Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = butt-weld

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 177
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

20 pages, 28281 KiB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 - 24 Jul 2025
Viewed by 324
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

16 pages, 3030 KiB  
Article
Development of a Mathematical Model for Predicting the Average Molten Zone Thickness of HDPE Pipes During Butt Fusion Welding
by Donghu Zeng, Maksym Iurzhenko and Valeriy Demchenko
Polymers 2025, 17(14), 1932; https://doi.org/10.3390/polym17141932 - 14 Jul 2025
Viewed by 404
Abstract
Currently, the determination of the molten zone thickness in HDPE pipes during butt fusion welding primarily depends on experimental and numerical methods, leading to high costs and reduced efficiency. In this study, a mathematical (MM) model based on Neumann’s solution for the melting [...] Read more.
Currently, the determination of the molten zone thickness in HDPE pipes during butt fusion welding primarily depends on experimental and numerical methods, leading to high costs and reduced efficiency. In this study, a mathematical (MM) model based on Neumann’s solution for the melting of a semi-infinite region was developed to efficiently predict the average molten zone (AMZ) thickness of HDPE pipes under varying heating temperatures and heating times while incorporating the effects of heat convection. Additionally, a two-dimensional CFD model was constructed using finite element analysis (FEA) to validate the MM model. Welding pressure was not considered in this study. The effects of heating temperature, heating time, and heat convection on the AMZ thickness in HDPE pipes were systematically analyzed. The heating temperature at the heated end of HDPE ranged from 190 °C to 350 °C in 20 °C increments, with a temperature of 28 °C as the ambient and initial setting, and the heating time was set to 180 s for both the MM and CFD models. The results demonstrate a strong correlation between the AMZ thickness predictions from the MM and CFD models. The relative error between the MM and CFD models ranges from 0.280% to 10,830% with heat convection and from −2.398% to 8.992% without heat convection. Additionally, for the MM model, the relative error between cases with and without heat convection ranges from 0.243% to 0.433%, whereas for the CFD model, it varies between 1.751% and 3.189%. These findings confirm the reliability of the MM model developed in this study and indicate that thermal convection has a minimal impact on AMZ thickness prediction for large-diameter, thick-walled HDPE pipes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

16 pages, 8314 KiB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 377
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

13 pages, 2802 KiB  
Article
Redistribution of Residual Stresses in Titanium Alloy Butt-Welded Thick Plates Due to Wire-Cut Electrical Discharge Machining
by Qifeng Wu, Cunrui Bo, Kaixiang Sun and Liangbi Li
Metals 2025, 15(7), 750; https://doi.org/10.3390/met15070750 - 2 Jul 2025
Viewed by 249
Abstract
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric [...] Read more.
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric discharge machining, using numerical simulations based on thermo-elastoplastic theory and the element birth and death method, validated by X-ray non-destructive testing. The transverse residual tensile stress near the weld exhibits an asymmetric bimodal distribution, while the longitudinal stress is significantly higher than the transverse stress. Wire-cut electric discharge machining had minimal influence on the transverse residual stress distribution but led to partial relief of the longitudinal residual tensile stress. The maximum reductions in transverse and longitudinal welding residual tensile stresses are approximately 60% and 36%, respectively. The findings indicate that wire-cut electric discharge machining can alter surface residual stresses in Ti alloy butt-welded thick plates. This study also establishes a numerical simulation methodology for analysing welding residual stresses and their evolution due to wire-cut electric discharge machining. The results provide a theoretical basis for analysing the structural strength and safety of Ti-alloy-based deep-sea submersibles. Full article
Show Figures

Figure 1

7 pages, 2358 KiB  
Proceeding Paper
Effect of FSW Parameters on Microstructure and Mechanical Properties of Dissimilar Aluminum Joints
by Jayakumar Krishnamoorthy, Saran Kumar Murugesan, Sanjuvigasini Nagappan and Sanjay Prakash Prithiviraj
Eng. Proc. 2025, 93(1), 12; https://doi.org/10.3390/engproc2025093012 - 2 Jul 2025
Viewed by 238
Abstract
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on [...] Read more.
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on welding aluminum and its alloys because of its high strength-to-weight ratio and uses in the shipbuilding, aerospace, and other fabrication industries. Important FSW process factors that determine the mechanical qualities of the weldment are the tool tilt angle, tool traverse feed, tool pin profile, tool rotational speed (TRS), tool traverse speed (TTS), tool pin profile (TPP), and shoulder plunge depth. Variations in the required process parameters cause defects, which lower the weld quality of FSWed aluminum alloys (AA). Therefore, keeping an eye on and managing the FSW process is crucial to preserving the caliber of the weld joints. The current study aims to investigate the changes in the mechanical characteristics and microstructure of the FSWed AA5052-H111 and AA6061-T6 joints. To perform the FSW experiments, we varied TRS, TTS, and TPP on plates that were 5 mm thick and had a butt joint structure. Following welding, the microstructure of the weld zones was examined to observe how the grains had changed. The joint’s tensile strength reached a maximum of 227 MPa for the square-shaped TPP, and the micro-Vickers hardness test results showed a maximum of 102 HV at the weld nugget zone (WNZ). Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 397
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

12 pages, 3830 KiB  
Article
Microstructural Features and Mechanical Properties of Laser–MIG Hybrid Welded–Brazed Ti/Al Butt Joints with Different Filler Wires
by Xin Zhao, Zhibin Yang, Yonghao Huang, Hongjun Zhu and Shaozheng Dong
Metals 2025, 15(6), 674; https://doi.org/10.3390/met15060674 - 17 Jun 2025
Viewed by 382
Abstract
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in [...] Read more.
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in detail. The wetting and spreading effect of the ER4043 filler wire was the best, especially on the weld’s rear surface. Serrated-shaped and rod-like IMCs were generated at the top region of the interface of the joint with ER4043 filler wire, but rod-like IMCs did not appear at the joints with the other filler wires. Only serrated-shaped IMCs appeared in the middle and bottom regions for the three filler wires. The phase compositions of all the IMCs were inferred as being made up of TiAl3. The average thickness of the IMC layer of joints with the ER5356 and ER2319 filler wires was almost the same and thinner than that of the joint with the ER4043 filler wire. The average thickness was largest in the middle region and smallest in the bottom region for all the joints with the three filler wires. The average microhardness in the weld metal of ER5356, ER4043 and ER2319 filler wires could reach up to 77.7 HV, 91.2 HV and 85.4 HV, respectively. The average tensile strength of joints with the ER5356, ER4043 and ER2319 filler wires was 106 MPa, 238 MPa and 192 MPa, respectively. The tensile samples all fractured at the IMC interface and showed a mixed brittle–ductile fracture feature. These research results could help confirm the appropriate filler wire for the laser–MIG hybrid welding–brazing of Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Figure 1

20 pages, 6918 KiB  
Article
Phase Transformation Kinetics During Post-Weld Heat Treatment in Weldments of C-250 Maraging Steel
by Mercedes Andrea Duran, Pablo Peitsch and Hernán Gabriel Svoboda
Materials 2025, 18(12), 2820; https://doi.org/10.3390/ma18122820 - 16 Jun 2025
Viewed by 397
Abstract
Welding of maraging steels leads to a microstructural gradient from base material (BM) to weld metal (WM). During post-weld heat treatment (PWHT) the precipitation and reverted austenite (γr) reactions will occur defining the mechanical properties. These reactions are affected by the [...] Read more.
Welding of maraging steels leads to a microstructural gradient from base material (BM) to weld metal (WM). During post-weld heat treatment (PWHT) the precipitation and reverted austenite (γr) reactions will occur defining the mechanical properties. These reactions are affected by the microstructure and local chemical composition of each zone in the “as welded” (AW) condition. This effect has not been clearly described yet nor the evolution of the microstructure. The objective of this work was to analyse the phase transformations at the different zones of the welded joint during the PWHT to explain the microstructure obtained at each zone. Samples of C250 maraging steel were butt-welded by GTAW-P (Gas Tungsten Arc Welding—Pulsed) process without filler material. The AW condition showed an inhomogeneous microhardness profile, associated with a partial precipitation hardening in the subcritical heat affected zone (SC-HAZ) followed by a softening in the intercritical (IC-HAZ) and recrystallized heat affected zone (R-HAZ). A loop-shaped phase was observed between low temperature IC-HAZ and SC-HAZ, associated with γr, as well as microsegregation at the weld metal (WM). The microstructural evolution during PWHT (480 °C) was evaluated on samples treated to different times (1–360 min). Microhardness profile along the welded joint was mostly homogeneous after 5 min of PWHT due to precipitation reaction. The microhardness in the WM was lower than in the rest of the joint due to the depletion of Ni, Ti and Mo in the martensite matrix related with the γr formation. The isothermal kinetics of precipitation reaction at 480 °C was studied using Differential Scanning Calorimetry (DSC), obtaining a JMAK expression. The average microhardness for each weld zone was proposed for monitoring the precipitation during PWHT, showing a different behaviour for the WM. γr in the WM was also quantified and modelled, while in the IC-HAZ tends to increase with PWHT time, affecting the microhardness. Full article
(This article belongs to the Special Issue Advances on Welded Joints: Microstructure and Mechanical Properties)
Show Figures

Figure 1

28 pages, 9689 KiB  
Article
Investigation of Tensile Properties at Room and Elevated Temperatures of S1100QL Steel and Its Welded Joints
by Djordje Ivković, Dušan Arsić, Ljubica Radović, Nada Ilić, Jovana Mandić, Marko Delić and Andjela Ivković
Coatings 2025, 15(6), 696; https://doi.org/10.3390/coatings15060696 - 9 Jun 2025
Viewed by 420
Abstract
The aim of this paper was to present an experimental study into the influence of elevated temperatures on the tensile properties of the ultra-high-strength steel (UHSS) S1100QL and its welded joints. S1100QL steel belongs to the group of structural steels, and it is [...] Read more.
The aim of this paper was to present an experimental study into the influence of elevated temperatures on the tensile properties of the ultra-high-strength steel (UHSS) S1100QL and its welded joints. S1100QL steel belongs to the group of structural steels, and it is mainly used for designing various types of lifts and cranes with the goal of decreasing the mass of structures while increasing their load capacity. Since the structures mentioned are mostly produced as welded structures, tensile tests were also conducted on the specimens prepared from two different types of welded butt joints made of S1100QL steel. One plate was welded with a preheating temperature of approx. 175 °C with a similar undermatching filler material, and the second plate was welded with slight preheating and with two different filler materials. For the root pass, an austenitic filler material was used, and for further passes the same undermatching filler material as in the first case was used. The goal of this study was to determine the highest temperature at which the steel and its welded joints maintain their properties. The first set of tensile tests focused on testing the properties of the base material at room and seven other elevated temperatures (from 100 °C to 700 °C). The results obtained showed that between 400 °C and 500 °C, properties begin to drop. The second set of tests focuses on investigating the tensile properties of S1100QL welded joints, both at room and elevated temperatures. In this paper, details on the welding technologies used and the microstructures obtained are also presented. Full article
(This article belongs to the Special Issue Latest Insights in Metal Fatigue, Failure, and Fracture)
Show Figures

Figure 1

25 pages, 6526 KiB  
Article
Engineering Perfection in GTAW Welding: Taguchi-Optimized Root Height Reduction for SS316L Pipe Joints
by Mohammad Sohel, Vishal S. Sharma and Aravinthan Arumugam
J. Manuf. Mater. Process. 2025, 9(6), 188; https://doi.org/10.3390/jmmp9060188 - 6 Jun 2025
Viewed by 706
Abstract
This study presents a systematic optimization of GTAW welding parameters to achieve a pipe-to-pipe butt weld with a root height consistently below 2 mm when joining stainless-steel 316L material, employing the Taguchi design of experiments. To the authors’ knowledge, no similar studies have [...] Read more.
This study presents a systematic optimization of GTAW welding parameters to achieve a pipe-to-pipe butt weld with a root height consistently below 2 mm when joining stainless-steel 316L material, employing the Taguchi design of experiments. To the authors’ knowledge, no similar studies have been conducted to explore the optimization of welding parameters specifically aimed at minimizing weld root height under 2 mm in stainless-steel EO pipeline welding applications. This gap in the existing literature highlights the innovative aspect of the current study, which seeks to address these challenges and improve welding precision and joint reliability. Root height, also referred to as weld root reinforcement, is defined as the excess weld metal protruding beyond the inner surface root side of a butt-welded joint. The input parameters considered are the welding current, voltage, speed, and root gap configurations of 1, 1.5, and 2 mm. Welding was performed according to the Taguchi L-09 experimental design. Nine weld samples were evaluated using liquid penetrant testing to detect surface-breaking defects, such as porosity, laps, and cracks; X-ray radiography to identify internal defects; and profile radiography to assess erosion, corrosion, and root height. Among the nine welded plate samples, the optimal root height (less than 2 mm) was selected and further validated through the welding of a one-pipe sample. An additional macro examination was conducted to confirm the root height and assess the overall root weld integrity and quality. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

13 pages, 3086 KiB  
Article
Laser-MIG Hybrid Welding–Brazing Characteristics of Ti/Al Butt Joints with Different Groove Shapes
by Xin Zhao, Zhibin Yang, Yonghao Huang, Taixu Qu, Rui Cheng and Haiting Lv
Metals 2025, 15(6), 625; https://doi.org/10.3390/met15060625 - 31 May 2025
Viewed by 382
Abstract
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The [...] Read more.
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The welds without obvious defects could be obtained with grooves of I-shape and V-shape on Ti side, while welds quality with grooves of V-shape on Al side and V-shape on both sides were slightly worse. The interfacial intermetallic compounds (IMCs) on the brazing interface were homogeneous in the joints with groove of V-shape on Ti side, and V-shape on both sides, which had similar thickness and were both composed of TiAl3. Unlike the IMCs mainly composed of TiAl3 at the I-shape groove interface, TiAl3, TiAl, and Ti3Al constituted the IMCs at the V-shape on Al side interface. The average tensile strength of Ti/Al joints with groove of I-shape was the highest at 238 MPa, and was lowest at 140 MPa with groove of V-shape on Al side. The tensile samples mainly fractured at IMCs interface and the fractured surfaces all exhibited mixed brittle–ductile fracture mode. Based on the above research results, I-shape groove was recommended for laser-arc hybrid welding–brazing of 4 mm thick Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

13 pages, 2082 KiB  
Article
Laser–Arc Welding Adaptive Model of Multi-Pre-Welding Condition Based on GA-BP Neural Network
by Zesheng Wu, Zhaodong Zhang and Gang Song
Metals 2025, 15(6), 611; https://doi.org/10.3390/met15060611 - 28 May 2025
Viewed by 475
Abstract
In large welding structures, maintaining a uniform assembly condition and machined dimension in the pre-welding groove is challenging. The assembly condition and machined dimension of the pre-welding groove significantly impact the selection of the welding parameters. In this study, laser–arc hybrid welding is [...] Read more.
In large welding structures, maintaining a uniform assembly condition and machined dimension in the pre-welding groove is challenging. The assembly condition and machined dimension of the pre-welding groove significantly impact the selection of the welding parameters. In this study, laser–arc hybrid welding is used to perform butt welding on 6 mm Q345 steel in various assembly conditions, and we propose an adaptive model of the BP neural network optimized by a genetic algorithm (GA) for laser–arc welding. By employing the GA algorithm to optimize the parameters of the neural network, the relationship between the pre-welding groove parameters and welding parameters is established. The mean square error (MSE) of the GA-BP neural network is 0.75%. It is verified via experiments that the neural network can predict the welding parameters required to process a specific welding morphology under different pre-welding grooves. This model provides technical support for the development of intelligent welding systems for large and complex components. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

17 pages, 5744 KiB  
Article
Evaluation of Mechanical Characteristics of Tungsten Inert Gas (TIG) Welded Butt Joint of Inconel 600
by Arash Moradi, Fatemeh Marashi Najafi, Yong Chen and Mahmoud Chizari
J. Manuf. Mater. Process. 2025, 9(6), 177; https://doi.org/10.3390/jmmp9060177 - 28 May 2025
Viewed by 544
Abstract
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques [...] Read more.
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques for joining these alloys. Therefore, the investigation of the mechanical behaviour after the welding process is crucial for selecting the appropriate technique for joining Inconel 600 sheets. This research focuses on investigating the microstructure and mechanical behaviour of TIG-welded Inconel 600 through a series of tests, such as tensile, fatigue, creep, and hardness evaluations. In addition, microstructural analysis is combined with these mechanical evaluations to simulate the operating conditions experienced by turbine blades. Key parameters such as yield strength, tensile strength, and elongation have been evaluated through these analyses. The Ramberg–Osgood relationship has been investigated using the engineering and true stress–strain curves obtained from the welded specimens. The results of the fatigue test illustrate the relationship between strain amplitude and the number of cycles to failure for single and double-edge notched specimens. The test was performed at two different loads including 400 MPa and 250 MPa at a constant temperature of 650 °C, and the corresponding strain-time curves were recorded. The results showed rapid creep failure at 650 °C, suggesting that TIG welding may need to be optimized for high temperature applications. Full article
Show Figures

Figure 1

21 pages, 5032 KiB  
Article
Analysis of Residual Stress of Butt Fusion Joints for Polyethylene Gas Pipes
by Jie Gao, Minshuo Liang, Junqiang Wang, Sixi Zha, Ankang Yang and Huiqing Lan
Polymers 2025, 17(10), 1388; https://doi.org/10.3390/polym17101388 - 18 May 2025
Cited by 1 | Viewed by 437
Abstract
The performance of high-density polyethylene (PE) pipes joints directly affects the total pipeline’s operation, and so studying the residual stress of butt fusion joints is crucial for enhancing the safety of gas pipelines. Based on a layer-by-layer ring cutting test method, we measured [...] Read more.
The performance of high-density polyethylene (PE) pipes joints directly affects the total pipeline’s operation, and so studying the residual stress of butt fusion joints is crucial for enhancing the safety of gas pipelines. Based on a layer-by-layer ring cutting test method, we measured the distribution of residual stresses in the fusion zone and heat-affected zone of butt fusion joints for PE gas pipes. Firstly, the ring samples were cut, their diameter changes were measured, and the results were compared with those predicted by the theoretical calculations. This showed that the circumferential residual stresses of the butt fusion joint for the PE gas pipes are exponentially distributed in the base material (BM) zone, the weld zone (WZ) and the heat-affected zone (HAZ). Furthermore, the residual stresses in the HAZ are lower than those in the BM zone, and the smallest residual stresses were seen in the WZ. Finally, using X-ray diffraction (XRD) technology, the crystallinities in the BM zone, the WZ, and the HAZ of the butt joints were measured. The crystallinity gradually decreased from the WZ to the HAZ and the BM zone, and the crystallinity in each zone was also related to the magnitude of the residual stresses. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

Back to TopTop