Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Integration of MPC Control and Specific Data Monitoring Solution
2.2. MPC AI Model Development
2.3. Base Line Model
3. Experiment
Dataset
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Xilei, D.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Klepeis, N.; Nelson, W.; Ott, W.; Robinson, J.; Tsang, A.; Switzer, P.; Behar, J.; Hern, S.; Engelmann, W. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Široký, J.; Oldewurtel, F.; Cigler, J.; Prívara, S. Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 2011, 88, 3079–3087. [Google Scholar] [CrossRef]
- Taheri, S.; Hosseini, P.; Razban, A. Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review. J. Build. Eng. 2022, 60, 105067. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef]
- Tomás, L.; Lämmle, M.; Pfafferott, J. Demonstration and Evaluation of Model Predictive Control (MPC) for a Real-World Heat Pump System in a Commercial Low-Energy Building for Cost Reduction and Enhanced Grid Support. Energies 2025, 18, 1434. [Google Scholar] [CrossRef]
- Uytterhoeven, A.; Van Rompaey, R.; Bruninx, K.; Helsen, L. Chance constrained stochastic MPC for building climate control under combined parametric and additive uncertainty. J. Build. Perform. Simul. 2022, 15, 410–430. [Google Scholar] [CrossRef]
- Nagpal, H.; Avramidis, I.I.; Capitanescu, F.; Heiselberg, P. Optimal energy management in smart sustainable buildings—A chance-constrained model predictive control approach. Energy Build. 2021, 248, 111163. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Gkelios, S.; Kosmatopoulos, E. Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions. Energies 2024, 17, 570. [Google Scholar] [CrossRef]
- Stoffel, P.; Berktold, M.; Gall, A.; Kümpel, A.; Mueller, D. Comparative study of neural network based and white box model predictive control for a room temperature control application. J. Phys. Conf. Ser. 2021, 2042, 012043. [Google Scholar] [CrossRef]
- Paré, M.C.; Dermardiros, V.; Lesage-Landry, A. Efficient Data-Driven MPC for Demand Response of Commercial Buildings. arXiv 2024, arXiv:2401.15742. [Google Scholar] [CrossRef]
- Laguna, G.; Mor, G.; Lazzari, F.; Gabaldon, E.; Erfani, A.; Saelens, D.; Cipriano, J. Dynamic horizon selection methodology for model predictive control in buildings. Energy Rep. 2022, 8, 10193–10202. [Google Scholar] [CrossRef]
- Kim, H.; Ejaz, M.A.; Lee, K.; Cho, H.M.; Kim, D.H. Predictive Optimal Control Mechanism of Indoor Temperature Using Modbus TCP and Deep Reinforcement Learning. Appl. Sci. 2025, 15, 7248. [Google Scholar] [CrossRef]
- Abida, A.; Richter, P. HVAC control in buildings using neural network. J. Build. Eng. 2023, 65, 105558. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? arXiv 2022, arXiv:2205.13504. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. arXiv 2017, arXiv:1701.05923. [Google Scholar] [CrossRef]
- Huynh, A.; Nguyen, T. The Comparison of GRU and LSTM in Solar Power Generation Forecasting Application. Int. J. Sci. Res. Arch. 2024, 13, 1360–1370. [Google Scholar] [CrossRef]
- Abumohsen, M.; Owda, A.Y.; Owda, M. Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms. Energies 2023, 16, 2283. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Shaikh, A.K.; Nazir, A.; Khalique, N.; Shah, A.S.; Adhikari, N. A new approach to seasonal energy consumption forecasting using temporal convolutional networks. Results Eng. 2023, 19, 101296. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2021, arXiv:1908.03265. [Google Scholar] [CrossRef]
- Gokcesu, K.; Gokcesu, H. Generalized Huber Loss for Robust Learning and its Efficient Minimization for a Robust Statistics. arXiv 2021, arXiv:2108.12627. [Google Scholar] [CrossRef]
- Telicko, J.; Jakovics, A. Applying Dynamic U-Value Measurements for State Forecasting in Buildings. Latv. J. Phys. Tech. Sci. 2023, 60, 81–94. [Google Scholar] [CrossRef]
- Telicko, J.; Jakovics, A. Power efficient wireless monitoring system based on ESP8266. In Proceedings of the 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 10–12 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
Input | 180 (min) | 540 (min) | 1440 (min) |
---|---|---|---|
Out | |||
30 (min) | 0.086 | 0.079 | 0.084 |
60 (min) | 0.112 | 0.122 | 0.134 |
90 (min) | 0.160 | 0.166 | 0.192 |
180 (min) | 0.248 | 0.298 | 0.36 |
Input | 180 | 540 | 1440 |
---|---|---|---|
Out | |||
30 | 0.066 | 0.078 | 0.07 |
60 | 0.092 | 0.104 | 0.08 |
90 | 0.118 | 0.114 | 0.126 |
180 | 0.182 | 0.1602 | 0.162 |
Input | 180 min | 540 min | 1440 min |
---|---|---|---|
Out | |||
30 min | 0.064 | 0.078 | 0.074 |
60 min | 0.108 | 0.106 | 0.104 |
90 min | 0.094 | 0.100 | 0.112 |
180 min | 0.152 | 0.142 | 0.108 |
Input | 180 min | 540 min | 1440 min |
---|---|---|---|
Out | |||
30 min | 0.055 | 0.057 | 0.060 |
60 min | 0.087 | 0.093 | 0.097 |
90 min | 0.117 | 0.122 | 0.126 |
180 min | 0.187 | 0.190 | 0.198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telicko, J.; Krumins, A.; Nikitenko, A. Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems. Buildings 2025, 15, 2702. https://doi.org/10.3390/buildings15152702
Telicko J, Krumins A, Nikitenko A. Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems. Buildings. 2025; 15(15):2702. https://doi.org/10.3390/buildings15152702
Chicago/Turabian StyleTelicko, Jevgenijs, Andris Krumins, and Agris Nikitenko. 2025. "Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems" Buildings 15, no. 15: 2702. https://doi.org/10.3390/buildings15152702
APA StyleTelicko, J., Krumins, A., & Nikitenko, A. (2025). Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems. Buildings, 15(15), 2702. https://doi.org/10.3390/buildings15152702