Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,320)

Search Parameters:
Keywords = building directive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 (registering DOI) - 1 Aug 2025
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

35 pages, 3599 KiB  
Review
Recent Advances in Borylation and Suzuki-Type Cross-Coupling—One-Pot Miyaura-Type CX and CH BorylationSuzuki Coupling Sequence
by Nouhaila Bahyoune, Mohammed Eddahmi, Perikleia Diamantopoulou, Ioannis D. Kostas and Latifa Bouissane
Catalysts 2025, 15(8), 738; https://doi.org/10.3390/catal15080738 (registering DOI) - 1 Aug 2025
Abstract
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last [...] Read more.
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last decade in transition metal-catalyzed C–X borylation and direct C–H borylation, with emphasis on nickel-catalyzed C–H borylation, as effective and affordable protocols for the borylation of aryl substrates. In addition, Suzuki-type cross-coupling by activation of C–H, C–C, or C–N bonds is also reported. This study then offers an overview of recent advances for the synthesis of bi- and multi-aryls found in synthetic molecular complexes and natural products using the transition metal-catalyzed one-pot Miyaura-type C–X and C–H borylation–Suzuki coupling sequence. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

34 pages, 1441 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 (registering DOI) - 1 Aug 2025
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
24 pages, 756 KiB  
Article
Designs and Interactions for Near-Field Augmented Reality: A Scoping Review
by Jacob Hobbs and Christopher Bull
Informatics 2025, 12(3), 77; https://doi.org/10.3390/informatics12030077 (registering DOI) - 1 Aug 2025
Abstract
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers [...] Read more.
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers can employ or build into experiences to work around these limitations. We conducted a scoping literature review, with the aim of mapping the current landscape of design principles and interaction techniques employed in near-field AR environments. We searched for literature published between 2016 and 2025 across major databases, including the ACM Digital Library and IEEE Xplore. Studies were included if they explicitly employed design or interaction techniques with a commercially available HMD for near-field AR experiences. A total of 780 articles were returned by the search, but just 7 articles met the inclusion criteria. Our review identifies key themes around how existing techniques are employed and the two competing goals of AR experiences, and we highlight the importance of embodiment in interaction efficacy. We present directions for future research based on and justified by our review. The findings offer a comprehensive overview for researchers, designers, and developers aiming to create more intuitive, effective, and context-aware near-field AR experiences. This review also provides a foundation for future research by outlining underexplored areas and recommending research directions for near-field AR interaction design. Full article
Show Figures

Figure 1

19 pages, 9155 KiB  
Article
Microstructure Evolution in Homogenization Heat Treatment of Inconel 718 Manufactured by Laser Powder Bed Fusion
by Fang Zhang, Yifu Shen and Haiou Yang
Metals 2025, 15(8), 859; https://doi.org/10.3390/met15080859 (registering DOI) - 31 Jul 2025
Abstract
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain [...] Read more.
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain boundaries aligned with the build direction. Laves phase dissolution demonstrates dual-stage kinetics: initial rapid dissolution (0–15 min) governed by bulk atomic diffusion, followed by interface reaction-controlled deceleration (15–60 min) after 1 h at 1150 °C. Complete dissolution of the Laves phase is achieved after 3.7 h at 1150 °C. Recrystallization initiates preferentially at serrated grain boundaries through boundary bulging mechanisms, driven by localized orientation gradients and stored energy differentials. Grain growth kinetics obey a fourth-power time dependence, confirming Ostwald ripening-controlled boundary migration via grain boundary diffusion. Such a study is expected to be helpful in understanding the microstructural development of L-PBF-built IN718 under heat treatments. Full article
(This article belongs to the Section Additive Manufacturing)
24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 (registering DOI) - 31 Jul 2025
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 6138 KiB  
Article
DBSCAN-MFI Based Improved Clustering for Field-Road Classification in Mechanical Residual Film Recovery
by Huimin Fang, Jinshan Hu, Xuegeng Chen, Qingyi Zhang and Jing Bai
Agriculture 2025, 15(15), 1651; https://doi.org/10.3390/agriculture15151651 - 31 Jul 2025
Abstract
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening [...] Read more.
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening during preprocessing in traditional residual film recovery area calculation methods, this study proposes a DBSCAN-MFI field-road trajectory segmentation method. This approach combines DBSCAN density clustering with multi-feature inference. Building on DBSCAN clustering, the method incorporates a convex hull completion strategy and multi-feature inference rules utilizing speed-direction feature filtering to automatically identify and segment field and road areas, enabling precise operation area calculation. Experimental results demonstrate that compared to DBSCAN, OPTICS, the Grid-Based Method, and the DBSCAN-FR algorithm, the proposed algorithm improves the F1-Score by 7.01%, 7.13%, 7.28%, and 4.27%, respectively. Regarding the impact on operation area calculation, segmentation accuracy increased by 23.61%, 25.14%, 20.71%, and 6.87%, respectively. This study provides an effective solution for accurate field-road segmentation during mechanical residual film recovery operations to facilitate subsequent calculation of the recovered area. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 832 KiB  
Article
Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems
by Jevgenijs Telicko, Andris Krumins and Agris Nikitenko
Buildings 2025, 15(15), 2702; https://doi.org/10.3390/buildings15152702 (registering DOI) - 31 Jul 2025
Abstract
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of [...] Read more.
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of numerous actuators and monitoring points makes manually designed control algorithms potentially suboptimal due to the complexity and human factors. To address this challenge, model predictive control based on artificial neural networks can be employed. The advantage of this approach lies in the model’s ability to learn and understand the dynamic behavior of the building from monitoring datasets. It should be noted that the effectiveness of such control models is directly dependent on the forecasting accuracy of the neural networks. In this study, we adapt neural network architectures such as GRU and TCN for use in the context of building model predictive control. Furthermore, we propose a novel hybrid architecture that combines the strengths of recurrent and convolutional neural networks. These architectures were compared using real monitoring data collected with a custom-developed device introduced in this work. The results indicate that, under the given experimental conditions, the proposed hybrid architecture outperforms both GRU and TCN models, particularly when processing large sequential input vectors. Full article
Show Figures

Figure 1

29 pages, 1520 KiB  
Review
Methodologies for Technology Selection in an Industry 4.0 Environment: A Methodological Analysis Using ProKnow-C
by Luis Quezada, Isaias Hermosilla, Guillermo Fuertes, Astrid Oddershede, Pedro Palominos and Manuel Vargas
Technologies 2025, 13(8), 325; https://doi.org/10.3390/technologies13080325 (registering DOI) - 31 Jul 2025
Abstract
In an ever-evolving digital environment, organizations must adopt advanced technologies for real-time big data processing to maintain their competitiveness and growth. However, selecting appropriate technologies is a challenge, particularly for small and medium-sized enterprises (SMEs). This study develops a literature review to analyze [...] Read more.
In an ever-evolving digital environment, organizations must adopt advanced technologies for real-time big data processing to maintain their competitiveness and growth. However, selecting appropriate technologies is a challenge, particularly for small and medium-sized enterprises (SMEs). This study develops a literature review to analyze the methodologies used in the selection of technologies, with a special focus on those associated with the Industry 4.0. Knowledge Development Process-Constructivist (ProKnow-C) method, which was used to build a bibliographic portfolio, examining approximately 3400 articles published between 2005 and 2024, from which 80 were selected for a detailed analysis. The main methodological contributions come from research articles, the ScienceDirect database, the Expert Systems with Applications Journal, studies conducted in Turkey, and publications from the year 2023. The results highlight the predominant use of multi-criteria techniques, emphasizing hybrid approaches that combine various decision-making methodologies. In particular, the analytic hierarchy process (AHP) and TOPSIS methods were employed in 51.25% of the analyzed cases, either individually or in combination. It is concluded that technology selection should be based on flexible and adaptive approaches tailored to the organizational context, aligning long-term strategic objectives to ensure business sustainability and success. Full article
(This article belongs to the Collection Review Papers Collection for Advanced Technologies)
Show Figures

Figure 1

15 pages, 459 KiB  
Article
Higher Status, More Actions but Less Sacrifice: The SES Paradox in Pro-Environmental Behaviors
by Lijuan Fan and Ni An
Sustainability 2025, 17(15), 6948; https://doi.org/10.3390/su17156948 (registering DOI) - 31 Jul 2025
Abstract
Identifying predictors of pro-environmental behaviors (PEBs) can not only figure out who concerns about the environment most but also inform possible pathways that advance or inhabit such prosocial actions. Most past studies and theories focus on factors that reside within personal characteristics or [...] Read more.
Identifying predictors of pro-environmental behaviors (PEBs) can not only figure out who concerns about the environment most but also inform possible pathways that advance or inhabit such prosocial actions. Most past studies and theories focus on factors that reside within personal characteristics or sociopsychological mechanisms rather than taking a holistic view that integrates these two elements into a framework. This study investigates how socioeconomic status (SES) correlates with PEBs, integrating both structural and psychological mechanisms. Drawing on the Stimulus–Organism–Response (SOR) theoretical framework, this paper examines the paradox whereby individuals with higher SES exhibit more frequent environmental actions yet demonstrate lower willingness to pay (WTP)—a form of economic sacrifice. Using nationally representative data from the 2021 Chinese General Social Survey (CGSS), our structural equation modeling reveals that adulthood SES positively correlates with environmental values and behaviors but negatively correlates with WTP. This challenges the traditional linear assumption that greater willingness necessarily leads to greater action. Additionally, while childhood SES predicts adult SES, it shows no direct effect on environmental engagement. These findings highlight multidimensional pathways by which SES shape environmental actions, necessitating differentiated policy approaches to build a sustainable world. Full article
(This article belongs to the Special Issue Urban Resident Participation and Sustainable Urban Environments)
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 29
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

24 pages, 2315 KiB  
Article
A Decade of Transformation in Higher Education and Science in Kazakhstan: A Literature and Scientometric Review of National Projects and Research Trends
by Timur Narbaev, Diana Amirbekova and Aknar Bakdaulet
Publications 2025, 13(3), 35; https://doi.org/10.3390/publications13030035 - 30 Jul 2025
Viewed by 33
Abstract
Higher education and science (HES) is one of the key drivers of a country’s economic growth. In this study, we examine national projects and research capacity in HES in Kazakhstan from 2014 to 2024. We conducted a content review and scientometric analysis with [...] Read more.
Higher education and science (HES) is one of the key drivers of a country’s economic growth. In this study, we examine national projects and research capacity in HES in Kazakhstan from 2014 to 2024. We conducted a content review and scientometric analysis with network and temporal visualizations. Our data sources included policy documents, statistical reports, and the Scopus database. Our findings suggest that, while Kazakhstan aligns with global trends in the field (e.g., digitalization, scientometrics monitoring, and internationalization), these are achieved through a state-led, policy-driven approach shaped by its post-Soviet context. Additionally, we note a dual structure in Kazakhstan’s HES sector, characterized by a strong top-down direction and increasing institutional engagement. In terms of the thematic trends from the temporal analysis, the country experienced a three-staged evolution: foundational reforms and system modernization (2014–2017), capacity building and evaluation (2018–2021), and, most recently, strategic expansion, inclusivity, and globalization (2022–2024). Throughout the analyzed period, low R&D intensity, disciplinary imbalances, and structural barriers still undermine desired development efforts in HES. The analyzed case of Kazakhstan can serve as “lessons learned” for policymakers and researchers working in the science evaluation and scholarly communication area in similar emerging or transition countries. Full article
Show Figures

Figure 1

12 pages, 1365 KiB  
Article
On Standard Cell-Based Design for Dynamic Voltage Comparators and Relaxation Oscillators
by Orazio Aiello
Chips 2025, 4(3), 31; https://doi.org/10.3390/chips4030031 - 30 Jul 2025
Viewed by 55
Abstract
This paper deals with a standard cell-based analog-in-concept pW-power building block as a comparator and a wake-up oscillator. Both topologies, traditionally conceived as an analog building block made by a custom process and supply voltage-dependent design flow, are designed only by using digital [...] Read more.
This paper deals with a standard cell-based analog-in-concept pW-power building block as a comparator and a wake-up oscillator. Both topologies, traditionally conceived as an analog building block made by a custom process and supply voltage-dependent design flow, are designed only by using digital gates, enabling them to be automated and fully synthesizable. This further results in supply voltage scalability and regulator-less operation, allowing direct powering by an energy harvester without additional ancillary circuit blocks (such as current and voltage sources). In particular, the circuit similarities in implementing a rail-to-rail dynamic voltage comparator and a relaxation oscillator using only digital gates are discussed. The building blocks previously reported in the literature by the author will be described, and the common root of their design will be highlighted. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

26 pages, 5946 KiB  
Article
Flexural Strength of Cold-Formed Steel Unstiffened and Edge-Stiffened Hexagonal Perforated Channel Sections
by G. Beulah Gnana Ananthi, Dinesh Lakshmanan Chandramohan, Dhananjoy Mandal and Asraf Uzzaman
Buildings 2025, 15(15), 2679; https://doi.org/10.3390/buildings15152679 (registering DOI) - 29 Jul 2025
Viewed by 132
Abstract
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, [...] Read more.
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, particularly around circular web openings, can improve flexural strength. Extending this idea, attention has shifted to hexagonal web perforations; however, limited research exists on the bending performance of hexagonal cold-formed steel channel beams (HCFSBs). This study presents a detailed nonlinear finite element (FE) analysis to evaluate and compare the flexural behaviour of HCFSBs with unstiffened (HUH) and edge-stiffened (HEH) hexagonal openings. The FE models were validated against experimental results and expanded to include a comprehensive parametric study with 810 simulations. Results show that HEH beams achieve, on average, a 10% increase in moment capacity compared to HUH beams. However, when evaluated using current Direct Strength Method (DSM) provisions, moment capacities were underestimated by up to 47%, particularly in cases governed by lateral–torsional or distortional buckling. A reliability analysis confirmed that the proposed design equations yield accurate and dependable strength predictions. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures)
Show Figures

Figure 1

Back to TopTop