; Yuan, S.; Liu, G.Q.; Teng, J.J.; Shi, N.; Liu, Z.W. A new gelling material: Properties of recycled aggregate concrete under conditions of complete cement replacement using steel slag, ore slag, and fly ash. Constr. Build. Mater. 2025, 464, 140180. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhu, Q.J.; Huang, G.F.; Chen, Y.J.; Li, J.; Zhao, G.P.; Peng, X.L.; Li, J.; Wang, X.Q. Innovative dry magnetic separation for Enhanced recovery of magnetic iron oxides from coal fly ash. Fuel 2025, 388, 134489. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Yuttitham, M.; Hatano, R. Variations of soil properties and soil surface loss after fire in rotational shifting cultivation in Northern Thailand. Front. Environ. Sci. 2023, 11, 1213181. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chen, Y.H.; Fan, L.S.; Kim, H.; Gao, X.; Ling, T.C.; Chiang, P.C.; Pei, S.L.; Gu, G.W. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain. 2020, 3, 399–405. [Google Scholar] [CrossRef]
- Wang, J.J.; Sekiai, R.; Tamura, R.; Watanabe, N. CO2 capture, geological storage, and mineralization using biobased biodegradable chelating agents and seawater. Sci. Adv. 2024, 10, eadq0515. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, L.T.O.; Qian, Q.H.; Wang, J. A critical review of assessments of geological CO2 storage resources in Pennsylvania and the surrounding region. Geoenergy Sci. Eng. 2025, 247, 213732. [Google Scholar] [CrossRef]
- Bielicki, J.M.; Pollak, M.F.; Deng, H.; Wilson, E.J.; Fitts, J.P.; Peters, C.A. The Leakage Risk Monetization Model for Geologic CO2 Storage. Environ. Sci. Technol. 2016, 50, 4923–4931. [Google Scholar] [CrossRef]
- Veetil, S.P.; Hitch, M. Recent developments and challenges of aqueous mineral carbonation: A review. Int. J. Environ. Sci. Technol. 2020, 17, 4359–4380. [Google Scholar] [CrossRef]
- Milani, D.; McDonald, R.; Fawell, P.; Weldekidan, H.; Puxty, G.; Feron, P. Ex-situ mineral carbonation process challenges and technology enablers: A review from Australia’s perspective. Miner. Eng. 2025, 222, 109124. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.S.; Liu, Z.Y.; Liu, C.; She, W.; Wu, Z.T. Experimental study on eco-friendly one-part alkali-activated slag-fly ash-lime composites under CO2 environment: Reaction mechanism and carbon capture capacity. Constr. Build. Mater. 2024, 421, 135779. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Mazzella, A.; Errico, M.; Spiga, D. CO2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation. J. Environ. Chem. Eng. 2016, 4, 4120–4128. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Zhang, R.J.; French, D.; Grigore, M.; Yu, B.; Wang, X.L.; Yu, J.L.; Zhao, S.F. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Process. Technol. 2019, 188, 79–88. [Google Scholar] [CrossRef]
- Chen, K.L.; Han, S.Y.; Meng, F.Z.; Lin, L.; Li, J.L.; Gao, Y.C.; Qin, W.K.; Hu, E.D.; Jiang, J.G. Diisobutylamine mediated CO2 mineralization and CaCO3 production from municipal solid waste incineration fly ash as raw ingredient and regeneration reagent. Chem. Eng. J. 2024, 481, 148392. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.C.; Li, X.Q.; Li, X.D.; Liu, S.J.; Yan, J.H. A novel method for MSWI fly ash resource based on calcium component regulation and CO2 mineralization. Chem. Eng. J. 2024, 492, 152320. [Google Scholar] [CrossRef]
- Jiang, Z.; Qin, B.T.; Shi, Q.L.; Ma, Z.J.; Shao, X.; Xu, Y.Z.; Hao, M.Y.; Yang, Y.X. Effect of ball milling activation on CO2 mineralization performance in fly ash and fire resistance capabilities of mineralized product. J. Environ. Chem. Eng. 2024, 12, 113954. [Google Scholar] [CrossRef]
- GB/T 212-2008; Methods for Proximate Analysis of Coal. China Standards Press: Beijing, China, 2008.
- Ji, L.; Yu, H.; Yu, B.; Jiang, K.; Grigore, M.; Wang, X.; Zhao, S.; Li, K. Integrated absorption–mineralization for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock. Chem. Eng. J. 2018, 352, 151–162. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Lin, H.-H.; Tang, Y.-C.; Shen, Y.-H. Recovery of Calcium from Reaction Fly Ash. Sustainability 2023, 15, 2428. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.M.; Shen, Y.Z.; Li, H.L.; Lin, X.Q.; Li, X.D.; Yan, J.H. A novel insight into CO2-cured cement modified by ultrasonic carbonated waste incineration fly ash: Mechanical properties, carbon sequestration, and heavy metals immobilization. Carbon Capture Sci. Technol. 2025, 14, 100368. [Google Scholar] [CrossRef]
- Gu, Q.Y.; Wang, T.W.; Wu, W.; Wang, D.C.; Jin, B.S. Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures. Chem. Eng. J. 2021, 414, 128756. [Google Scholar] [CrossRef]
- Wang, X.B.; Pan, Y.B.; Fan, W.D.; Guo, H.; Zhang, H. Fly Ash-CaO sorbents modified with chlorides and hydroxides for CO2 capture in high-temperature flue gas. Chem. Eng. J. 2024, 498, 155606. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A. A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology. Energies 2024, 17, 5605. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, J.W.; Zhao, Z.H.; Hou, X.S.; Zhang, H.Z.; Wen, C.Q.; Wang, X.J.; Li, Y.Z.; Wang, W.L. Study of a coal fly ash-based integrated CO2 capture-mineralization material: Preparation method, modification mechanism, and CO2 fixation property. Sci. Total Environ. 2024, 955, 177201. [Google Scholar] [CrossRef]
- Wang, C.L.; Jiang, H.Y.; Miao, E.D.; Wang, Y.J.; Zhang, T.T.; Xiao, Y.Q.; Liu, Z.Y.; Ma, J.; Xiong, Z.; Zhao, Y.C.; et al. Accelerated CO2 mineralization technology using fly ash as raw material: Recent research advances. Chem. Eng. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.D.; Xu, J.; Sun, Z.J.; Wang, Y.; Hu, S.; Wang, X.L.; Xue, Y.T.; et al. CO2 sequestration by direct gasesolid carbonation of fly ash with steam addition. J. Clean. Prod. 2018, 178, 98–107. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J. Hazard. Mater. 2005, 128, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Z.; Teng, L.M.; Rohani, S.; Qin, Z.F.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.C.; Liang, B. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Back, M.; Kuehn, M.; Stanjek, H.; Peiffer, S. Reactivity of alkaline lignite fly ashes towards CO2 in water. Environ. Sci. Technol. 2008, 42, 4520–4526. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.J.; Lizuka, A.; Shibata, E. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization. J. Environ. Manag. 2021, 288, 112411. [Google Scholar] [CrossRef] [PubMed]
- He, L.L.; Yu, D.X.; Lv, W.Z.; Wu, J.Q.; Xu, M.H. A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash. Ind. Eng. Chem. Res. 2013, 52, 15138−15145. [Google Scholar] [CrossRef]
- Chen, T.L.; Chen, Y.H.; Dai, M.Y.; Chiang, P.C. Stabilization—Solidification utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed. Waste Manag. 2020, 121, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, R.; Chen, Z.L.; Zhang, P.; Lin, X.Q.; Takaoka, M.; Li, X.D.; Yan, J.H. Insights into closed-wet ultrasonic carbonation of MSWI fly ash: Carbon sequestration, heavy metals stabilization, and PCDD/Fs migration and degradation. J. Environ. Manag. 2025, 373, 123591. [Google Scholar] [CrossRef]
- Chen, J.; Fu, C.K.; Mao, T.Y.; Shen, Y.Z.; Li, M.J.; Lin, X.Q.; Li, X.D.; Yan, J.H. Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chem. Eng. J. 2022, 450, 138418. [Google Scholar] [CrossRef]
- Lv, B.H.; Guo, B.S.; Zhou, Z.M.; Jing, G.H. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The potential of FBC fly ashes to reduce CO2 emissions. Sci. Rep. 2020, 10, 9469. [Google Scholar] [CrossRef]
- Ho, H.J.; Iizuka, A.; Shibata, E.; Ojumu, T. Circular indirect carbonation of coal fly ash for carbon dioxide capture and utilization. J. Environ. Chem. Eng. 2022, 10, 108269. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Li, K.K.; Yu, B.; Grigore, M.; Yang, Q.; Wang, X.L.; Chen, Z.L.; Zeng, M.; Zhao, S.F. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 2018, 225, 356–366. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, X.; Van Gerven, T. Amine-assisted simultaneous CO2 absorption and mineral carbonation: Effect of different categories of amines. Environ. Sci. Technol. 2023, 57, 10816–10827. [Google Scholar] [CrossRef]
- La Plante, E.C.; Mehdipour, I.; Shortt, I.; Yang, K.; Simonetti, D.; Bauchy, M.; Sant, G.N. Controls on CO2 Mineralization Using Natural and Industrial Alkaline Solids under Ambient Conditions. ACS Sustain. Chem. Eng. 2021, 9, 10727–10739. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L.; Feng, L.; He, Q.; Ji, L.; Yan, S. Insights into dual functions of amino acid salts as CO2 carriers and CaCO3 regulators for integrated CO2 absorption and mineralization. J. CO2 Util. 2021, 48, 101531. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, S.; Yang, L.; Wang, Y.L.; Guan, X.M.; Zhang, H.B.; Luo, S.Q. Synergistic effects of fly ash-cement slurry and CO2 fixation on coal gangue aggregate and its concrete properties. Constr. Build. Mater. 2025, 465, 140225. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.C.; Shen, Y.Z.; Fu, C.K.; Li, M.J.; Lin, X.Q.; Li, X.D.; Yan, J.H. Thermochemical heat storage utilization of MSWI fly ash after carbonation enhancement with ammonia water regulation: Carbon sequestration efficiency, heavy metal immobilization, and heat storage characteristics analysis. Sep. Purif. Technol. 2023, 320, 124179. [Google Scholar] [CrossRef]
- Huang, Y.X.; Zheng, X.; Wei, Y.B.; He, Q.Y.; Yan, S.P.; Ji, L. Protonated amines mediated CO2 mineralization of coal fly ash and polymorph selection of CaCO3. Chem. Eng. J. 2022, 450, 138121. [Google Scholar] [CrossRef]






| Elemental Composition | |||||||||
| Items | SiO2 | Al2O3 | CaO | SO3 | Fe2O3 | MgO | K2O | TiO2 | P2O5 |
| wt.% | 19.36 | 29.43 | 15.59 | 6.35 | 3.55 | 6.67 | 1.44 | 17.45 | 0.16 |
| Approximate analysis | |||||||||
| Items | Mad | Ad | Vdaf | FCdaf | \ | \ | \ | \ | \ |
| wt.% | 5.60 | 82.47 | 10.23 | 1.70 | \ | \ | \ | \ | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhu, L.; Yao, Y.; Cai, C.; Qiao, R.; Ji, X.; Zhang, Y.; Niu, Z.; Zhou, S.; Zhang, Y.; Li, B.; et al. Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation. Processes 2026, 14, 370. https://doi.org/10.3390/pr14020370
Zhu L, Yao Y, Cai C, Qiao R, Ji X, Zhang Y, Niu Z, Zhou S, Zhang Y, Li B, et al. Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation. Processes. 2026; 14(2):370. https://doi.org/10.3390/pr14020370
Chicago/Turabian StyleZhu, Lingjin, Yahu Yao, Chuncheng Cai, Rongqiang Qiao, Xilin Ji, Yazhou Zhang, Zhennan Niu, Shengqi Zhou, Yingshuang Zhang, Baiye Li, and et al. 2026. "Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation" Processes 14, no. 2: 370. https://doi.org/10.3390/pr14020370
APA StyleZhu, L., Yao, Y., Cai, C., Qiao, R., Ji, X., Zhang, Y., Niu, Z., Zhou, S., Zhang, Y., Li, B., & Zhang, Z. (2026). Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation. Processes, 14(2), 370. https://doi.org/10.3390/pr14020370
