Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = bright annealing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4123 KiB  
Article
Research on the Impact Toughness of 3D-Printed CoCrMo Alloy Components Based on Fractal Theory
by Guoqing Zhang, Junxin Li, Han Wang, Congcong Shangguan, Juanjuan Xie and Yongsheng Zhou
Biomimetics 2025, 10(5), 292; https://doi.org/10.3390/biomimetics10050292 - 6 May 2025
Viewed by 390
Abstract
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South [...] Read more.
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South China University of Technology, is used to manufacture impact specimens. Subsequently, the CoCrMo alloy parts were annealed using an MXQ1600-40 box-type atmosphere furnace and subjected to impact testing using a cantilever beam impact testing machine XJV-22. Fractal theory was applied to analyze the fractal behavior of the resulting impact fracture surfaces. The research results indicate that the 3D-printed impact specimens exhibited excellent surface quality, characterized by brightness, low roughness, and the absence of significant defects such as warping or deformation. In terms of annealing treatment, lower annealing temperatures did not improve the impact performance of SLM-formed CoCrMo alloy parts but instead led to a decrease in toughness. While increasing the annealing temperature can improve toughness to some extent, the effect is limited. Furthermore, the relationship between impact energy and heat treatment temperature exhibits a U-shaped trend. The fractal dimension analysis shows that the parts annealed in a 1200 °C furnace have the highest fractal dimension and better toughness performance. This study introduces a novel approach by comprehensively integrating advanced 3D printing technology, annealing processes, and fractal theory analysis to systematically investigate the influence of annealing temperature on the impact properties of 3D-printed CoCrMo alloy parts, thereby establishing a solid foundation for the application of high-performance 3D printed parts. Full article
Show Figures

Figure 1

16 pages, 7712 KiB  
Article
Impact of KOH Wet Treatment on the Electrical and Optical Characteristics of GaN-Based Red μLEDs
by Shuhan Zhang, Yun Zhang, Hongyu Qin, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(4), 288; https://doi.org/10.3390/cryst15040288 - 22 Mar 2025
Viewed by 454
Abstract
Micro-size light-emitting diodes (μLEDs) are high-brightness, low-power optoelectronic devices with significant potential in display technology, lighting, and biomedical applications. AlGaInP-based red LEDs experience severe size-dependent effects when scaled to the micron level, and addressing the fabrication challenges of GaN-based red μLED arrays is [...] Read more.
Micro-size light-emitting diodes (μLEDs) are high-brightness, low-power optoelectronic devices with significant potential in display technology, lighting, and biomedical applications. AlGaInP-based red LEDs experience severe size-dependent effects when scaled to the micron level, and addressing the fabrication challenges of GaN-based red μLED arrays is crucial for achieving homogeneous integration. This study investigates the employment of KOH wet treatments to alleviate efficiency degradation caused by sidewall leakage currents. GaN-based red μLED arrays with pixel sizes ranging from 5 × 5 µm2 to 20 × 20 µm2 were grown using metal-organic chemical vapor deposition (MOCVD), and then fabricated via rapid thermal annealing, mesa etching, sidewall wet treatment, electrode deposition, sidewall passivation, chemical-mechanical polishing, and via processes. The arrays, with pixel densities ranging from 668 PPI (Pixel Per Inch) to 1336 PPI, consist of 10,000 to 40,000 emitting pixels, and their optoelectronic properties were systematically evaluated. The arrays with varying pixel sizes fabricated in this study were subjected to three distinct processing conditions: without KOH treatment, 3 min of KOH treatment, and 5 min of KOH treatment. Electrical characterization reveals that the 5-min KOH treatment significantly reduces leakage current, enhancing the electrical performance, as compared to the samples without KOH treatment or 3-min treatment. In terms of optical properties, while the arrays without any KOH treatment failed to emit light, the ones with 3- and 5-min KOH treatment exhibit excellent optical uniformity and negligible blue shift. Most arrays treated for 5 min demonstrate superior light output power (LOP) and optoelectronic efficiency, with the 5 µm pixel arrays exhibiting unexpectedly high performance. The results suggest that extending the KOH wet treatment time effectively mitigates sidewall defects, reduces non-radiative recombination, and enhances surface roughness, thereby minimizing optical losses. These findings provide valuable insights for optimizing the fabrication of high-performance GaN-based red μLEDs and contribute to the development of stable, high-quality small-pixel μLEDs for advanced display and lighting applications. Full article
Show Figures

Figure 1

15 pages, 8753 KiB  
Article
Dielectric Passivation Treatment of InGaN MESA on Si Substrates for Red Micro-LED Application
by Hongyu Qin, Shuhan Zhang, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(3), 267; https://doi.org/10.3390/cryst15030267 - 13 Mar 2025
Viewed by 1056
Abstract
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN [...] Read more.
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN caused by hydrogen species generated from SiH4 decomposition during SiO2 passivation layer growth, which degrades device performance. This study systematically investigates the use of high-density metal-oxide dielectric passivation layers deposited by atomic layer deposition (ALD), specifically Al2O3 and HfO2, to mitigate these effects and enhance device reliability. The passivation layers effectively suppress hydrogen diffusion and preserve p-GaN activation, ensuring improved ohmic contact formation and reduced forward voltage, which is measured by the probe station. The properties of the epitaxial layer and the cross-section morphology of the dielectric layer were characterized by photoluminescence (PL) and scanning electron microscopy (SEM), respectively. Experimental results reveal that Al2O3 exhibits superior thermal stability and lower current leakage under high-temperature annealing, while HfO2 achieves higher light-output power (LOP) and efficiency under increased current densities. Electroluminescence (EL) measurements confirm that the passivation strategy maintains the intrinsic optical properties of the epitaxial wafer with minimal impact on Wp and FWHM across varying process conditions. The findings demonstrate the efficacy of metal-oxide dielectric passivation in addressing critical challenges in InGaN red micro-LED on silicon substrate fabrication, contributing to accelerating scalable and efficient next-generation display technologies. Full article
Show Figures

Figure 1

12 pages, 2321 KiB  
Proceeding Paper
Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells
by Isioma M. Ezeh, Omamoke O. E. Enaroseha, Godwin K. Agbajor and Fidelis I. Achuba
Eng. Proc. 2024, 63(1), 25; https://doi.org/10.3390/engproc2024063025 - 8 Mar 2024
Cited by 4 | Viewed by 1573
Abstract
Titanium oxide (TiO2) is the most widely used white pigment because of its brightness and very high reflective index, traits surpassed by only a few other materials; it has gained adequate ground in the fabrication of solar cells due to its [...] Read more.
Titanium oxide (TiO2) is the most widely used white pigment because of its brightness and very high reflective index, traits surpassed by only a few other materials; it has gained adequate ground in the fabrication of solar cells due to its wide band gap of 3.32 eV. Various natural dyes such as laali plant dye, zobo leaf dye and tomato seed dye act as sensitizers. This research intends to explore the effect of this titanium oxide on enhancing sensitivity in light harvesting by using dye-sensitized solar cell fabrication. Indium tin oxide, one of the transparent, conducting optical glasses, was chosen for the photoanode, on which the prepared titanium powder and the extracted dye were coated using the screen printing method. TiO2 was screen printed over the TCO (ITO) or plain glass slide and annealed at 4000 °C for 3 min; then, the dyes were injected drop by drop and analysis was carried out for XRD and UV–optical. From the XRD results obtained for the laali dye, the XRD showed no prominent peaks and when improved by introducing titanium oxide, it showed the peaks as having a rutile nature which enhances light harvesting. The optical properties showed a transmittance edge at 350 nm which gradually increased as the wavelength increased with no visibility on the absorbance graph. For the tomato dye, a visible peak was observed and this increased with the addition of titanium oxide, while transmittance rose at 380 nm and fell at 550 nm, with no absorbance. The zobo dye showed no evidence of visible peaks and little change in the peak visibility with the addition of TiO2 was observed, with the transmittance edge at 350 nm, maximum at 390 nm and constant with TiO2 enhancement, and showing no visible absorbance properties. Laali and zobo are good transmittance materials, unlike the tomato dye which is a good absorbance material. Conclusively, TiO2 is effective in dye-sensitized solar cell fabrication since there were visible changes within the scientific environment which further enhanced light harvesting. Full article
Show Figures

Figure 1

14 pages, 3534 KiB  
Article
Studying the Crucial Physical Characteristics Related to Surface Roughness and Magnetic Domain Structure in CoFeSm Thin Films
by Chi-Lon Fern, Wen-Jen Liu, Yung-Huang Chang, Chia-Chin Chiang, Jian-Xin Lai, Yuan-Tsung Chen, Wei-Guan Chen, Te-Ho Wu, Shih-Hung Lin and Ko-Wei Lin
Coatings 2023, 13(11), 1961; https://doi.org/10.3390/coatings13111961 - 17 Nov 2023
Cited by 1 | Viewed by 1782
Abstract
This study investigated the effects of varying film thicknesses and annealing temperatures on the surface roughness and magnetic domain structure of CoFeSm thin films. The results revealed that as the film thickness increased, both the crystalline size and surface roughness decreased, leading to [...] Read more.
This study investigated the effects of varying film thicknesses and annealing temperatures on the surface roughness and magnetic domain structure of CoFeSm thin films. The results revealed that as the film thickness increased, both the crystalline size and surface roughness decreased, leading to a reduction in coercivity (Hc) and improved magnetic contrast performance. Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of cobalt (Co), iron (Fe), and samarium (Sm) within the thin films. Notably, the 40 nm Co40Fe40Sm20 thin film annealed at 200 °C exhibited lower sheet resistance (Rs) and resistivity (ρ), indicating higher conductivity and a relatively higher maximum magnetic susceptibility (χac) at 50 Hz. These findings suggest that these films are well suited for low-frequency magnetic components due to their increased spin sensitivity. The 40 nm Co40Fe40Sm20 thin film, subjected to annealing at 200 °C, displayed a distinct stripe domain structure characterized by prominently contrasting dark and bright patterns. It exhibited the lowest Hc and the highest saturation magnetization (Ms), leading to a significant improvement in their soft magnetic properties. It is proposed that the surface roughness of the CoFeSm thin films plays a crucial role in shaping the magnetic properties of these thin magnetic films. Full article
Show Figures

Figure 1

15 pages, 6813 KiB  
Article
Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate
by Wen-Jen Liu, Yung-Huang Chang, Chia-Chin Chiang, Yuan-Tsung Chen, Pei-Xin Lu, Yu-Jie He and Shih-Hung Lin
Coatings 2023, 13(10), 1783; https://doi.org/10.3390/coatings13101783 - 17 Oct 2023
Cited by 2 | Viewed by 2449
Abstract
In this study, Co60Fe20Sm20 alloy was employed for sputter deposition onto Si(100) substrate within a high vacuum environment, and subsequent thermal treatment was conducted using a vacuum annealing furnace. Thorough measurements and analyses were carried out to evaluate [...] Read more.
In this study, Co60Fe20Sm20 alloy was employed for sputter deposition onto Si(100) substrate within a high vacuum environment, and subsequent thermal treatment was conducted using a vacuum annealing furnace. Thorough measurements and analyses were carried out to evaluate how various film thicknesses and annealing temperatures affect the material. The investigations encompassed observations of structural and physical properties, magnetic traits, mechanical behavior, and material adhesion. The results from the four-point probe measurements clearly demonstrate a trend of decreasing resistivity and sheet resistance with increasing film thickness and higher annealing temperature. Analysis through atomic force microscopy (AFM) shows that heightened annealing temperature corresponds to decreased surface roughness. Furthermore, when analyzing low-frequency alternating current magnetic susceptibility (χac), it became evident that the maximum magnetic susceptibility value consistently rises with increased film thickness, regardless of the annealing temperature. Through magnetic force microscopy (MFM) observations of magnetic domain images in the films, it became apparent that there was a noticeable reduction in the brightness contrast of the magnetic domains. Furthermore, nanoindentation analysis reveals a clear trend. Elevating the film thickness leads to a reduction in both hardness and Young’s modulus. Contact angles range between 67.7° and 83.3°, consistently under 90°, highlighting the hydrophilic aspect. Analysis of surface energy demonstrates an escalation with increasing film thickness, and notably, annealed films exhibit a substantial surge in surface energy. This signifies a connection between the reduction in contact angle and the observed elevation in surface energy. Raising the annealing temperature causes a decline in surface roughness. To summarize, the surface roughness of CoFeSm films at different annealing temperatures significantly impacts their magnetic, electrical, and adhesive properties. A smoother surface reduces the pinning effect on domain walls, thus enhancing the χac value. Furthermore, diminished surface roughness leads to a decline in the contact angle and a rise in surface energy. Conversely, rougher surfaces exhibit higher carrier conductivity, contributing to a reduction in electrical resistance. Full article
Show Figures

Figure 1

13 pages, 3575 KiB  
Article
Effects of Debranching Conditions and Annealing Treatment on the Formation of Starch Nanoparticles and Their Physicochemical Characteristics
by Yen-Chun Koh and Hung-Ju Liao
Foods 2023, 12(15), 2890; https://doi.org/10.3390/foods12152890 - 29 Jul 2023
Cited by 6 | Viewed by 1716
Abstract
Starch nanoparticles (SNPs) have unique attributes that make them suitable for specific applications. In this study, we assessed the optimum conditions for the fabrication of SNPs from the rice starches of low- (TCSG2) and medium-amylose rice lines (TK11) using pullulanase debranching combined with [...] Read more.
Starch nanoparticles (SNPs) have unique attributes that make them suitable for specific applications. In this study, we assessed the optimum conditions for the fabrication of SNPs from the rice starches of low- (TCSG2) and medium-amylose rice lines (TK11) using pullulanase debranching combined with annealing treatment and evaluated their physicochemical and digestion properties. The highest crystalline SNP percent recoveries of 15.1 and 11.7% were obtained from TK11 and TCSG2, respectively, under the following debranching conditions: 540–630 NPUN/g, pH 5.0, 60 °C, and 12 h. The percent recovery of the crystalline SNPs by the combined modification of the debranching and the annealing treatment with an extended annealing incubation prepared from TK11 and TCSG2 was significantly increased to 25.7 and 23.8%, respectively. The modified starches from TK11 had better percent recovery of the crystalline SNPs than those from TCSG2. They exhibited a higher weight-average molecular weight (Mw) and a broader/bimodal molecular weight distribution with a higher polydispersity (PDI) (Mw = 92.76–92.69 kDa; PDI = 4.4) than those from TCSG2 (Mw = 7.13–7.15 kDa; PDI = 1.7). Compared to the native counterparts, the color analyses showed that the modified starches from TK11 and TCSG2 exhibited decreased brightness (L*)/whiteness index (WI) values with marked color difference values (∆E) ranging between 6.32 and 9.39 and 10.67 and 11.32, respectively, presumably due to the protein corona formed on the surface of SNPs which induced the browning reaction during the treatments. The pasting properties revealed that the modified starches displayed restricted swelling power with extremely low pasting viscosities, reflecting that they were highly thermally stable. The modified starches, especially those treated with an extended annealing incubation, exhibited marked decreases in the rate and extent of digestion and estimated glycemic index due to the honeycomb-like agglomerates comprising an assembly of densely packed SNPs. The results could provide helpful information for the preparation and characterization of the crystalline SNPs for potential applications such as emulsion stabilizers for Pickering emulsion and health-promoting ingredients. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 10434 KiB  
Article
High-Resolution Characterization of Deformation Induced Martensite in Large Areas of Fatigued Austenitic Stainless Steel Using Deep Learning
by Šárka Mikmeková, Jiří Man, Ondřej Ambrož, Patrik Jozefovič, Jan Čermák, Antti Järvenpää, Matias Jaskari, Jiří Materna and Tomáš Kruml
Metals 2023, 13(6), 1039; https://doi.org/10.3390/met13061039 - 29 May 2023
Cited by 1 | Viewed by 2650
Abstract
This paper aims to demonstrate a novel technique enabling the accurate visualization and fast mapping of deformation-induced α′-martensite produced during cyclic straining of a metastable austenitic stainless steel, refined by reversion annealing to different grain sizes. The technique is based on energy and [...] Read more.
This paper aims to demonstrate a novel technique enabling the accurate visualization and fast mapping of deformation-induced α′-martensite produced during cyclic straining of a metastable austenitic stainless steel, refined by reversion annealing to different grain sizes. The technique is based on energy and angular separation of the signal electrons in a scanning electron microscope (SEM). Collection of the inelastic backscattered electrons emitted under high take-off angles from a sample surface results in the acquisition of micrographs with high sensitivity to structural defects, such as dislocations, grain boundaries, and other imperfections. The areas with a high density of lattice imperfections reduce the penetration depth of the primary electrons, and simultaneously affect the signal electrons leaving the specimen. This results in an increase in the inelastic backscattered electrons yielded from the vicinity of α′-martensite, and a bright halo surrounds this phase. The α′-martensite phase can thus be separated from the austenitic matrix in SEM micrographs. In this work, we propose a deep learning method for a precise α′-martensite mapping within a large area. Various deep learning-based methods have been tested, and the best result measured by both Dice loss and IoU scores has been achieved using the U-Net architecture extended by the ResNet encoder. Full article
(This article belongs to the Special Issue Deformation and Failure Behavior of Metastable Metallic Materials)
Show Figures

Graphical abstract

12 pages, 4462 KiB  
Article
Narrow UVB-Emitted YBO3 Phosphor Activated by Bi3+ and Gd3+ Co-Doping
by Zhimin Yu, Yang Yang and Jiaming Sun
Nanomaterials 2023, 13(6), 1013; https://doi.org/10.3390/nano13061013 - 11 Mar 2023
Cited by 8 | Viewed by 2264
Abstract
Y0.9(GdxBi1−x)0.1BO3 phosphors (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, YGB) were obtained via high-temperature solid-state synthesis. Differentiated phases and micro-morphologies were determined by adjusting the synthesis temperature and the activator content of [...] Read more.
Y0.9(GdxBi1−x)0.1BO3 phosphors (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, YGB) were obtained via high-temperature solid-state synthesis. Differentiated phases and micro-morphologies were determined by adjusting the synthesis temperature and the activator content of Gd3+ ions, verifying the hexagonal phase with an average size of ~200 nm. Strong photon emissions were revealed under both ultraviolet and visible radiation, and the effectiveness of energy transfer from Bi3+ to Gd3+ ions was confirmed to improve the narrow-band ultraviolet-B (UVB) (6PJ8S7/2) emission of Gd3+ ions. The optimal emission was obtained from Y0.9Gd0.08Bi0.02BO3 phosphor annealed at 800 °C, for which maximum quantum yields (QYs) can reach 24.75% and 1.33% under 273 nm and 532 nm excitations, respectively. The optimal QY from the Gd3+-Bi3+ co-doped YGB phosphor is 75 times the single Gd3+-doped one, illustrating that these UVB luminescent phosphors based on co-doped YBO3 orthoborates possess bright UVB emissions and good excitability under the excitation of different wavelengths. Efficient photon conversion and intense UVB emissions indicate that the multifunctional Gd3+-Bi3+ co-doped YBO3 orthoborate is a potential candidate for skin treatment. Full article
Show Figures

Graphical abstract

13 pages, 3358 KiB  
Article
Enhanced Luminescence of Yb3+ Ions Implanted to ZnO through the Selection of Optimal Implantation and Annealing Conditions
by Renata Ratajczak, Elzbieta Guziewicz, Slawomir Prucnal, Cyprian Mieszczynski, Przemysław Jozwik, Marek Barlak, Svitlana Romaniuk, Sylwia Gieraltowska, Wojciech Wozniak, René Heller, Ulrich Kentsch and Stefan Facsko
Materials 2023, 16(5), 1756; https://doi.org/10.3390/ma16051756 - 21 Feb 2023
Cited by 7 | Viewed by 2609
Abstract
Rare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new [...] Read more.
Rare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new fields of application due to the low-cost production. Ion implantation is a very promising technique to incorporate rare-earth dopants into ZnO. However, the ballistic nature of this process makes the use of annealing essential. The selection of implantation parameters, as well as post-implantation annealing, turns out to be non-trivial because they determine the luminous efficiency of the ZnO:RE system. This paper presents a comprehensive study of the optimal implantation and annealing conditions, ensuring the most efficient luminescence of RE3+ ions in the ZnO matrix. Deep and shallow implantations, implantations performed at high and room temperature with various fluencies, as well as a range of post-RT implantation annealing processes are tested: rapid thermal annealing (minute duration) under different temperatures, times, and atmospheres (O2, N2, and Ar), flash lamp annealing (millisecond duration) and pulse plasma annealing (microsecond duration). It is shown that the highest luminescence efficiency of RE3+ is obtained for the shallow implantation at RT with the optimal fluence of 1.0 × 1015 RE ions/cm2 followed by a 10 min annealing in oxygen at 800 °C, and the light emission from such a ZnO:RE system is so bright that can be observed with the naked eye. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Graphical abstract

9 pages, 2220 KiB  
Article
Functional Aerogels Composed of Regenerated Cellulose and Tungsten Oxide for UV Detection and Seawater Desalination
by Yanjin Tang, Yuhan Lai, Ruiqin Gao, Yuxuan Chen, Kexin Xiong, Juan Ye, Qi Zheng, Zhenxing Fang, Guangsheng Pang and Hoo-Jeong Lee
Gels 2023, 9(1), 10; https://doi.org/10.3390/gels9010010 - 25 Dec 2022
Cited by 1 | Viewed by 2658
Abstract
Functional aerogels composed of regenerated cellulose and tungsten oxide were fabricated by implanting tungsten-oxide nanodots into regenerated cellulose fiber. This superfast photochromic property benefitted from the small size and even distribution of tungsten oxide, which was caused by the confinement effect of the [...] Read more.
Functional aerogels composed of regenerated cellulose and tungsten oxide were fabricated by implanting tungsten-oxide nanodots into regenerated cellulose fiber. This superfast photochromic property benefitted from the small size and even distribution of tungsten oxide, which was caused by the confinement effect of the regenerated cellulose fiber. The composite was characterized using XRD and TEM to illustrate the successful loading of tungsten oxide. The composite turned from pale white to bright blue under ambient solar irradiation in five seconds. The evidence of solar absorption and electron paramagnetic resonance (EPR) demonstrated the fast photochromic nature of the composite and its mechanism. Furthermore, carbon fiber filled with preferential growth tungsten-oxide nanorods was obtained by annealing the photochromic composite in a N2 atmosphere. This annealed product exhibited good absorption across the whole solar spectrum and revealed an excellent photothermal conversion performance. The water evaporation rate reached 1.75 kg m−2 h−1 under one sun illumination, which is 4.4 times higher than that of pure water. The photothermal conversion efficiency was 85%, which shows its potential application prospects in seawater desalination. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption)
Show Figures

Figure 1

12 pages, 14247 KiB  
Article
Photodynamics of Bright Subnanosecond Emission from Pure Single-Photon Sources in Hexagonal Boron Nitride
by Alexander V. Gritsienko, Aliaksandr Duleba, Mikhail V. Pugachev, Nikita S. Kurochkin, Igor I. Vlasov, Alexei G. Vitukhnovsky and Alexandr Yu. Kuntsevich
Nanomaterials 2022, 12(24), 4495; https://doi.org/10.3390/nano12244495 - 19 Dec 2022
Cited by 4 | Viewed by 2761
Abstract
Bright and stable emitters of single indistinguishable photons are crucial for quantum technologies. The origin of the promising bright emitters recently observed in hexagonal boron nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered hBN at room temperature that [...] Read more.
Bright and stable emitters of single indistinguishable photons are crucial for quantum technologies. The origin of the promising bright emitters recently observed in hexagonal boron nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered hBN at room temperature that demonstrate high emission rates. The quantum emitters are introduced with argon beam treatment and air annealing of mechanically exfoliated hBN flakes with thicknesses of 5–100 nm. Spectral and time-resolved measurements reveal the emitters have more than 1 GHz of excited-to-ground state transition rate. The observed photoswitching between dark and bright states indicates the strong sensitivity of the emitter to the electrostatic environment and the importance of the indirect excitation for the photodynamics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

14 pages, 3264 KiB  
Article
Postproduction Approach to Enhance the External Quantum Efficiency for Red Light-Emitting Diodes Based on Silicon Nanocrystals
by Hiroyuki Yamada, Junpei Watanabe, Kazuhiro Nemoto, Hong-Tao Sun and Naoto Shirahata
Nanomaterials 2022, 12(23), 4314; https://doi.org/10.3390/nano12234314 - 5 Dec 2022
Cited by 9 | Viewed by 2614
Abstract
Despite bulk crystals of silicon (Si) being indirect bandgap semiconductors, their quantum dots (QDs) exhibit the superior photoluminescence (PL) properties including high quantum yield (PLQY > 50%) and spectral tunability in a broad wavelength range. Nevertheless, their low optical absorbance character inhibits the [...] Read more.
Despite bulk crystals of silicon (Si) being indirect bandgap semiconductors, their quantum dots (QDs) exhibit the superior photoluminescence (PL) properties including high quantum yield (PLQY > 50%) and spectral tunability in a broad wavelength range. Nevertheless, their low optical absorbance character inhibits the bright emission from the SiQDs for phosphor-type light emitting diodes (LEDs). In contrast, a strong electroluminescence is potentially given by serving SiQDs as an emissive layer of current-driven LEDs with (Si-QLEDs) because the charged carriers are supplied from electrodes unlike absorption of light. Herein, we report that the external quantum efficiency (EQE) of Si-QLED was enhanced up to 12.2% by postproduction effect which induced by continuously applied voltage at 5 V for 9 h. The active layer consisted of SiQDs with a diameter of 2.0 nm. Observation of the cross-section of the multilayer QLEDs device revealed that the interparticle distance between adjacent SiQDs in the emissive layer is reduced to 0.95 nm from 1.54 nm by “post-electric-annealing”. The shortened distance was effective in promoting charge injection into the emission layer, leading improvement of the EQE. Full article
Show Figures

Graphical abstract

13 pages, 5384 KiB  
Article
Synthesis and Electrochemical Performance of V6O13 Nanosheets Film Cathodes for LIBs
by Fei Li, Haiyan Xu, Fanglin Liu, Dongcai Li, Aiguo Wang and Daosheng Sun
Materials 2022, 15(23), 8574; https://doi.org/10.3390/ma15238574 - 1 Dec 2022
Cited by 3 | Viewed by 1990
Abstract
V6O13 thin films were deposited on indium-doped tin oxide (ITO) conductive glass by a concise low-temperature liquid-phase deposition method and through heat treatment. The obtained films were directly used as electrodes without adding any other media. The results indicate that [...] Read more.
V6O13 thin films were deposited on indium-doped tin oxide (ITO) conductive glass by a concise low-temperature liquid-phase deposition method and through heat treatment. The obtained films were directly used as electrodes without adding any other media. The results indicate that the film annealed at 400 °C exhibited an excellent cycling performance, which remained at 82.7% of capacity after 100 cycles. The film annealed at 400 °C with diffusion coefficients of 6.08 × 10−12 cm2·s−1 (Li+ insertion) and 5.46 × 10−12 cm2·s−1 (Li+ extraction) in the V6O13 film electrode. The high diffusion coefficients could be ascribed to the porous morphology composed of ultrathin nanosheets. Moreover, the film endured phase transitions during electrochemical cycling, the V6O13 partially transformed to Li0.6V1.67O3.67, Li3VO4, and VO2 with the insertion of Li+ into the lattice, and Li0.6V1.67O3.67, Li3VO4, and VO2 partially reversibly transformed backwards to V6O13 with the extraction of Li+ from the lattice. The phase transition can be attributed to the unique structure and morphology with enough active sites and ions diffusion channels during cycles. Such findings reveal a bright idea to prepare high-performance cathode materials for LIBs. Full article
(This article belongs to the Special Issue Anode and Energy Storage Mechanism of Battery)
Show Figures

Figure 1

11 pages, 4684 KiB  
Article
Design, Fabrication and Analysis for Al2O3/Ti/Al2O3 Colored Solar Selective Absorbers for Building Applications
by Fu-Der Lai and Wen-Yang Li
Coatings 2022, 12(4), 521; https://doi.org/10.3390/coatings12040521 - 12 Apr 2022
Cited by 6 | Viewed by 2459
Abstract
A good solar selective absorber (SSA) used in building applications must have good color brightness rendering, an excellent photo–thermal conversion efficiency (PTCE) and a long life. The optical thin film design plays an important role before the coating of the optical thin films. [...] Read more.
A good solar selective absorber (SSA) used in building applications must have good color brightness rendering, an excellent photo–thermal conversion efficiency (PTCE) and a long life. The optical thin film design plays an important role before the coating of the optical thin films. In this study, for fabricating a good colored SSA (CSSA), the optical properties and color distribution of Al2O3/Ti/Al2O3 SSA were calculated to obtain the best design. It was found that the color distribution of Al2O3/Ti/Al2O3 SSA with a PTCE in excess of 90% was wide and included all colors, such as red, orange, yellow, green, blue, purple and white. Five colored Al2O3/Ti/Al2O3 solar selective absorbers were designed and fabricated and their performances were analyzed. The best PTCE of a fabricated sample and its thermal emittance efficiency were 93.2% and 7.1%, respectively. The peak values of the measured optical reflectance in the visible region for the five fabricated CSSAs were all greater than 10%. Their lifetime could be very long because the temperature difference between thermal stability of more than 450 °C and the working temperature of less than 150 °C was up to 300 °C. After annealing at 550 °C, the Al2O3–Ti system formed a compound structure of AlTiO5. The Al2O3/Ti/Al2O3 film performances, including the optical properties in the wavelength range of 0.25 to 25 μm, structure, morphology, adhesion, cross-sectional images, AFM image, PTCE, thermal emittance efficiency and thermal stability, were measured and analyzed in detail, and met the characteristic requirements of colored solar absorber films. Full article
(This article belongs to the Special Issue Concentrated Solar Power Plant Absorber Coatings)
Show Figures

Figure 1

Back to TopTop