High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemical Composition Analysis
2.2. Microwave-Assisted Extraction
2.3. Phenolic Compound Analysis and Antioxidant Activity
2.4. Protein Content of Extracts
2.5. Purification of Extracts
2.6. Fourier Transform Infrared (FT-IR) Analysis
2.7. Antimicrobial Activity
2.8. Structural Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Preliminary Extraction
3.3. Phenolic Compound Analysis and Antioxidant Activity
3.4. Optimizing Extraction Conditions for Enhanced Bioactive Compound Recovery
3.4.1. Total Phenolic Compounds
3.4.2. Antioxidant Activity
3.4.3. Protein Content
3.4.4. Efficiency of Bioactive Compound Extraction Using Microwave-Assisted Extraction and DESs
3.5. Bioactive Compound Extraction
3.5.1. Bioactive Compound Extraction in Ascophyllum nodosum
3.5.2. Bioactive Compound Extraction in Laminaria hyperborea
3.5.3. Functional Group Characterization by FT-IR Analysis
3.5.4. Antimicrobial Activity of Laminaria hyperborea and Ascophyllum nodosum Extracts
3.6. Characterization of Residues Resulting from the Extraction of Bioactive Compounds
3.7. Thermal Analysis (DSC and TGA), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Complementary Tables for Section 3.2 Preliminary Extraction
TPC | DPPH | ABTS | |
---|---|---|---|
Solvent (%) | p < 0.01 | p < 0.001 | p < 0.05 |
60 | 5.92 ± 0.23 b | 13.25 ± 0.02 c | 0.22 ± 0.01 a |
80 | 5.0 ± 0.23 a | 13.12 ± 0.02 b | 0.22 ± 0.01 a |
100 | 4.97 ± 0.23 a | 13.06 ± 0.02 a | 0.25 ± 0.01 b |
Algae | p < 0.001 | p < 0.001 | p < 0.01 |
L. hyperborea | 6.28 ± 0.19 | 13.18 ± 0.01 | 0.25 ± 0.01 |
A. nodosum | 4.31 ± 0.19 | 13.11 ± 0.01 | 0.22 ± 0.01 |
Solvent | p > 0.05 | p < 0.001 | p < 0.001 |
AcNa/AL | 5.34 ± 0.19 | 13.11 ± 0.01 | 0.27 ± 0.01 |
ChCl/AL | 5.25 ± 0.19 | 13.18 ± 0.01 | 0.19 ± 0.01 |
TPC | DPPH | ABTS | |
---|---|---|---|
Algae × Solvent | p < 0.001 | p < 0.01 | p < 0.001 |
A.n. × ChCl/AL | 7.67 ± 0.27 d | 13.18 ± 0.02 b | 0.21 ± 0.01 b |
A.n. × AcNa/AL | 4.83 ± 0.27 b | 13.04 ± 0.02 a | 0.22 ± 0.01 b |
L.h. × ChCl/AL | 2.83 ± 0.27 a | 13.19 ± 0.02 b | 0.17 ± 0.01 a |
L.h. × AcNa/AL | 5.80 ± 0.27 c | 13.17 ± 0.02 b | 0.33 ± 0.01 c |
Solvent × S (%) | p < 0.01 | p < 0.001 | p < 0.05 |
ChCl/AL × 60 | 6.46 ± 0.33 b | 13.33 ± 0.02 c | 0.18 ± 0.01 a |
AcNa/AL × 60 | 5.37 ± 0.33 a | 13.16 ± 0.02 b | 0.26 ± 0.01 b |
ChCl/AL × 80 | 5.27 ± 0.33 b | 13.20 ± 0.02 b | 0.19 ± 0.01 a |
AcNa/AL × 80 | 4.70 ± 0.33 a | 13.05 ± 0.02 a | 0.25 ± 0.01 b |
ChCl/AL × 100 | 4.01 ± 0.33 a | 13.02 ± 0.02 a | 0.19 ± 0.01 a |
AcNa/AL × 100 | 5.94 ± 0.33 b | 13.10 ± 0.02 b | 0.31 ± 0.01 c |
Algae × S (%) | p < 0.001 | p < 0.001 | p > 0.05 |
A.n. × 60 | 7.56 ± e | 13.13 ± 0.02 b | 0.20 ± 0.01 |
A.n. × 80 | 5.72 ± 0.33 d | 13.12 ± 0.02 a | 0.21 ± 0.01 |
A.n. × 100 | 5.55 ± 0.33 c | 13.06 ± 0.02 a | 0.24 ± 0.01 |
L.h. × 60 | 4.27 ± 0.33 a | 13.34 ± 0.02 c | 0.25 ± 0.01 |
L.h. × 80 | 4.27 ± 0.33 a | 13.12 ± 0.02 b | 0.24 ± 0.01 |
L.h. × 100 | 4.39 ± 0.33 b | 13.06 ± 0.02 a | 0.26 ± 0.01 |
Appendix A.2. Complementary Tables for Section 3.4 Optimizing Extraction Conditions for Enhanced Bioactive Compound Recovery
TPC | DPPH | ABTS | FRAP | Protein | |
---|---|---|---|---|---|
Time (min) | p < 0.05 | p > 0.05 | p < 0.05 | p < 0.001 | p > 0.05 |
10 | 25.62 ± 0.47 | 38.76 ± 0.52 | 57.21 ± 1.25 | 60.49 ± 0.83 | 18.04 ± 0.20 |
20 | 27.15 ± 0.48 | 39.55 ± 0.53 | 61.58 ± 1.26 | 66.19 ± 0.84 | 17.69 ± 0.20 |
Temperature (°C) | p < 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 |
130 | 25.70 ± 0.48 | 38.71 ± 0.53 | 57.60 ± 1.27 | 63.89 ± 0.84 | 18.07 ± 0.20 |
150 | 27.06 ± 0.47 | 39.59 ± 0.52 | 61.18 ± 1.24 | 62.79 ± 0.83 | 17.66 ± 0.20 |
Algae | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
L. hyperborea | 14.94 ± 0.48 | 31.91 ± 0.53 | 31.98 ± 1.26 | 58.58 ± 0.84 | 16.80 ± 0.20 |
A. nodosum | 37.82 ± 0.47 | 46.39 ± 0.52 | 86.80 ± 1.24 | 68.10 ± 0.83 | 18.93 ± 0.20 |
Solvent | p < 0.001 | p > 0.05 | p < 0.001 | p < 0.001 | p < 0.001 |
AcNa/AL | 22.40 ± 0.47 | 38.97 ± 0.52 | 63.19 ± 1.25 | 72.37 ± 0.83 | 16.62 ± 0.20 |
ChCl/AL | 30.36 ± 0.48 | 39.34 ± 0.53 | 55.59 ± 1.26 | 54.31 ± 0.84 | 19.11 ± 0.20 |
TPC | DPPH | ABTS | FRAP | Protein | |
---|---|---|---|---|---|
Algae × Solvent | p < 0.001 | p < 0.001 | p < 0.05 | p > 0.05 | p < 0.001 |
A.n. × ChCl/AL | 43.93 ± 0.67 d | 44.70 ± 0.74 c | 83.06 ± 1.77 c | 59.57 ± 1.18 | 21.83 ± 0.29 d |
A.n. × AcNa/AL | 31.71± 0.67 c | 48.07 ± 0.74 d | 90.54 ± 1.77 d | 76.63 ± 1.18 | 16.02 ± 0.29 a |
L.h. × ChCl/AL | 16.80 ± 0.67 b | 33.97 ± 0.75 b | 28.12 ± 1.79 a | 49.06 ± 1.19 | 16.38 ± 0.29 b |
L.h. × AcNa/AL | 13.09 ± 0.67 a | 29.86 ± 0.74 a | 35.85± 1.77 b | 59.57 ± 1.18 | 17.22 ± 0.29 c |
Algae × Time | p < 0.05 | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.01 |
A.n. × 10 | 36.27 ± 0.67 b | 44.86 ± 0.74 b | 87.69 ± 1.77 c | 58.88 ± 1.18 b | 18.64± 0.29 c |
A.n. × 20 | 39.37 ± 0.67 c | 47.92 ± 0.74 b | 85.91 ± 1.77 c | 77.32 ± 1.18 c | 19.21 ± 0.29 c |
L.h. × 10 | 14.96 ± 0.67 a | 32.65 ± 0.74 a | 26.72 ± 1.77 a | 62.09 ± 1.18 b | 17.44 ± 0.29 b |
L.h. × 20 | 14.92 ± 0.67 a | 31.18 ± 0.75 a | 37.24 ± 1.79 b | 55.07 ± 1.19 a | 16.16 ± 0.29 a |
Algae × Temperature | p > 0.05 | p < 0.05 | p > 0.05 | p < 0.001 | p > 0.05 |
A.n. × 130 | 37.25 ± 0.67 b | 46.86 ± 0.74 c | 86.68 ± 1.77 c | 74.62 ± 1.18 c | 19.33 ± 0.29 |
A.n. × 150 | 38.39 ± 0.67 b | 45.92 ± 0.74 c | 86.92 ± 1.77 c | 61.58 ± 1.18 b | 18.53 ± 0.29 |
L.h. × 130 | 14.15 ± 0.69 a | 30.57 ± 0.76 a | 28.53 ± 1.82 a | 53.16 ± 1.21 a | 16.81 ± 0.29 |
L.h. × 150 | 15.73 ± 0.66 a | 33.26 ± 0.73 b | 35.43 ± 1.74 b | 64.00 ± 1.16 b | 16.79 ± 0.28 |
Solvent × Time | p < 0.001 | p > 0.05 | p < 0.001 | p > 0.05 | p > 0.05 |
ChCl/AL × 10 | 28.35 ± 0.67 c | 38.33 ± 0.74 | 49.16 ± 1.77 a | 52.27 ± 1.18 a | 19.14 ± 0.29 |
ChCl/AL × 20 | 32.37 ± 0.67 d | 40.35 ± 0.75 | 62.02 ± 1.79 b | 56.36 ± 1.19 b | 19.08 ± 0.29 |
AcNa/AL × 10 | 22.88 ± 0.67 a | 39.18 ± 0.74 | 65.26 ± 1.77 b | 68.71 ± 1.18 c | 16.95 ± 0.29 |
AcNa/AL × 20 | 21.92± 0.67 b | 38.75 ± 0.74 | 61.13 ± 1.77 b | 76.03 ± 1.18 d | 16.30 ± 0.29 |
Solvent × Temperature | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 |
ChCl/AL × 130 | 28.18 ± 0.69 b | 40.05 ± 0.76 b | 49.90 ± 1.82 a | 51.79 ± 1.21 a | 19.82 ± 0.29 c |
ChCl/AL × 150 | 32.64 ± 0.66 c | 38.63 ± 0.73 b | 61.28 ± 1.74 b | 56.84 ± 1.16 b | 18.40 ± 0.28 b |
AcNa/AL × 130 | 23.22 ± 0.69 a | 37.38 ± 0.74 a | 65.31 ± 1.77 b | 75.99 ± 1.18 d | 16.33 ± 0.29 a |
AcNa/AL × 150 | 24.41 ± 0.69 a | 40.55 ± 0.74 b | 61.08 ± 1.77 b | 68.75 ± 1.18 c | 16.91 ± 0.29 a |
Time × Temperature | p < 0.001 | p > 0.05 | p > 0.05 | p < 0.001 | p > 0.05 |
10 × 130 | 23.16 ± 0.67 a | 37.63 ± 0.74 | 54.16 ± 1.77 a | 38.76 ± 1.18 a | 18.22 ± 0.29 |
10 × 150 | 28.07 ± 0.67 b | 39.88 ± 0.74 | 60.25 ± 1.77 b | 82.22 ± 1.18 c | 17.87 ± 0.29 |
20 × 130 | 28.25 ± 0.69 c | 39.80 ± 0.76 | 61.05 ± 1.82 b | 89.02 ± 1.21 d | 17.93 ± 0.29 |
20 × 150 | 26.05 ± 0.66 d | 39.30 ± 0.73 | 62.11 ± 1.74 b | 43.37 ± 1.16 b | 17.44 ± 0.28 |
TPC | DPPH | ABTS | FRAP | Protein | |
---|---|---|---|---|---|
Algae × Solvent × Time | p < 0.001 | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.01 |
A.n. × ChCl/AL × 10 | 39.60 ± 0.95 g | 44.07 ± 1.05 d | 82.64 ± 2.51 c | 57.44 ± 1.67 b | 21.84 ± 0.40 d |
A.n. × ChCl/AL × 20 | 48.26 ± 0.95 h | 45.34 ± 1.06 d | 83.48 ± 2.54 c | 61.71 ± 1.67 b | 21.82 ± 0.40 d |
A.n. × AcNa/AL × 10 | 32.94 ± 0.95 f | 45.65 ± 1.05 d | 92.74 ± 2.51 d | 60.33 ± 1.67 b | 15.45 ± 0.40 a |
A.n. × AcNa/AL × 20 | 30.49 ± 0.95 e | 50.50 ± 1.05 e | 88.34 ± 2.51 c | 92.9 3 ± 1.67 d | 16.60 ± 0.40 b |
L.h. × ChCl/AL × 10 | 17.10 ± 0.95 d | 32.59 ± 1.05 b | 15.67 ± 2.51 a | 47.10 ± 1.67 a | 16.44 ± 0.40 b |
L.h. × ChCl/AL × 20 | 16.49 ± 0.96 c | 35.36 ± 1.05 c | 40.56 ± 2.51 b | 51.01 ± 1.69 a | 16.33 ± 0.41 b |
L.h. × AcNa/AL × 10 | 12.83 ± 0.95 a | 32.72 ± 1.05 b | 37.77 ± 2.51 b | 77.08 ± 1.67 c | 18.44 ± 0.40 c |
L.h. × AcNa/AL × 20 | 13.35 ± 0.95 b | 26.99 ± 1.05 a | 33.92 ± 2.51 b | 59.12 ± 1.67 b | 15.99 ± 0.40 b |
Algae × Solvent × Temperature | p < 0.05 | p > 0.05 | p > 0.05 | p < 0.001 | p < 0.001 |
A.n. × ChCl/AL × 130 | 41.16 ± 0.95 f | 46.63 ± 1.10 | 79.18 ± 2.51 | 56.31 ± 1.67 a | 23.47 ± 0.40 d |
A.n. × ChCl/AL × 150 | 46.70 ± 0.95 g | 42.78 ± 1.01 | 86.94 ± 2.51 | 62.84 ± 1.67 b | 20.20 ± 0.40 c |
A.n. × AcNa/AL × 130 | 33.35 ± 0.95 e | 47.08 ± 1.05 | 94.18 ± 2.51 | 92.93 ± 1.67 d | 15.19 ± 0.40 a |
A.n. × AcNa/AL × 150 | 30.08 ± 0.95 d | 49.07 ± 1.05 | 86.90 ± 2.51 | 60.33 ± 1.67 b | 16.86 ± 0.40 b |
L.h. × ChCl/AL × 130 | 15.21 ± 0.99 b | 33.46 ± 1.05 | 20.62 ± 2.63 | 47.28 ± 1.75 a | 16.16 ± 0.42 b |
L.h. × ChCl/AL × 150 | 18.38 ± 0.91 c | 34.49 ± 1.05 | 35.61 ± 2.42 | 50.84 ± 1.61 a | 16.60 ± 0.39 b |
L.h. × AcNa/AL × 130 | 13.09 ± 0.95 a | 27.67 ± 1.05 | 36.43 ± 2.51 | 59.04 ± 1.67 b | 17.46 ± 0.40 b |
L.h. × AcNa/AL × 150 | 13.09 ± 0.95 a | 32.04 ± 1.05 | 35.26 ± 2.51 | 77.17 ± 1.67 c | 16.97 ± 0.40 b |
Algae × Time × Temperature | p < 0.001 | p < 0.01 | p > 0.05 | p < 0.001 | p > 0.05 |
A.n. × 10 × 130 | 32.50 ± 0.95 b | 45.78 ± 1.05 d | 84.91 ± 2.51 | 32.62 ± 1.67 a | 18.80 ± 0.40 |
A.n. × 10 × 150 | 40.04 ± 0.95 d | 43.94 ± 1.05 c | 90.47 ± 2.51 | 85.14 ± 1.67 g | 18.49 ± 0.40 |
A.n. × 20 × 130 | 42.01 ± 0.95 e | 47.94 ± 1.05 d | 88.45 ± 2.51 | 116.62 ± 1.67 h | 19.86 ± 0.40 |
A.n. × 20 × 150 | 36.73 ± 0.95 c | 47.91 ± 1.05 d | 83.37 ± 2.51 | 38.02 ± 1.67 b | 18.56 ± 0.40 |
L.h. × 10 × 130 | 13.82 ± 0.95 a | 29.48 ± 1.05 a | 23.41 ± 2.51 | 44.89 ± 1.67 c | 17.63 ± 0.40 |
L.h. × 10 × 150 | 16.11 ± 0.95 a | 35.83 ± 1.05 b | 30.03 ± 2.51 | 79.29 ± 1.67 f | 17.25 ± 0.40 |
L.h. × 20 × 130 | 14.48 ± 0.99 a | 31.66 ± 1.10 a | 33.64 ± 2.63 | 61.42 ± 1.75 e | 16.00 ± 0.42 |
L.h. × 20 × 150 | 15.36 ± 0.91 a | 30.70 ± 1.01 a | 40.84 ± 2.42 | 48.71 ± 1.61 d | 16.32 ± 0.39 |
Solvent × Time × Temperature | p < 0.01 | p > 0.05 | p > 0.05 | p < 0.001 | p > 0.05 |
ChCl/AL × 10 × 130 | 23.39 ± 0.95 b | 38.35 ± 1.05 | 43.76 ± 2.51 | 35.59 ± 1.67 a | 19.97 ± 0.40 |
ChCl/AL × 10 × 150 | 33.14 ± 0.95 c | 38.31 ± 1.05 | 54.55 ± 2.51 | 68.95 ± 1.67 c | 18.31 ± 0.40 |
ChCl/AL × 20 × 130 | 32.98 ± 0.99 c | 41.75 ± 1.10 | 56.04 ± 2.63 | 67.99 ± 1.75 c | 19.67 ± 0.42 |
ChCl/AL × 20 × 150 | 31.77 ± 0.91 c | 38.95 ± 1.01 | 68.00 ± 2.42 | 44.73 ± 1.61 b | 18.49 ± 0.39 |
AcNa/AL × 10 × 130 | 22.93 ± 0.95 b | 36.91 ± 1.05 | 64.56 ± 2.51 | 41.92 ± 1.67 b | 16.46 ± 0.40 |
AcNa/AL × 10 × 150 | 22.83 ± 0.95 b | 41.46 ± 1.05 | 65.95 ± 2.51 | 95.49 ± 1.67 d | 17.43 ± 0.40 |
AcNa/AL × 20 × 130 | 23.51 ± 0.95 b | 37.85 ± 1.05 v | 66.06 ± 2.51 | 110.05 ± 1.67 e | 16.19 ± 0.40 |
AcNa/AL × 20 × 150 | 20.33 ± 0.95 a | 39.65 ± 1.05 | 56.21 ± 2.51 | 42.01 ± 1.67 b | 16.40 ± 0.40 |
Appendix A.3. Complementary Tables for Section 3.4.4 Efficiency of Bioactive Compound Extraction Using Microwave-Assisted Extraction and DESs
DHB | PHT | SAL | HBA | VAN | |
---|---|---|---|---|---|
TT | p < 0.001 | p < 0.001 | p > 0.05 | p < 0.001 | p < 0.001 |
10,150 | 310.92 ± 3.7 | 37.46 ± 2.99 | 2.18 ± 0.15 | 7.32 ± 0.10 | 2740.39 ± 29.27 |
20,130 | 17.03 ± 3.7 | 60.91 ± 2.99 | 1.87 ± 0.15 | 7.94 ± 0.10 | 468.95 ± 29.27 |
Algae | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.05 | p < 0.001 |
L. hyperborea | 136.55 ± 3.7 | 59.57 ± 2.99 | 1.35 ± 0.15 | 7.45 ± 0.10 | 1994.59 ± 29.27 |
A. nodosum | 191.40 ± 3.7 | 38.80 ± 2.99 | 2.70 ± 0.15 | 7.81 ± 0.10 | 1214.75 ± 29.27 |
Solvent | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
AcNa/LA | 310.89 ± 3.7 | 40.31 ± 2.99 | 2.76 ± 0.15 | 8.4 ± 0.10 | 3106.13 ± 29.27 |
ChCl/LA | 17.05 ± 3.7 | 58.06 ± 2.99 | 1.29 ± 0.15 | 6.83 ± 0.10 | 103.22 ± 29.27 |
DHB | PHT | SAL | HBA | VAN | |
---|---|---|---|---|---|
Algae × Solvent | p < 0.001 | p < 0.001 | p < 0.05 | p > 0.05 | p < 0.001 |
A.n. × ChCl/LA | 28.65 ± 5.2 b | 33.70 ± 4.23 a | 2.28 ± 0.21 b | 6.89 ± 0.14 | 132.25 ± 41.39 a |
A.n. × AcNa/LA | 354.15 ± 5.2 d | 43.90 ± 4.23 b | 3.12 ± 0.21 d | 8.73 ± 0.14 | 2297.25 ± 41.39 b |
L.h. × ChCl/LA | 5.46 ± 5.2 a | 82.42 ± 4.23 c | 0.31 ± 0.21 a | 6.76 ± 0.14 | 74.19 ± 41.39 a |
L.h. × AcNa/LA | 267.63 ± 5.2 c | 36.71 ± 4.23 b | 2.40 ± 0.21 c | 8.14 ± 0.14 | 3915.00 ± 41.39 c |
Algae × TT | p < 0.001 | p < 0.05 | p > 0.05 | p > 0.05 | p < 0.001 |
A.n. × 20,130 | 18.41 ± 5.2 b | 45.25 ± 4.23 b | 2.52 ± 0.21 | 8.19 ± 0.14 | 348.87 ± 41.39 a |
A.n. × 10,150 | 364.38 ± 5.2 c | 32.35 ± 4.23 a | 2.88 ± 0.21 | 7.43 ± 0.14 | 2080.63 ± 41.39 c |
L.h. × 20,130 | 15.64 ± 5.2 a | 76.57 ± 4.23 c | 1.23 ± 0.21 | 7.69 ± 0.14 | 589.03 ± 41.39 b |
L.h. × 10,150 | 257.45 ± 5.2 c | 42.57 ± 4.23 a | 1.48 ± 0.21 | 7.22 ± 0.14 | 3400.16 ± 41.39 d |
Solvent × TT | p < 0.001 | p < 0.001 | p > 0.05 | p < 0.001 | p < 0.001 |
ChCl/LA × 20,130 | 3.85 ± 5.2 a | 80.21 ± 4.23 b | 1.29 ± 0.21 | 7.49 ± 0.14 b | 75.40 ± 41.39 a |
ChCl/LA × 10,150 | 30.26 ± 5.2 b | 35.92 ± 4.23 a | 1.30 ± 0.21 | 6.16 ± 0.14 a | 131.03 ± 41.39 a |
AcNa/LA × 20,130 | 30.21 ± 5.2 b | 41.61 ± 4.23 a | 2.46 ± 0.21 | 8.39 ± 0.14 c | 862.50 ± 41.39 b |
AcNa/LA × 10,150 | 591.58 ± 5.2 c | 39.00 ± 4.23 a | 3.06 ± 0.21 | 8.49 ± 0.14 c | 5349.75 ± 41.39 c |
Appendix A.4. Complementary Tables for Section 3.6 Characterization of Residues Resulting from the Extraction of Bioactive Compounds
GLU | XGM | FUC | AIR | |
---|---|---|---|---|
TT | p < 0.05 | p < 0.05 | p < 0.001 | p < 0.001 |
10,150 | 13.72 ± 0.28 | 3.42 ± 0.10 | 1.01 ± 0.12 | 45.41 ± 0.15 |
20,130 | 13.39 ± 0.28 | 3.05 ± 0.10 | 1.77 ± 0.12 | 27.99 ± 0.15 |
Algae | p < 0.001 | p < 0.001 | p > 0.05 | p < 0.001 |
L. hyperborea | 17.47 ± 0.28 | 3.71 ± 0.10 | 1.35 ± 0.12 | 18.78 ± 0.15 |
A. nodosum | 9.64 ± 0.28 | 2.75 ± 0.10 | 1.43 ± 0.12 | 54.61 ± 0.15 |
Solvent | p < 0.001 | p > 0.05 | p < 0.001 | p < 0.001 |
AcNa/AL | 12.03 ± 0.28 | 3.21 ± 0.10 | 0.75 ± 0.12 | 38.70 ± 0.15 |
ChCl/AL | 15.09 ± 0.28 | 3.25 ± 0.10 | 2.04 ± 0.12 | 34.70 ± 0.15 |
GLU | XGM | FUC | AIR | |
---|---|---|---|---|
Algae × Solvent | p < 0.001 | p < 0.001 | p > 0.05 | p < 0.001 |
A.n. × ChCl/AL | 10.16 ± 0.40 a | 3.29 ± 0.14 b | 2.16 ± 0.17 | 47.10 ± 0.21 c |
A.n. × AcNa/AL | 9.13 ± 0.40 a | 2.21 ± 0.14 a | 0.70 ± 0.17 | 62.13 ± 0.21 d |
L.h. × ChCl/AL | 20.02 ± 0.40 c | 3.21 ± 0.14 b | 1.91 ± 0.17 | 22.29 ± 0.21 b |
L.h. × AcNa/AL | 14.93 ± 0.40 b | 4.21 ± 0.14 c | 0.79 ± 0.17 | 15.28 ± 0.21 a |
Algae × TT | p > 0.05 | p < 0.001 | p > 0.05 | p < 0.001 |
A.n. × 20,130 | 9.18 ± 0.40 | 3.08 ± 0.14 b | 1.63 ± 0.17 | 37.63 ± 0.21 |
A.n. × 10,150 | 10.10 ± 0.40 | 2.42 ± 0.14 a | 1.23 ± 0.17 | 71.60 ± 0.21 |
L.h. × 20,130 | 17.60 ± 0.40 | 3.01 ± 0.14 b | 1.91 ± 0.17 | 18.34 ± 0.21 |
L.h. × 10,150 | 17.34 ± 0.40 | 4.41 ± 0.14 c | 0.79 ± 0.17 | 19.23 ± 0.21 |
Solvent × TT | p < 0.01 | p > 0.05 | p < 0.001 | p > 0.05 |
ChCl/AL × 20,130 | 14.15 ± 0.40 c | 3.13 ± 0.14 | 2.05 ± 0.17 c | 26.02 ± 0.21 a |
ChCl/AL × 10,150 | 16.03 ± 0.40 d | 3.38 ± 0.14 | 2.02 ± 0.17 c | 43.38 ± 0.21 c |
AcNa/AL × 20,130 | 12.64 ± 0.40 b | 2.97 ± 0.14 | 1.49 ± 0.17 b | 29.95 ± 0.21 b |
AcNa/AL × 10,150 | 11.41 ± 0.40 a | 3.46 ± 0.14 | ≈0 a | 47.45 ± 0.21 d |
References
- Bogolitsyn, K.; Parshina, A.; Mamatmyrodov, K.; Popov, N. Recovery of Bioactive Complex from Brown Algae by Alternative Extraction Approaches. Bioresour. Technol. Rep. 2024, 26, 101810. [Google Scholar] [CrossRef]
- del Río, P.G.; Gullón, B.; Pérez-Pérez, A.; Romaní, A.; Garrote, G. Microwave Hydrothermal Processing of the Invasive Macroalgae Sargassum muticum within a Green Biorefinery Scheme. Bioresour. Technol. 2021, 340, 125733. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction and Characterization of Protein from Irish Brown Seaweed Ascophyllum nodosum. Food Res. Int. 2017, 99, 1021–1027. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Connell, S.; O’Donnell, C.P. Effect of Ultrasound Pretreatment on the Extraction Kinetics of Bioactives from Brown Seaweed (Ascophyllum nodosum). Sep. Sci. Technol. 2015, 50, 670–675. [Google Scholar] [CrossRef]
- Irianto, I.; Naryaningsih, A.; Trisnawati, N.W.; Astuti, A.; Komariyah, K.; Qomariyah, L.; Chaidir, C.; Saputri, A.; Wulandari, R.; Rizkiyah, D.N.; et al. From Sea to Solution: A Review of Green Extraction Approaches for Unlocking the Potential of Brown Algae. S. Afr. J. Chem. Eng. 2024, 48, 1–21. [Google Scholar] [CrossRef]
- Nkurunziza, D.; Coad, B.R.; Bulone, V. A Review on Integrated Biorefining of Brown Algae Focusing on Bioactive Compounds and Holistic Biomass Valorisation. J. Ind. Eng. Chem. 2025, in press. [Google Scholar] [CrossRef]
- Vernès, L.; Vian, M.; Chemat, F. Ultrasound and Microwave as Green Tools for Solid-Liquid Extraction. In Liquid-Phase Extraction: Handbooks in Separation Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 355–374. [Google Scholar]
- Arias, A.; Feijoo, G.; Moreira, M.T. Macroalgae Biorefineries as a Sustainable Resource in the Extraction of Value-Added Compounds. Algal Res. 2023, 69, 102954. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, D.Q.; Thi Ho, T.A.; Nguyen, T.M.; Huy Ha, N.M.; Vo, P.H.N. Novel Extraction of Bioactive Compounds from Algae Using Green Solvent: Principles, Applications, and Future Perspectives. J. Agric. Food Res. 2024, 18, 101535. [Google Scholar] [CrossRef]
- Lopes, A.; Correia-Sá, L.; Vieira, M.; Delerue-Matos, C.; Soares, C.; Grosso, C. Sustainable Carotenoid Extraction from Macroalgae: Optimizing Microwave-Assisted Extraction Using Response Surface Methodology. Life 2024, 14, 1573. [Google Scholar] [CrossRef]
- Koh, Q.Q.; Kua, Y.L.; Gan, S.; Tan, K.W.; Lee, T.Z.E.; Cheng, W.K.; Lau, H.L.N. Sugar-Based Natural Deep Eutectic Solvent (NADES): Physicochemical Properties, Antimicrobial Activity, Toxicity, Biodegradability and Potential Use as Green Extraction Media for Phytonutrients. Sustain. Chem. Pharm. 2023, 35, 101218. [Google Scholar] [CrossRef]
- Uka, D.; Kukrić, T.; Krstonošić, V.; Jović, B.; Kordić, B.; Pavlović, K.; Popović, B.M. NADES Systems Comprising Choline Chloride and Polyphenols: Physicochemical Characterization, Antioxidant and Antimicrobial Activities. J. Mol. Liq. 2024, 410, 125683. [Google Scholar] [CrossRef]
- Hilali, S.; Van Gheluwe, L.; Yagmur, M.; Wils, L.; Phelippe, M.; Clément-Larosière, B.; Montigny, B.; Jacquemin, J.; Thiery, E.; Boudesocque-Delaye, L. NaDES-Based Biorefinery of Spirulina (Arthrospira platensis): A New Path for Sustainable High Value-Added Metabolites. Sep. Purif. Technol. 2024, 329, 125123. [Google Scholar] [CrossRef]
- Jesus, B.C.; Sáenz de Miera, B.; Santiago, R.; Martins, A.; Pedrosa, R.; González-Miquel, M.; Marrucho, I.M. Valorisation of Sargassum muticum Through the Extraction of Phenolic Compounds Using Eutectic Solvents and Intensification Techniques. RSC Sustain. 2023, 1, 1245–1258. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral Valorization of Vine Pruning Residue by Sequential Autohydrolysis Stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume 1, Agricultural Chemicals, Contaminants, Drugs; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive Compounds Recovery Optimization from Vine Pruning Residues Using Conventional Heating and Microwave-Assisted Extraction Methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef]
- Jesus, M.S.; Ballesteros, L.F.; Pereira, R.N.; Genisheva, Z.; Carvalho, A.C.; Pereira-Wilson, C.; Teixeira, J.A.; Domingues, L. Ohmic Heating Polyphenolic Extracts from Vine Pruning Residue with Enhanced Biological Activity. Food Chem. 2020, 316, 126298. [Google Scholar] [CrossRef]
- Karimi, F.; Hamidian, Y.; Behrouzifar, F.; Mostafazadeh, R.; Ghorbani-HasanSaraei, A.; Alizadeh, M.; Mortazavi, S.-M.; Janbazi, M.; Naderi Asrami, P. An Applicable Method for Extraction of Whole Seeds Protein and Its Determination Through Bradford’s Method. Food Chem. Toxicol. 2022, 164, 113053. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and Antimicrobial Activities of Extracts Obtained from the Refining of Autohydrolysis Liquors of Vine Shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- M100-Ed32; Performance Standards for Antimicrobial Susceptibility Testing. The Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 1986.
- Barros, D.; Fernandes, É.; Jesus, M.; Barros, L.; Alonso-Esteban, J.I.; Pires, P.; Vaz Velho, M. The Chemical Characterisation of the Maritime Pine Bark Cultivated in Northern Portugal. Plants 2023, 12, 3940. [Google Scholar] [CrossRef]
- Karuppusamy, S.; Wanigasekara, J.; Fitzpatrick, S.; Lyons, H.; Curtin, J.; Rajauria, G.; Tiwari, B.K.; O’Donnell, C. Investigation of Biological Activity of Fucoidan and Laminarin as Bioactive Polysaccharides from Irish Brown Macroalgae. Cells 2024, 13, 1938. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Kim, I.H.; Kim, J.; Nam, T.J. Induction of Apoptosis and the Regulation of ErbB Signaling by Laminarin in HT-29 Human Colon Cancer Cells. Int. J. Mol. Med. 2013, 32, 291–295. [Google Scholar] [CrossRef]
- Zhang, H.; Song, L.; Chen, X.; Li, P. An Exploration of Seaweed Polysaccharides Stimulating Denitrifying Bacteria for Safer Nitrate Removal. Molecules 2021, 26, 3390. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Yang, Y.; Zhang, Y.; Wang, D.; Wang, P.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. J. Agric. Food Chem. 2022, 70, 1438–1453. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Kim, D.-H. Genome-Wide Comparison Reveals a Probiotic Strain Lactococcus lactis WFLU12 Isolated from the Gastrointestinal Tract of Olive Flounder (Paralichthys olivaceus) Harboring Genes Supporting Probiotic Action. Mar. Drugs 2018, 16, 140. [Google Scholar] [CrossRef]
- Jin, J.-O.; Chauhan, P.S.; Arukha, A.P.; Chavda, V.; Dubey, A.; Yadav, D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar. Drugs 2021, 19, 265. [Google Scholar] [CrossRef]
- Kalimuthu, S.; Kim, S.-K. Fucoidan, A Sulfated Polysaccharides from Brown Algae as Therapeutic Target for Cancer. In Handbook of Anticancer Drugs from Marine Origin; Springer International Publishing: Cham, Switzerland, 2015; pp. 145–164. [Google Scholar]
- Jiao, W.; Chen, W.; Mei, Y.; Yun, Y.; Wang, B.; Zhong, Q.; Chen, H.; Chen, W. Effects of Molecular Weight and Guluronic Acid/Mannuronic Acid Ratio on the Rheological Behavior and Stabilizing Property of Sodium Alginate. Molecules 2019, 24, 4374. [Google Scholar] [CrossRef]
- Cadar, E.; Popescu, A.; Dragan, A.-M.-L.; Pesterau, A.-M.; Pascale, C.; Anuta, V.; Prasacu, I.; Velescu, B.S.; Tomescu, C.L.; Bogdan-Andreescu, C.F.; et al. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar. Drugs 2025, 23, 152. [Google Scholar] [CrossRef]
- Almalki, W.J.; Nwokeoji, A.O.; Vaidyanathan, S. Density and Composition of Cohabiting Bacteria in Chlorella vulgaris CCAP 211/21A Is Influenced by Changes in Nutrient Supply. SynBio 2024, 2, 190–204. [Google Scholar] [CrossRef]
- Kim, J.K.; Kraemer, G.P.; Yarish, C. Field Scale Evaluation of Seaweed Aquaculture as a Nutrient Bioextraction Strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 2014, 433, 148–156. [Google Scholar] [CrossRef]
- Wijesekara, I.; Karunarathna, W.K.D.S. Usage of Seaweed Polysaccharides as Nutraceuticals. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 341–348. [Google Scholar]
- Sousa, C.; Sousa-Pinto, I.; Oliveira, I.; Marinho, G.S. Seasonal Variation in the Composition and Antioxidant Potential of Codium tomentosum and Ulva lacinulata Produced in a Land-Based Integrated Multi-Trophic Aquaculture System. J. Appl. Phycol. 2025. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Wang, H.; Liu, W.; Cheong, K.; Teng, B. Characterization of Seaweed Polysaccharide-Based Bilayer Films Containing Essential Oils with Antibacterial Activity. LWT 2021, 150, 111961. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef]
- Rajauria, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D.K.; Sweeney, T.; O’Doherty, J. Molecular Characteristics and Antioxidant Activity of Laminarin Extracted from the Seaweed Species Laminaria hyperborea, Using Hydrothermal-Assisted Extraction and a Multi-Step Purification Procedure. Food Hydrocoll. 2021, 112, 106332. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; You, L.; Fu, X.; Liu, R.H. Fractionation, Preliminary Structural Characterization and Bioactivities of Polysaccharides from Sargassum pallidum. Carbohydr. Polym. 2017, 155, 261–270. [Google Scholar] [CrossRef]
- Taweekayujan, S.; Somngam, S.; Pinnarat, T. Optimization and Kinetics Modeling of Phenolics Extraction from Coffee Silverskin in Deep Eutectic Solvent Using Ultrasound-Assisted Extraction. Heliyon 2023, 9, e17942. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncąlves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-M.; Aweya, J.J.; Liu, X.; Liu, Y.; Tang, S.; Zhang, W.; Cheong, K.-L. Bioactive Polysaccharides from Red Seaweed as Potent Food Supplements: A Systematic Review of Their Extraction, Purification, and Biological Activities. Carbohydr. Polym. 2022, 275, 118696. [Google Scholar] [CrossRef] [PubMed]
- Bojorges, H.; Martínez-Abad, A.; Martínez-Sanz, M.; Rodrigo, M.D.; Vilaplana, F.; López-Rubio, A.; Fabra, M.J. Structural and Functional Properties of Alginate Obtained by Means of High Hydrostatic Pressure-Assisted Extraction. Carbohydr. Polym. 2023, 299, 120175. [Google Scholar] [CrossRef] [PubMed]
- Tagliapietra, B.L.; Clerici, M.T.P.S. Brown Algae and Their Multiple Applications as Functional Ingredient in Food Production. Food Res. Int. 2023, 167, 112655. [Google Scholar] [CrossRef]
- Santos, J.M.; Jesus, B.C.; Ribeiro, H.; Martins, A.; Marto, J.; Fitas, M.; Pinto, P.; Alves, C.; Silva, J.; Pedrosa, R.; et al. Extraction of Macroalgae Phenolic Compounds for Cosmetic Application Using Eutectic Solvents. Algal Res. 2024, 79, 103438. [Google Scholar] [CrossRef]
- Cajnko, M.M.; Novak, U.; Likozar, B. Cascade Valorization Process of Brown Alga Seaweed Laminaria hyperborea by Isolation of Polyphenols and Alginate. J. Appl. Phycol. 2019, 31, 3915–3924. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as Promising Resource of Bioactive Compounds: Overview of Novel Extraction Strategies and Design of Tailored Meat Products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Joshi, R.; Sathasivam, R.; Jayapal, P.K.; Patel, A.K.; Van Nguyen, B.; Faqeerzada, M.A.; Park, S.U.; Lee, S.H.; Kim, M.S.; Baek, I.; et al. Comparative Determination of Phenolic Compounds in Arabidopsis Thaliana Leaf Powder under Distinct Stress Conditions Using Fourier-Transform Infrared (FT-IR) and Near-Infrared (FT-NIR) Spectroscopy. Plants 2022, 11, 836. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; Thiré, R.M.d.S.M.; McGuinness, G.B. FTIR Analysis and Quantification of Phenols and Flavonoids of Five Commercially Available Plants Extracts Used in Wound Healing. Matéria (Rio Jan. ) 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Thummajitsakul, S.; Paensanit, P.; Saeieo, T.; Sirirat, J.; Silprasit, K. FTIR and Multivariate Analysis of Total Phenolic Content, Antioxidant and Anti-Amylase Activities of Extracts and Milk of Glycine max L. and Phaseolus vulgaris L. Electron. J. Biotechnol. 2023, 64, 69–75. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential against Digestive Enzymes of 25 Herbal Infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Mani, J.; Ashwath, N.; Naiker, M. Potential for Fourier Transform Infrared (FTIR) Spectroscopy toward Predicting Antioxidant and Phenolic Contents in Powdered Plant Matrices. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 233, 118228. [Google Scholar] [CrossRef] [PubMed]
- Bedair, H.M.; Samir, T.M.; Mansour, F.R. Antibacterial and Antifungal Activities of Natural Deep Eutectic Solvents. Appl. Microbiol. Biotechnol. 2024, 108, 198. [Google Scholar] [CrossRef]
- Matin, M.; Koszarska, M.; Atanasov, A.G.; Król-Szmajda, K.; Jóźwik, A.; Stelmasiak, A.; Hejna, M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024, 29, 4695. [Google Scholar] [CrossRef]
- Ambarwati, A.; Wahyuono, S.; Moeljopawiro, S.; Yuwono, T. Antimicrobial Activity of Ethyl Acetate Extracts of Streptomyces sp. CRB46 and the Prediction of Their Bioactive Compounds Chemical Structure. Biodiversitas 2020, 21, 3380–3390. [Google Scholar] [CrossRef]
- Mungwari, C.P.; King’ondu, C.K.; Sigauke, P.; Obadele, B.A. Conventional and Modern Techniques for Bioactive Compounds Recovery from Plants: Review. Sci. Afr. 2024, 27, e02509. [Google Scholar] [CrossRef]
- Hejna, M.; Dell’Anno, M.; Liu, Y.; Rossi, L.; Aksmann, A.; Pogorzelski, G.; Jóźwik, A. Assessment of the Antibacterial and Antioxidant Activities of Seaweed-Derived Extracts. Sci. Rep. 2024, 14, 21044. [Google Scholar] [CrossRef]
- Tan, P.X.; Thiyagarasaiyar, K.; Tan, C.-Y.; Jeon, Y.-J.; Nadzir, M.S.M.; Wu, Y.-J.; Low, L.-E.; Atanasov, A.G.; Ming, L.C.; Liew, K.B.; et al. Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review. Mar. Drugs 2021, 19, 317. [Google Scholar] [CrossRef]
- Blanco-Pascual, N.; Montero, M.P.; Gómez-Guillén, M.C. Antioxidant Film Development from Unrefined Extracts of Brown Seaweeds Laminaria digitata and Ascophyllum nodosum. Food Hydrocoll. 2014, 37, 100–110. [Google Scholar] [CrossRef]
- Ahmed, N.; Sheikh, M.A.; Ubaid, M.; Chauhan, P.; Kumar, K.; Choudhary, S. Comprehensive Exploration of Marine Algae Diversity, Bioactive Compounds, Health Benefits, Regulatory Issues, and Food and Drug Applications. Meas. Food 2024, 14, 100163. [Google Scholar] [CrossRef]
- El-Sapagh, S.; El-Shenody, R.; Pereira, L.; Elshobary, M. Unveiling the Potential of Algal Extracts as Promising Antibacterial and Antibiofilm Agents Against Multidrug-Resistant Pseudomonas aeruginosa: In Vitro and In Silico Studies Including Molecular Docking. Plants 2023, 12, 3324. [Google Scholar] [CrossRef] [PubMed]
- Zuorro, A.; Lavecchia, R.; Contreras-Ropero, J.E.; Martínez, J.B.G.; Barajas-Ferreira, C.; Barajas-Solano, A.F. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int. J. Mol. Sci. 2024, 25, 11826. [Google Scholar] [CrossRef] [PubMed]
- McClane, B.A.; Robertson, S.L.; Li, J. Clostridium perfringens. In Food Microbiology; ASM Press: Washington, DC, USA, 2014; pp. 465–489. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50, 24–31. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Yin, D.; Sun, X.; Li, N.; Guo, Y.; Tian, Y.; Wang, L. Structural Properties and Antioxidant Activity of Polysaccharides Extracted from Laminaria japonica Using Various Methods. Process Biochem. 2021, 111, 201–209. [Google Scholar] [CrossRef]
- Lu, J.; Shi, K.K.; Chen, S.; Wang, J.; Hassouna, A.; White, L.N.; Merien, F.; Xie, M.; Kong, Q.; Li, J.; et al. Fucoidan Extracted from the New Zealand Undaria pinnatifida—Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines. Mar. Drugs 2018, 16, 461. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.R.S.; Ulber, R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Pérez-García, F.; Klein, V.J.; Brito, L.F.; Brautaset, T. From Brown Seaweed to a Sustainable Microbial Feedstock for the Production of Riboflavin. Front. Bioeng. Biotechnol. 2022, 10, 863690. [Google Scholar] [CrossRef]
- Volli, V.; Gollakota, A.R.K.; Shu, C.M. Comparative Studies on Thermochemical Behavior and Kinetics of Lignocellulosic Biomass Residues Using TG-FTIR and Py-GC/MS. Sci. Total Environ. 2021, 792, 148392. [Google Scholar] [CrossRef]
- Boonsuk, P.; Sukolrat, A.; Bourkaew, S.; Kaewtatip, K.; Chantarak, S.; Kelarakis, A.; Chaibundit, C. Structure-Properties Relationships in Alkaline Treated Rice Husk Reinforced Thermoplastic Cassava Starch Biocomposites. Int. J. Biol. Macromol. 2021, 167, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Trivedi, N.; Simoni, S.; Reddy, C.R.K. Marine Macroalgal Nursery: A Model for Sustainable Production of Seedlings for Large Scale Farming. Algal Res. 2018, 31, 463–468. [Google Scholar] [CrossRef]
- Ufodike, C.O.; Eze, V.O.; Ahmed, M.F.; Oluwalowo, A.; Park, J.G.; Okoli, O.I.; Wang, H. Evaluation of the Inter-Particle Interference of Cellulose and Lignin in Lignocellulosic Materials. Int. J. Biol. Macromol. 2020, 147, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Lloret, V.; Metz, M.; Martínez-Abad, A.; Knutsen, S.H.; Ballance, S.; López-Rubio, A.; Martínez-Sanz, M. Valorization of Alginate-Extracted Seaweed Biomass for the Development of Cellulose-Based Packaging Films. Algal Res. 2022, 61, 102576. [Google Scholar] [CrossRef]
Components | p-Value | Laminaria hyperborea | Ascophyllum nodosum |
---|---|---|---|
Ash | NS | 33.80 ± 0.07 | 24.25 ± 0.18 |
Crude protein | 0.05 | 11.55 ± 0.03 | 8.73 ± 0.05 |
% water extraction | 0.05 | 56.18 ± 0.77 | 51.98 ± 0.05 |
Rhamnose | 0.05 | 9.35 ± 0.17 | 3.05 ± 0.10 |
% ethanol extraction | NS | 10.96 ± 1.00 | 14.93 ± 1.56 |
Glucan | 0.05 | 6.11 ± 0.42 | 2.48 ± 0.11 |
Xylan/galactan/mannan | NS | 1.43 ± 0.14 | 1.41 ± 0.45 |
Fucoidan | NS | 1.46 ± 0.19 | 3.20 ± 0.57 |
Acid-insoluble residue | 0.05 | 5.00 ± 0.51 | 12.63 ± 0.25 |
Algae × S(%) × Solvent | TPC | DPPH | ABTS |
---|---|---|---|
p < 0.001 | p < 0.001 | p > 0.05 | |
A.n. × 100 × ChCl/AL | 5.41 ± 0.46 e | 13.09 ± 0.03 b | 0.22 ± 0.02 |
L.h. × 100 × ChCl/AL | 2.61 ± 0.46 a | 12.95 ± 0.03 a | 0.16 ± 0.02 |
A.n. × 80 × ChCl/AL | 7.32 ± 0.46 f | 13.26 ± 0.03 f | 0.22 ± 0.02 |
L.h. × 80 × ChCl/AL | 3.22 ± 0.46 c | 13.14 ± 0.03 c | 0.17 ± 0.02 |
A.n. × 60 × ChCl/AL | 10.28 ± 0.46 g | 13.18 ± 0.03 d | 0.20 ± 0.02 |
L.h. × 60 × ChCl/AL | 2.65 ± 0.46 b | 13.48 ± 0.03 g | 0.17 ± 0.02 |
A.n. × 100 × AcNa/AL | 5.69 ± 0.46 d | 13.04 ± 0.03 b | 0.26 ± 0.02 |
L.h. × 100 × AcNa/AL | 6.18 ± 0.46 e | 13.17 ± 0.03 e | 0.35 ± 0.02 |
A.n. × 80 × AcNa/AL | 4.13 ± 0.46 d | 12.99 ± 0.03 b | 0.20 ± 0.02 |
L.h. × 80 × AcNa/AL | 5.32 ± 0.46 d | 13.11 ± 0.03 c | 0.30 ± 0.02 |
A.n. × 60 × AcNa/AL | 4.84 ± 0.46 d | 13.08 ± 0.03 b | 0.20 ± 0.02 |
L.h. × 60 × AcNa/AL | 5.90 ± 0.46 d | 13.24 ± 0.03 e | 0.32 ± 0.02 |
TPC | DPPH | ABTS | FRAP | Protein | |
---|---|---|---|---|---|
Algae × Solvent × Time × Temperature | p < 0.01 | p < 0.001 | p < 0.01 | p > 0.05 | p > 0.05 |
A.n. × ChCl/AL × 10 × 130 | 31.70 ± 1.34 e | 44.90 ± 1.48 e | 74.73 ± 3.55 h | 29.83 ± 2.36 | |
A.n. × ChCl/AL × 10 × 150 | 47.51 ± 1.34 g | 43.23 ± 1.48 e | 90.55 ± 3.55 j | 85.04 ± 2.36 | - |
A.n. × ChCl/AL × 20 × 130 | 50.62 ± 1.34 h | 48.37 ± 1.48 f | 83.64 ± 3.55 i | 82.78 ± 2.36 | - |
A.n. × ChCl/AL × 20 × 150 | 45.89 ± 1.34 f | 42.32 ± 1.48 e | 83.23 ± 3.55 i | 40.63 ± 2.36 | - |
A.n. × AcNa/AL × 10 × 130 | 33.29 ± 1.34 e | 46.66 ± 1.48 e | 95.10 ± 3.55 l | 35.41 ± 2.36 | - |
A.n. × AcNa/AL × 10 × 150 | 32.58 ± 1.34 e | 44.64 ± 1.48 e | 90.39 ± 3.55 j | 85.25 ± 2.36 | - |
A.n. × AcNa/AL × 20 × 130 | 33.41 ± 1.34 e | 47.50 ± 1.48 f | 93.27± 3.55 k | 150.45 ± 2.36 | - |
A.n. × AcNa/AL × 20 × 150 | 27.58 ± 1.34 d | 53.49 ± 1.48 g | 83.42 ± 3.55 i | 35.41 ± 2.36 | - |
L.h. × ChCl/AL × 10 × 130 | 15.08 ± 1.34 a | 31.79 ± 1.48 c | 12.80 ± 3.55 a | 41.35 ± 2.36 | - |
L.h. × ChCl/AL × 10 × 150 | 19.12 ± 1.34 c | 33.39 ± 1.48 c | 18.54 ± 3.55 b | 52.86 ± 2.36 | - |
L.h. × ChCl/AL × 20 × 130 | 15.34 ± 1.47 a | 35.13 ± 1.62 c | 28.44 ± 3.88 c | 53.20 ± 2.58 | - |
L.h. × ChCl/AL × 20 × 150 | 17.64 ± 1.24 b | 35.59 ± 1.37 c | 52.68 ± 3.28 g | 48.82 ± 2.18 | - |
L.h. × AcNa/AL × 10 × 130 | 12.56 ± 1.34 a | 27.16 ± 1.48 b | 34.02 ± 3.55 d | 48.44 ± 2.36 | - |
L.h. × AcNa/AL × 10 × 150 | 13.09 ± 1.34 a | 38.27 ± 1.48 d | 41.51 ± 3.55 f | 105.72 ± 2.36 | - |
L.h. × AcNa/AL × 20 × 130 | 13.62 ± 1.34 a | 28.19 ± 1.48 b | 38.85 ± 3.55 e | 69.64 ± 2.36 | - |
L.h. × AcNa/AL × 20 × 150 | 13.09 ± 1.34 a | 25.80 ± 1.48 a | 29.00 ± 3.55 c | 48.61 ± 2.36 | - |
DHB | PHT | SAL | HBA | VAN | |
---|---|---|---|---|---|
Algae × Solvent × TT | p < 0.001 | p < 0.001 | p < 0.01 | p > 0.05 | p < 0.001 |
A.n. × ChCl/LA × 20,130 | 6.58 ± 7.4 a,b | 33.99 ± 5.98 b | 2.57 ± 0.30 c | 7.55 ± 0.20 | 84.25 ± 58.54 a |
A.n. × ChCl/LA × 10,150 | 50.71 ± 7.4 d | 33.42 ± 5.98 b | 1.98 ± 0.30 c | 6.23 ± 0.20 | 180.25 ± 58.54 a |
A.n. × AcNa/LA × 20,130 | 30.25 ± 7.4 c | 56.51 ± 5.98 c | 2.46 ± 0.30 c | 8.83 ± 0.20 | 613.50 ± 58.54 b |
A.n. × AcNa/LA × 10,150 | 678.05 ± 7.4 f | 31.29 ± 5.98 b | 3.78 ± 0.30 d | 8.63 ± 0.20 | 3981.00 ± 58.54 d |
L.h. × ChCl/LAx 20,130 | 1.12 ± 7.4 a | 126.43 ± 5.98 d | ≈0 a | 7.43 ± 0.20 | 66.56 ± 58.54 a |
L.h. × ChCl/LA × 10,150 | 9.80 ± 7.4 b | 38.42 ± 5.98 b | 0.61± 0.30 b | 6.09 ± 0.20 | 81.82 ± 58.54 a |
L.h. × AcNa/LA × 20,130 | 30.17 ± 7.4 c | 26.71 ± 5.98 a | 2.45 ± 0.30 c | 7.94 ± 0.20 | 1111.50 ± 58.54 c |
L.h. × AcNa/LA × 10,150 | 505.10 ± 7.4 e | 46.72 ± 5.98 b | 2.35 ± 0.30 c | 8.35 ± 0.20 | 6718.50 ± 58.54 e |
E. coli | S. aureus | C. perfringens | |
---|---|---|---|
Solvent | p < 0.05 | p > 0.05 | p > 0.05 |
ChCl/LA | 14.26 ± 0.23 | 16.70 ± 0.40 | 24.35 ± 0.54 |
AcNa/LA | 13.52 ± 0.23 | 17.25 ± 0.40 | 23.62 ± 0.54 |
Algae | p < 0.05 | p > 0.05 | p < 0.05 |
L. hyperborea | 13.47 ± 0.23 | 16.63 ± 0.40 | 22.68 ± 0.54 |
A. nodosum | 14.31 ± 0.23 | 17.32 ± 0.40 | 25.30 ± 0.54 |
Solvent × algae | p < 0.05 | p < 0.01 | p > 0.05 |
ChCl/LA × A. nodosum | 15.01 ± 0.33 b | 16.10 ± 0.57 a | 25.34 ± 0.77 b |
AcNa/LA × A. nodosum | 13.60 ± 0.33 a | 18.55 ± 0.57 b | 25.25 ± 0.77 b |
ChCl/LA × L. hyperborea | 13.50 ± 0.33 a | 17.31 ± 0.57 a | 23.37 ± 0.77 b |
AcNa/LA × L. hyperborea hyperborea | 13.44 ± 0.33 a | 15.95 ± 0.57 a | 21.99 ± 0.77 a |
GLU | XGM | FUC | AIR | |
---|---|---|---|---|
Algae × Solvent × TT | p > 0.05 | p < 0.001 | p > 0.05 | p > 0.05 |
A.n. × ChCl:AL × 20,130 | 8.57 | 3.06 b | 1.86 | 29.97 |
A.n. × ChCl:AL × 10,150 | 11.75 | 3.52 b | 2.46 | 64.23 |
A.n. × AcNa:AL × 20,130 | 9.80 | 3.10 b | 1.40 | 45.29 |
A.n. × AcNa:AL × 10,150 | 8.45 | 1.33 a | ≈0 | 78.96 |
L. h. × ChCl:AL × 20,130 | 19.73 | 3.20 b | 2.24 | 22.06 |
L. h. × ChCl:AL × 10,150 | 20.30 | 3.23 b | 1.58 | 22.52 |
L. h. × AcNa:AL × 20,130 | 15.47 | 2.83 b | 1.58 | 14.61 |
L. h. × AcNa:AL × 10,150 | 14.38 | 5.59 c | ≈0 | 15.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, M.; Romaní, A.; Santos, J.; Pires, P.; Del-Río, P.; Mata, F.; Fernandes, É.; Ramos, C.; Vaz-Velho, M. High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction. Foods 2025, 14, 2280. https://doi.org/10.3390/foods14132280
Jesus M, Romaní A, Santos J, Pires P, Del-Río P, Mata F, Fernandes É, Ramos C, Vaz-Velho M. High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction. Foods. 2025; 14(13):2280. https://doi.org/10.3390/foods14132280
Chicago/Turabian StyleJesus, Meirielly, Aloia Romaní, Joana Santos, Preciosa Pires, Pablo Del-Río, Fernando Mata, Élia Fernandes, Carla Ramos, and Manuela Vaz-Velho. 2025. "High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction" Foods 14, no. 13: 2280. https://doi.org/10.3390/foods14132280
APA StyleJesus, M., Romaní, A., Santos, J., Pires, P., Del-Río, P., Mata, F., Fernandes, É., Ramos, C., & Vaz-Velho, M. (2025). High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction. Foods, 14(13), 2280. https://doi.org/10.3390/foods14132280