Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = brown algae extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5958 KiB  
Article
Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)
by Diana M. Villanueva, Aldo G. Gonzales, Claudio A. Saez and Antonio M. Lazarte
Plants 2025, 14(14), 2173; https://doi.org/10.3390/plants14142173 - 14 Jul 2025
Viewed by 326
Abstract
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from [...] Read more.
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from three river points revealed As concentrations up to 0.309 mg/L, exceeding regulatory limits (0.1 mg/L). Sodium alginate was obtained via a simplified alkaline method, yielding an average of 21.44% (w/w relative to dry algae biomass) and characterized by Fourier Transform Infrared Spectroscopy (FTIR), showing structural similarity to industrial alginate (A1). Biosorption assays under simulated environmental conditions (neutral pH, 20 °C) demonstrated that LT alginate (A2) reduced As by 99% at 48 h with a 1.0 g/L dose, outperforming A1. Langmuir (qmax = 0.0012 mmol/g; b = 506.9 L/mg) and Freundlich (n = 1.94) isotherms confirmed favorable adsorption, while kinetics followed a Pseudo-Second-Order Model, suggesting physisorption. These results highlight LT alginate as a sustainable and scalable solution for remediating As-contaminated water, promoting the conservation of a vulnerable marine resource. This study underscores the potential of algal biopolymers in bioremediation strategies aligned with environmental and socioeconomic needs. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

35 pages, 4054 KiB  
Article
High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction
by Meirielly Jesus, Aloia Romaní, Joana Santos, Preciosa Pires, Pablo Del-Río, Fernando Mata, Élia Fernandes, Carla Ramos and Manuela Vaz-Velho
Foods 2025, 14(13), 2280; https://doi.org/10.3390/foods14132280 - 27 Jun 2025
Viewed by 455
Abstract
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying [...] Read more.
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying extraction conditions. For L. hyperborea, ChCl/LA at 150 °C for 10 min yielded a total phenolic content (TPC) of 15.34 mg GAE/g DW, with antioxidant activities measured by DPPH (34.55 mg TE/g DW) and ABTS (27.06 mg TE/g DW). Extending the extraction to 20 min at 130 °C increased the TPC to 19.12 mg GAE/g DW. A. nodosum exhibited higher bioactivity, with the TPC reaching 47.51 mg GAE/g DW under the same conditions. High-performance liquid chromatography (HPLC) identified significant phenolics such as 3,4-dihydroxybenzoic acid (678.05 µg/g DW) and vanillin (6718.5 µg/g DW). Antimicrobial assays revealed strong inhibition (zones > 20 mm) against Clostridium perfringens, moderate activity against Staphylococcus aureus, and selective activity against Escherichia coli. FT-IR confirmed the presence of phenolics, polysaccharides, and lipids. Thermal and structural characterization revealed that A. nodosum residue showed an amorphous structure, while L. hyperborea retained crystallinity with decomposition profiles indicating potential bioenergy potential. SEM images revealed significant cell wall disruption correlating with extraction efficiency. These results demonstrate DES–MAE as an effective, green strategy for producing high-value algal extracts and valorizing residual biomass for biotechnological applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

30 pages, 7536 KiB  
Article
Fucoidan-Based Gold Nanoparticles: Antioxidant and Anticancer Potential from Turbinaria decurrens and Sargassum cinereum
by Ahmed S. El Newehy, Saly F. Gheda, Mona M. Ismail, Dara Aldisi, Mahmoud M. A. Abulmeaty and Mostafa E. Elshobary
Pharmaceutics 2025, 17(7), 826; https://doi.org/10.3390/pharmaceutics17070826 - 25 Jun 2025
Viewed by 559
Abstract
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of [...] Read more.
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of combining it with gold nanoparticles remain unexplored. Methods: Fucoidan was extracted from Sargassum cinereum and Turbinaria decurrens. F-AuNPs were produced utilizing fucoidan as both a reducing and stabilizing agent. The nanoparticles were analyzed by UV-Vis spectroscopy, FTIR, TEM, XRD, DLS, TAG, and zeta potential evaluation. The antioxidant activity was evaluated by DPPH and FRAP tests. Cytotoxicity was determined against HepG2, THP-1, and BNL cells, utilizing MTT and SRB tests. Flow cytometry was utilized to assess the cell cycle, while molecular docking was carried out to examine binding to oncogenic proteins. Results: T. decurrens produced higher polysaccharides rich in fucoidan content (235.9 mg/g dry weight) and stated higher antioxidant activity (FRAP: 9.21 μg TE mg−1; DPPH: 4.48 μg TE mg−1) in comparison to S. cinereum. F-AuNPs showed potent cytotoxicity toward HepG2 cells, with IC50 values and cytotoxicity toward HepG2 cells, with IC50 values of 377.6 μg/mL for S. cinereum and 449.5 μg mL−1 for T. decurrens. Molecular docking revealed robust binding of fucoidan to COX-2 (−7.1 kcal mol−1) and TERT (−5.4 kcal mol−1). Conclusions: Fucoidan and F-AuNPs reveal remarkable antioxidant and anticancer properties. Nanoparticle formulation greatly improves bioactivity, underscoring its promise as a synergistic approach for cancer treatment by influencing oxidative stress and cancer-associated pathways. Full article
Show Figures

Figure 1

38 pages, 5968 KiB  
Article
Marine Jellyfish Collagen and Other Bioactive Natural Compounds from the Sea, with Significant Potential for Wound Healing and Repair Materials
by Ana-Maria Pesterau, Antoanela Popescu, Rodica Sirbu, Emin Cadar, Florica Busuricu, Ana-Maria Laura Dragan, Carolina Pascale, Ana-Maria Ionescu, Claudia Florina Bogdan-Andreescu, Marius-Daniel Radu and Cezar Laurentiu Tomescu
Mar. Drugs 2025, 23(6), 252; https://doi.org/10.3390/md23060252 - 13 Jun 2025
Viewed by 1008
Abstract
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study [...] Read more.
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study investigates the development and evaluation of a novel composite hydrogel formulated from collagen peptides extracted from the jellyfish Rhizostoma pulmo and hydroethanolic extracts from the brown alga Cystoseira barbata, both sourced from the Romanian Black Sea coast. Throughout the work, the characteristics due to the biochemical compositions of the extracts from the brown alga C. barbata and from the jellyfish R. pulmo are highlighted as important, emphasizing the content of polysaccharides, proteins, and lipids. Total phenol content was analyzed for three extracts from natural products. The biochemical composition, antioxidant, antimicrobial, and in vitro wound-healing properties of the components and their composite (JPC-ALG) were assessed. The rheological behavior and optical microscopy studies of collagen hydrogels were prepared. The general mechanisms of wound healing with the involvement of polysaccharides and collagen peptides existing in all categories of extracts were highlighted. The study of the effects of JPC-ALG composites and individual extracts on fibroblast and keratocyte cell lines is also presented. Results demonstrated that the composite exhibited synergistic effects, enhancing fibroblast and keratinocyte migration and proliferation, key factors in wound closure. The findings support the potential application of this marine-derived bioactive composite as a promising biomaterial for wound-healing therapies. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Graphical abstract

19 pages, 2858 KiB  
Article
Comparative Evaluation of Dynamic Maceration and Ultrasonic Assisted Extraction of Fucoidan from Four Arctic Brown Algae on Its Antioxidant and Anticancer Properties
by Ekaterina D. Obluchinskaya, Olga N. Pozharitskaya, Irina M. Lapina, Anna A. Kulminskaya, Elena V. Zhurishkina and Alexander N. Shikov
Mar. Drugs 2025, 23(6), 230; https://doi.org/10.3390/md23060230 - 28 May 2025
Cited by 2 | Viewed by 757
Abstract
The technology of fucoidan extraction significantly affects its properties. This study aimed to evaluate the impact of dynamic maceration (DM) and ultrasound-assisted extraction (UAE) on the antioxidant and anticancer properties of fucoidan from Arctic brown algae. Fucus vesiculosus (Fv), Fucus serratus (Fs), Fucus [...] Read more.
The technology of fucoidan extraction significantly affects its properties. This study aimed to evaluate the impact of dynamic maceration (DM) and ultrasound-assisted extraction (UAE) on the antioxidant and anticancer properties of fucoidan from Arctic brown algae. Fucus vesiculosus (Fv), Fucus serratus (Fs), Fucus distichus (Fd), and Ascophyllum nodosum (An) were collected from the Barents Sea. The average yield of fucoidan and uronic acid was higher (by 43.2% and 22.0%, respectively) after UAE, while phlorotannin content decreased by 53.7% compared with DM. The fucose level for all algae increased after UAE, while the molecular weight of fucoidans was lower. The highest antioxidant activity was noted for the fucoidan from An and Fv, which were obtained by DM and can be associated with the high concentrations of phlorotannins. The treatment of HeLa G-63 cells with all studied fucoidans for 48 h increased concentration-dependently the number of dead cells. The most promising were Fv and Fs fucoidans with high phlorotannins, low sulfates, and uronic acid extracted by DM. The co-administration of paclitaxel and fucoidan caused cell cycle arrest in the G2/M phase. The calculated for the first time combinatory effect showed that the simultaneous use of paclitaxel and fucoidan exposure leads to a synergistic interaction. Our results support the rationality of fucoidan use in complex chemotherapy to improve survival, quality of life and immunity in patients with cervical carcinoma. Full article
(This article belongs to the Special Issue The Extraction and Application of Functional Components in Algae)
Show Figures

Figure 1

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 747
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

26 pages, 5216 KiB  
Article
Cystoseira spinosa Polysaccharide: A Promising Natural Source for Antioxidant, Pro-Angiogenic, and Wound Healing Applications: In Silico Study
by Mouhamed Ayad Berfad, Intissar Kammoun, Marwa Lakhrem, Zakaria Boujhoud, Malek Eleroui, Manel Mellouli, Saadia Makni, Majed Kammoun, Riadh Badraoui, Jean Marc Pujo, Hatem Kallel and Ibtissem Ben Amara
Pharmaceuticals 2025, 18(6), 774; https://doi.org/10.3390/ph18060774 - 23 May 2025
Viewed by 604
Abstract
Background/Objectives: This study evaluated the potential of a polysaccharide (PCS) extracted from the brown alga Cystoseira spinosa as an antioxidant and anti-inflammatory agent. Collected off the coast of Alkhoms, Libya, PCS was investigated for its wound-healing and pro-angiogenic properties, addressing the need for [...] Read more.
Background/Objectives: This study evaluated the potential of a polysaccharide (PCS) extracted from the brown alga Cystoseira spinosa as an antioxidant and anti-inflammatory agent. Collected off the coast of Alkhoms, Libya, PCS was investigated for its wound-healing and pro-angiogenic properties, addressing the need for natural bioactive compounds in therapeutic applications. Methods: The monosaccharide composition of PCS was analyzed using HPLC-RID, identifying glucuronic acid and xylose as major components. In vitro tests assessed antioxidant activity, while in vivo experiments on 24 rats evaluated wound healing. Rats were divided into four groups: control (saline), standard drug (CYTOL CENTELLA cream), glycerol, and glycerol+PCS. Wound healing was analyzed macroscopically, histologically, and biochemically. The chick chorioallantoic membrane (CAM) model assessed pro-angiogenic effects, and computational analyses explored COX-2 and VEGF pathways. Pharmacokinetic properties were also evaluated. Results: PCS demonstrated significant antioxidant activity and accelerated wound healing after 16 days, with improved wound appearance scores and increased collagen content. Histological analysis confirmed PCS outperformed the standard drug. The CAM model showed PCS increased blood vessel density, length, and junctions while reducing lacunarity. Computational analyses supported involvement of COX-2 and VEGF pathways. Pharmacokinetic assessments indicated good bioavailability, non-inhibition of CYP enzymes, and favorable skin permeability. Conclusions: PCS shows promise as a natural bioactive polymer for wound healing and tissue regeneration. Its antioxidant, anti-inflammatory, and pro-angiogenic properties, combined with favorable pharmacokinetics, highlight its therapeutic potential. This study provides new insights into the mechanisms of C. spinosa polysaccharides and their application in promoting tissue repair. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 614 KiB  
Article
A Rugulopteryx okamurae-Based Biostimulant Enhances Growth and Phytochemicals in Lettuce
by Tatiana P. L. Cunha-Chiamolera, Tarik Chileh-Chelh, Mohamed Ezzaitouni, Miguel Urrestarazu, Juan de Dios Carrillo Montalbán and José Luis Guil-Guerrero
Horticulturae 2025, 11(5), 558; https://doi.org/10.3390/horticulturae11050558 - 21 May 2025
Viewed by 481
Abstract
This study investigates the potential of a biostimulant derived from the invasive brown alga Rugulopteryx okamurae (RoB) to enhance lettuce growth and improve its phytochemical profile. The extraction of the biostimulant was optimized through the implementation of a Box–Behnken design, and the resulting [...] Read more.
This study investigates the potential of a biostimulant derived from the invasive brown alga Rugulopteryx okamurae (RoB) to enhance lettuce growth and improve its phytochemical profile. The extraction of the biostimulant was optimized through the implementation of a Box–Behnken design, and the resulting extract was then compared with a commercial Ascophyllum nodosum-based product (AnB). This comparison was made under both optimal and suboptimal fertigation conditions in a controlled, soilless culture. Lettuce plants were monitored for water and nutrient uptake, growth parameters, and accumulation of key phytochemicals such as carotenoids, tocols, sterols, and squalene. RoB significantly increased fresh and dry biomass, with enhanced nitrate and potassium uptake, in comparison to standard nutrient solution controls (p < 0.05). Treatments incorporating RoB consistently resulted in higher concentrations of lutein, β-sitosterol, and squalene, particularly under suboptimal conditions (p < 0.05), thus suggesting a strong biostimulant effect that mitigates nutrient stress. Furthermore, principal component analysis demonstrated that biostimulant application induces distinct metabolic profiles, highlighting the coordinated regulation of antioxidant pigments and sterol compounds. The findings support the dual benefits of algae-derived biostimulants in promoting sustainable crop production by improving yield quality and increasing health-promoting phytochemicals, paving the way for innovative, eco-friendly fertilization practices in modern agriculture. Full article
Show Figures

Graphical abstract

16 pages, 2073 KiB  
Article
Marine Algae Extract-Loaded Nanoemulsions: A Spectrophotometric Approach to Broad-Spectrum Photoprotection
by Julian Tello Quiroz, Ingrid Andrea Rodriguez Martinez, Vanessa Urrea-Victoria, Leonardo Castellanos and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(3), 101; https://doi.org/10.3390/cosmetics12030101 - 15 May 2025
Viewed by 879
Abstract
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids [...] Read more.
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids (MAAs) and fucoxanthin, offering natural alternatives to synthetic sunscreens. This study aimed to develop and optimize a nanoemulsion incorporating both algal extracts, with MAAs and fucoxanthin strategically distributed in the aqueous and oil phases, respectively, to enhance synergistic broad-spectrum UV protection. MAAs were quantified in Gracilaria sp. using UHPLC-DAD, revealing 8.03 mg/g dry weight, primarily composed of shinorine and porphyra-334. Fucoxanthin was identified in S. polyceratium at 0.98 mg/g dry weight. A Box–Behnken design (BBD) was employed to optimize the nanoemulsion, targeting minimal droplet size and optimal ζ potential. The resulting formulation achieved a droplet size less than 100 nm and a ζ potential less than −25.0 mV. In vitro spectrophotometric analysis demonstrated significant photoprotective potential. The nanoemulsion containing only 375 ppm of algal extracts exhibited a UVA ratio of 1.25 and a critical wavelength of 379 nm, meeting the criteria for broad-spectrum protection and outperforming the commercial natural filter Helioguard®365. These results confirm the efficacy of combining red and brown algae extracts in a nanoemulsion platform to deliver sustainable, low-dose photoprotection. This work presents, for the first time, the incorporation of red and brown algae extracts into a single nanoemulsion system, representing a novel strategy to maximize the combined photoprotective potential of MAAs and fucoxanthin. Ultimately, this investigation contributes to the growing field of marine-derived sunscreens and supports the advancement of “blue beauty” innovations aligned with eco-conscious formulation principles. Full article
Show Figures

Figure 1

22 pages, 5066 KiB  
Review
Sesquiterpenes from Brown Algae
by Irene Moreno-Gutiérrez, Sonia Berenguel-Gómez, Manuel Muñoz-Dorado, Míriam Álvarez-Corral and Ignacio Rodríguez-García
Mar. Drugs 2025, 23(5), 210; https://doi.org/10.3390/md23050210 - 15 May 2025
Viewed by 707
Abstract
Algae are the group that has managed to generate the largest number of compounds and secondary metabolites with different properties, many of them only present in the aquatic kingdom. Among them, brown algae are one of the main producers within marine ecosystems. Furthermore, [...] Read more.
Algae are the group that has managed to generate the largest number of compounds and secondary metabolites with different properties, many of them only present in the aquatic kingdom. Among them, brown algae are one of the main producers within marine ecosystems. Furthermore, one of the main groups of secondary metabolites studied are sesquiterpenes due to the great variety of properties observed, largely due to the great structural variability of these compounds. Many studies have been carried out to isolate and characterize compounds with a sesquiterpene structure from different species of brown algae. This article reviews the natural occurrence of sesquiterpene and derivatives in brown algae. A total of 51 sesquiterpenes isolated from brown algae, having monocyclic, bicyclic, or tricyclic skeletons, as well as 23 sesquiterpenoids with various chemical structures, are depicted. Moreover, there are at least eleven publications focused on the study of the profiles on volatile organic compounds (VOCs) within brown algae, derived using several analytic and extraction techniques, and in the finding of a large variety of structures of sesquiterpenes. Full article
Show Figures

Graphical abstract

25 pages, 3300 KiB  
Review
Advancements in the Extraction, Characterization, and Bioactive Potential of Laminaran: A Review
by Kit-Leong Cheong, Amanullah Sabir, Min Wang, Saiyi Zhong and Karsoon Tan
Foods 2025, 14(10), 1683; https://doi.org/10.3390/foods14101683 - 9 May 2025
Cited by 2 | Viewed by 1030
Abstract
Laminaran, a bioactive β-glucan derived from brown algae, has garnered significant attention due to its diverse pharmacological properties, including antioxidant, immunomodulatory, and mucosal protective effects. Despite promising research highlighting its potential applications in functional foods, nutraceuticals, and pharmaceuticals, the commercial utilization of laminaran [...] Read more.
Laminaran, a bioactive β-glucan derived from brown algae, has garnered significant attention due to its diverse pharmacological properties, including antioxidant, immunomodulatory, and mucosal protective effects. Despite promising research highlighting its potential applications in functional foods, nutraceuticals, and pharmaceuticals, the commercial utilization of laminaran remains limited, primarily due to challenges in extraction efficiency, structural complexity, and a lack of standardized methodologies. This review critically examines recent advancements in the extraction, purification, structural characterization, and biological evaluation of laminaran. Both conventional and emerging extraction methods—including ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic techniques—are evaluated for their efficiency, scalability, and sustainability. Analytical tools, such as high-performance liquid chromatography, nuclear magnetic resonance, and mass spectrometry, are discussed for their roles in elucidating key structural features, such as molecular weight, degree of polymerization, and glycosidic linkage patterns, which are closely tied to laminaran’s biological activity. Innovative extraction technologies have improved yield and purity, while structural insights have deepened the understanding of structure–function relationships. Interdisciplinary collaboration will be critical to advance laminaran from a marine-derived polysaccharide to a commercially viable bioactive compound for health, nutrition, and biomaterial applications. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

16 pages, 2864 KiB  
Article
Brown Algae from San Andres Island, Southwest Caribbean: A Nuclear Magnetic Resonance Spectroscopy–Metabolomic Study
by Felipe de la Roche, Sara P. Abril, Lady J. Sepulveda, Anderson Piza, Leonardo Castellanos, Natalia Rincón, Mónica Puyana and Freddy A. Ramos
Metabolites 2025, 15(5), 305; https://doi.org/10.3390/metabo15050305 - 2 May 2025
Viewed by 626
Abstract
Background: Brown algae from the order Dictyotales are known to produce specialized metabolites with a wide array of biological activities. Studying these compounds is important for understanding their ecological roles, exploring biomedical potential and developing biotechnological applications. Methods: To evaluate the metabolic diversity [...] Read more.
Background: Brown algae from the order Dictyotales are known to produce specialized metabolites with a wide array of biological activities. Studying these compounds is important for understanding their ecological roles, exploring biomedical potential and developing biotechnological applications. Methods: To evaluate the metabolic diversity of brown algae from the shallow habitats of the northern region of San Andrés Island (Colombia, SW Caribbean), a metabolic profiling approach was employed, based on 1H-NMR spectra taken from organic extracts. Four sampling expeditions were conducted to collect the most abundant species, taking into account the taxonomic identity, growth substrate and collection date. Results: Five species were found and identified as Canistrocarpus crispatus, Stypopodium zonale, Dictyopteris delicatula, Padina gymnospora and Dictyota spp. Multivariate analyses applied to these spectra revealed that S. zonale and C. crispatus differentiated from the other samples mainly due to the signals for meroditerpenes and diterpenes, respectively. S. zonale had differential metabolic production observed when comparing algae collected in rocky bottoms with thalli growing on dead coral. This difference was attributed to changes in concentrations of the meroditerpene atomaric acid (1). Meanwhile, the major metabolite found in C. crispatus samples was dictyol B acetate (2). Conclusions: NMR metabolomics of San Andrés brown algae differentiated species based on lipid content and metabolic complexity. Notably, prenylated-guaiane diterpenes characterized C. crispatus, and meroditerpenoid concentrations varied in S. zonale. Temporal lipid variations were observed in P. gymnospora, while juvenile Dictyota spp. presented a less complex metabolic signature. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Graphical abstract

21 pages, 1338 KiB  
Article
Effect of Ascophyllum nodosum, Sideritis scardica and Fucus vesiculosus Extracts on Germination, Initial Growth and Antioxidant Potential of Red Russian Kale Microgreens
by Barbara Drygaś, Ewa Szpunar-Krok, Joanna Kreczko, Tomasz Piechowiak, Czesław Puchalski and Marta Jańczak-Pieniążek
Agriculture 2025, 15(9), 961; https://doi.org/10.3390/agriculture15090961 - 28 Apr 2025
Viewed by 562
Abstract
Natural plant- and algae-based extracts used in crop cultivation offer numerous advantages, including the potential to positively affect plant growth, exhibit hormonal activity, increase stress resistance, improve crop quality as environmentally benign alternatives to synthetic agrochemicals and help combat oxidative stress. The presented [...] Read more.
Natural plant- and algae-based extracts used in crop cultivation offer numerous advantages, including the potential to positively affect plant growth, exhibit hormonal activity, increase stress resistance, improve crop quality as environmentally benign alternatives to synthetic agrochemicals and help combat oxidative stress. The presented experiments aimed to compare the effectiveness of extracts from brown algae such as Ascophyllum nodosum and Fucus vesiculosus, as well as the plant Sideritis scardica, on the germination and initial growth of red kale (Brassica napus var. Pabularia) microgreens. Microgreens treated with aqueous extracts of A. nodosum, F. vesiculosus, as well as the control group, had the highest growth, whereas the lowest growth was observed in plants treated with water–ethanol extracts at the highest tested concentration (10%). The 10% water–ethanol extracts of brown algae reduced plant biomass, while aqueous extracts increased it. Applying water extracts of algae at concentrations (10, 1, 0.1%), as well as the water extract of S. scardica (10, 1%), led to an increase in the total phenolic content in the tested experimental groups. A significant influence on increasing total flavonoid content was noted for water extracts of F. vesiculosus at concentrations ranging from 0.1% to 10%. An opposite effect was observed for the water–ethanol extracts, where the lowest TFC was found in plants grown on mats soaked with 0.1% F. vesiculosus and 1% A. nodosum. All water–ethanol extracts tended to reduce the antioxidant activity of the tested red kale microgreens. In microgreens treated with water extracts of F. vesiculosus at concentrations of 1% and 10%, an increase in antioxidant activity was observed. Examining the impact of plant and algae extracts on kale germination and growth may provide valuable information on ways to improve the quality and health-promoting properties of kale microgreens. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

26 pages, 4188 KiB  
Article
Valorization of Residual Biomass from Sargassum filipendula for the Extraction of Phlorotannins and Pigments Using Eutectic Solvents
by Pedro Afonso Vasconcelos Paes Mello, Cristiane Nunes da Silva and Bernardo Dias Ribeiro
Processes 2025, 13(5), 1345; https://doi.org/10.3390/pr13051345 - 28 Apr 2025
Viewed by 691
Abstract
Sargassum filipendula is a marine macroalgae, also known as brown algae. These species contain significant amounts of polysaccharides, such as alginates, and phenolic compounds, including phlorotannins, with excellent biological properties. This study evaluated the extraction of bioactive compounds from the residual biomass of [...] Read more.
Sargassum filipendula is a marine macroalgae, also known as brown algae. These species contain significant amounts of polysaccharides, such as alginates, and phenolic compounds, including phlorotannins, with excellent biological properties. This study evaluated the extraction of bioactive compounds from the residual biomass of Sargassum filipendula using deep eutectic solvents based on alkanol amines combined with polyols. The residual biomass presented a content of 7.36% protein, 1.11% lipids, 20.51% ash, 14.88% moisture, 50.25% total fibers, and 5.89% alginate. Preliminary screening identified N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1) and N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1) as the most efficient solvents for the extraction of bioactive compounds. The optimization process showed that the temperature and solid–liquid ratio significantly influenced (p < 0.05) the extraction of total phenolic compounds, phlorotannins, and the content of photosynthetic pigments. Intermediate temperatures (74.4 °C for N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1) and 68.4 °C for N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1), and a lower solid-to-liquid ratio (0.03) were optimal conditions to extract the low-pigment phlorotannins selectively. In contrast, higher temperatures (120 °C) maximized the extraction of phlorotannins and photosynthetic pigments. N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30) extracted 110.64 mg PGE/g phlorotannins and 78.15 mg GAE/g phenolics, while N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1) produced 21.57 mg PGE/g and 72.89 mg GAE/g, respectively. The extraction of photosynthetic pigments reached a maximum yield at 120 °C, using N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1), with a content of 21.61 µg/g of chlorophylls and 38.11 µg/g of pheophytins, while N, N-(dimethylamino)-ethanol: 1,3-propanediol (1.83:1) provided content of 17.76 µg/g and 36.32 µg/g, respectively. The extracts exhibited antioxidant activity with 0.69 mg TE/mL in scavenging DPPH radicals, 24.42 mg TE/mL in scavenging ABTS radicals, and 2.26 mg TE/mL of iron-reducing antioxidant power. These results demonstrate the potential of DESs for the sustainable recovery of bioactive compounds from Sargassum filipendula residual biomass. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

18 pages, 3764 KiB  
Article
Green Extraction Methods Applied to the Brown Macroalga Saccharina latissima: Assessing Yield, Total Phenolics, Phlorotannins and Antioxidant Capacity
by Jonas da Silva, Luana Cristina dos Santos, Elena Ibañez and Sandra Regina Salvador Ferreira
Foods 2025, 14(6), 1017; https://doi.org/10.3390/foods14061017 - 17 Mar 2025
Cited by 1 | Viewed by 872
Abstract
The brown seaweed Saccharina latissima is an abundant, although yet underutilized, source of natural bioactive compounds commonly found in western regions. In recent years, brown algae have garnered attention as promising sources of polyphenols, particularly phlorotannins. The recovery of these relevant components by [...] Read more.
The brown seaweed Saccharina latissima is an abundant, although yet underutilized, source of natural bioactive compounds commonly found in western regions. In recent years, brown algae have garnered attention as promising sources of polyphenols, particularly phlorotannins. The recovery of these relevant components by eco-friendly and energy-efficient methods with solvents GRAS (Generally recognized as safe) contributes to minimizing environmental impact, and promotes sustainability. Pressurized liquid extraction (PLE) and microwave-assisted extraction (MAE) optimized by Box–Behnken design (BBD) were explored for this purpose. The methods were evaluated considering the process yield and the quality of the recovered extracts by phenolic and phlorotannin levels, and their antioxidant capacity was assessed by DPPH and ABTS assays. The optimized MAE techniques (80 °C, 2% EtOH/Water at 40 mL g−1) and PLE2 (80 °C with water) showed the highest extract yields, with increases of 65.76% and 37.36%, respectively, compared to CRE. PLE2 also achieved higher TPC and antioxidant capacity (ABTS) values by 61.88% and 80.39%, respectively. MAE (optimized) increased TPC and ABTS by 53.90% and 36.42%, respectively. Regression analysis of MAE confirmed the accuracy of the models in assessing interaction parameters (adjustment p < 0.05 and adequacy R2 > 0.86). Therefore, the study presents eco-efficient approaches for recovering phenolic compounds and antioxidants from brown algae, contributing to the valorization of these resources in the industry and enhancing their application. Full article
Show Figures

Figure 1

Back to TopTop