Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = bonding and bridging networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 400 KiB  
Article
Debt Before Departure: The Role of Informal Credit in Trapping Migrant Workers
by Abdelaziz Abdalla Alowais and Abubakr Suliman
Soc. Sci. 2025, 14(8), 465; https://doi.org/10.3390/socsci14080465 - 28 Jul 2025
Viewed by 253
Abstract
In the last two decades, the prevalence of South Asian migrant workers has significantly increased in the UAE’s construction sector, and they are under huge debt. Although researchers heavily stress the role of employers in migrant workers’ debt, the role of debt before [...] Read more.
In the last two decades, the prevalence of South Asian migrant workers has significantly increased in the UAE’s construction sector, and they are under huge debt. Although researchers heavily stress the role of employers in migrant workers’ debt, the role of debt before departure has not been investigated. Thus, this study bridges this gap in the literature in the context of South Asian construction migrant workers. The objective of this study is to investigate how informal recruitment fees and debt arrangements contribute to bonded labor and dependency among migrant workers. A qualitative approach was used to conduct in-depth interviews with 30 South Asian migrants employed in the construction sector. This article highlights how pre-migration debt—which is often accrued through informal loans and exploitative recruitment fees—has been underexplored in migration studies. Drawing on interviews with 30 South Asian laborers, this study identifies five interconnected themes: pre-migration debt bondage, exploitative lending practices, lack of legal recourse, emotional manipulation, and a cycle of dependency. While UAE labor policies have improved, the real vulnerabilities lie in the informal recruitment systems and weak oversight in migrant workers’ countries of origin. Consequently, five themes were generated from the analysis: pre-migration debt bondage, exploitative lending practices, no legal recourse, emotional manipulation, and cycles of dependency. This study contributes to our existing knowledge by revealing the experiences of migrant construction workers from South Asia in the UAE. While the UAE has established one of the region’s most progressive legal frameworks to protect migrant workers and set clear labor standards, many exploitative practices occur outside its jurisdiction, particularly in the workers’ countries of origin. This study underscores that the root of the problem lies in weak enforcement and informal recruitment networks in sending countries, not in UAE policy itself. Addressing these challenges requires coordinated international action to ensure that migrant protection begins well before arrival. Full article
(This article belongs to the Special Issue Civil Society, Migration and Citizenship)
35 pages, 1524 KiB  
Article
Unveiling the Interplay of Climate Vulnerability and Social Capital: Insights from West Bengal, India
by Sayari Misra, Md Saidul Islam and Suchismita Roy
Climate 2025, 13(8), 160; https://doi.org/10.3390/cli13080160 - 26 Jul 2025
Viewed by 679
Abstract
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a [...] Read more.
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a low-climate-prone village in the land-locked district of Paschim Bardhaman, West Bengal, India, with no extreme climate events. A total of 85 participants (44 in Brajaballavpur, 41 in Jemua) were selected through purposive sampling. Using a comparative qualitative research design grounded in ethnographic fieldwork, data were collected through household interviews, Participatory Rural Appraisals (PRAs), Focus Group Discussions (FGDs), and Key Informant Interviews (KIIs), and analyzed manually using inductive thematic analysis. Findings reveal that bonding and bridging social capital were more prominent in Brajaballavpur, where dense horizontal ties supported collective action during extreme weather events. Conversely, linking social capital was more visible in Jemua, where participants more frequently accessed formal institutions such as the Gram Panchayat, local NGOs, and government functionaries that facilitated grievance redressal and information access, but these networks were concentrated among more politically connected individuals. The study concludes that climate vulnerability shapes the type, strength, and strategic use of social capital in village communities. While bonding and bridging ties are crucial in high-risk contexts, linking capital plays a critical role in enabling long-term social structures in lower-risk settings. The study contributes to both academic literature and policy design by offering a relational and place-based understanding of climate vulnerability and social capital. Full article
(This article belongs to the Special Issue Sustainable Development Pathways and Climate Actions)
Show Figures

Figure 1

20 pages, 4049 KiB  
Article
ADMET-Guided Docking and GROMACS Molecular Dynamics of Ziziphus lotus Phytochemicals Uncover Mutation-Agnostic Allosteric Stabilisers of the KRAS Switch-I/II Groove
by Abdessadek Rahimi, Oussama Khibech, Abdessamad Benabbou, Mohammed Merzouki, Mohamed Bouhrim, Mohammed Al-Zharani, Fahd A. Nasr, Ashraf Ahmed Qurtam, Said Abadi, Allal Challioui, Mostafa Mimouni and Maarouf Elbekay
Pharmaceuticals 2025, 18(8), 1110; https://doi.org/10.3390/ph18081110 - 25 Jul 2025
Viewed by 419
Abstract
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying [...] Read more.
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying the SI/II (Switch I/Switch II) groove and locking KRAS in its inactive state. Methods: Phytochemical mining yielded five recurrent phenolics, such as (+)-catechin, hyperin, astragalin, eriodictyol, and the prenylated benzoate amorfrutin A, benchmarked against the covalent inhibitor sotorasib. An in silico cascade combined SI/II docking, multi-parameter ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) filtering, and 100 ns explicit solvent molecular dynamics simulations. Pharmacokinetic modelling predicted oral absorption, Lipinski compliance, mutagenicity, and acute-toxicity class. Results: Hyperin and astragalin showed the strongest non-covalent affinities (−8.6 kcal mol−1) by forging quadridentate hydrogen-bond networks that bridge the P-loop (Asp30/Glu31) to the α3-loop cleft (Asp119/Ala146). Catechin (−8.5 kcal mol−1) balanced polar anchoring with entropic economy. ADME ranked amorfrutin A the highest for predicted oral absorption (93%) but highlighted lipophilic solubility limits; glycosylated flavonols breached Lipinski rules yet remained non-mutagenic with class-5 acute-toxicity liability. Molecular dynamics trajectories confirmed that hyperin clamps the SI/II groove, suppressing loop RMSF below 0.20 nm and maintaining backbone RMSD stability, whereas astragalin retains pocket residence with transient re-orientation. Conclusions: Hyperin emerges as a low-toxicity, mutation-agnostic scaffold that rigidifies inactive KRAS. Deglycosylation, nano-encapsulation, or soft fluorination could reconcile permeability with durable target engagement, advancing Z. lotus phenolics toward broad-spectrum KRAS therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 327
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

22 pages, 1446 KiB  
Review
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology
by Cengiz Kaya and Francisco J. Corpas
Int. J. Mol. Sci. 2025, 26(14), 6925; https://doi.org/10.3390/ijms26146925 - 18 Jul 2025
Viewed by 296
Abstract
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. [...] Read more.
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 1229 KiB  
Article
Nonlinear Hydrogen Bond Network in Small Water Clusters: Combining NMR, DFT, FT-IR, and EIS Research
by Ignat Ignatov, Yordan G. Marinov, Paunka Vassileva, Georgi Gluhchev, Ludmila A. Pesotskaya, Ivan P. Jordanov and Mario T. Iliev
Symmetry 2025, 17(7), 1062; https://doi.org/10.3390/sym17071062 - 4 Jul 2025
Cited by 1 | Viewed by 511
Abstract
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution [...] Read more.
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution of hydrogen bonding strength in small water clusters, ranging from dimers to pentamers. The observed exponential increase in NMR chemical shift up to the pentamer reflects growing hydrogen bond cooperativity, identifying the (H2O)5 cluster as a critical structural and energetic threshold. At this size, the network achieves sufficient connectivity to support key bulk-like phenomena such as proton transfer and dielectric relaxation. These conclusions were corroborated by complementary FT-IR and electrochemical impedance spectroscopy (EIS) measurements of bulk water. Our results position the water pentamer as the molecular onset of emergent solvent behavior, effectively bridging the divide between discrete clusters and the macroscopic properties of liquid water. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

18 pages, 5140 KiB  
Article
Characterization of the Mechanical Properties of Fiber-Reinforced Modified High Water Content Materials
by Bao Song, Jinxing Lyu, Zhiyi Zhang, Zhimeng Song and Songxiang Liu
Buildings 2025, 15(13), 2283; https://doi.org/10.3390/buildings15132283 - 28 Jun 2025
Viewed by 279
Abstract
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into [...] Read more.
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into the material system to establish a reinforcing network through interfacial bonding and bridging mechanisms to mitigate these issues. A total of nine specimen groups were developed to assess the influence of fiber type (BF/PP), fiber content (ranging from 0.5% to 2.0%), and water cement ratio (from 1.25 to 1.75) on compressive, tensile, and shear strengths. The findings indicated that basalt fiber exhibited superior performance compared to polypropylene fiber, with a 1% BF admixture yielding the highest compressive strength of 5.08 MPa and notable tensile enhancement attributed to effective pore-filling and three-dimensional reinforcement. Conversely, higher ratios (e.g., 1.75) resulted in diminished strength due to increased porosity, while a ratio of 1.25 effectively balanced matrix integrity and fiber reinforcement. Improvements in shear strength were less significant, as excessive fiber content disrupted interfacial friction, leading to a propensity for brittle failure. In conclusion, basalt fiber-modified high water content materials (with a 1% admixture and a ratio of 1.25) demonstrate enhanced ductility and mechanical performance, rendering them suitable for mining backfill applications. Future investigations should focus on optimizing the fiber matrix interface, exploring hybrid fiber systems, and conducting field-scale validations to promote sustainable mining practices. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 3992 KiB  
Article
Atomistic-Level Insights into MgO and Na2O Modifications of Molten Aluminosilicate Slag: A Molecular Dynamics Research on Structural Evolution and Properties
by Chunhe Jiang, Bo Liu, Jianliang Zhang and Kejiang Li
Metals 2025, 15(6), 656; https://doi.org/10.3390/met15060656 - 12 Jun 2025
Viewed by 567
Abstract
Molecular dynamics simulations were employed to systematically investigate the synergistic effects of Na2O and MgO on the atomistic-scale structural evolution and properties of CaO–SiO2–Al2O3-based slags. By constructing slag models with varying Na2O/MgO ratios, [...] Read more.
Molecular dynamics simulations were employed to systematically investigate the synergistic effects of Na2O and MgO on the atomistic-scale structural evolution and properties of CaO–SiO2–Al2O3-based slags. By constructing slag models with varying Na2O/MgO ratios, the variations in pair distribution functions, oxygen structural units, coordination environments, diffusion coefficients, and viscosity were analyzed in detail. Compared with Na2O, MgO exhibits a stronger ability to disrupt oxygen structural units. The relative content of Na2O and MgO does not significantly affect the bond lengths within the basic network structure. As the MgO content increases, a greater proportion of bridging oxygens and tricluster oxygens are converted into non-bridging oxygens and free oxygens, markedly reducing the degree of polymerization in the slag network. Although MgO also promotes the formation of tetrahedrally coordinated Al (Al4) more effectively than Na2O, its dominant role in enhancing slag fluidity is primarily attributed to its impact on the oxygen structural units. Despite the much higher self-diffusion coefficient of Na+ compared to Mg2+, MgO more significantly reduces the overall viscosity and enhances the fluidity of the melt than Na2O. Therefore, although the number of Na atoms is greater under equal mass conditions, Mg demonstrates a considerably stronger capacity to depolymerize the slag structure. Full article
Show Figures

Figure 1

21 pages, 3823 KiB  
Article
Adsorption of Sr2+ from Synthetic Waste Effluents Using Taiwan Zhi-Shin Bentonite
by Yihui Lin, Yuhan Li, Yating Yang and Po-Hsiang Chang
Int. J. Mol. Sci. 2025, 26(11), 5298; https://doi.org/10.3390/ijms26115298 - 30 May 2025
Viewed by 468
Abstract
This study investigated strontium (Sr2+) adsorption by Taiwan Zhi-Shin bentonite (cation exchange capacity (CEC): 80–86 meq 100 g−1) using Sr(NO3)2-simulated nuclear waste. Kinetic analysis revealed pseudo-second-order adsorption kinetics, achieving 95% Sr2+ removal within 5 [...] Read more.
This study investigated strontium (Sr2+) adsorption by Taiwan Zhi-Shin bentonite (cation exchange capacity (CEC): 80–86 meq 100 g−1) using Sr(NO3)2-simulated nuclear waste. Kinetic analysis revealed pseudo-second-order adsorption kinetics, achieving 95% Sr2+ removal within 5 min at pH 9. Isothermal studies showed a maximum capacity of 0.28 mmol g−1 (56 meq 100 g−1) at 15 mmol L−1 Sr2+, accounting for 65–70% CEC and fitting the Freundlich model. Cation exchange was the dominant mechanism (84% contribution), driven by Sr2+ displacing interlayer Ca2+. Alkaline conditions (pH > 9) enhanced adsorption through improved surface charge and electrostatic attraction. Thermodynamic studies demonstrated temperature-dependent behavior: increasing temperature reduced adsorption at 0.01 mM Sr2+ but increased efficiency at 10 mM. Na+ addition suppressed adsorption, aligning with cation exchange mechanisms. Molecular dynamics simulations identified hydrated Ca2+-Sr2+ water bridges interacting with bentonite via hydrogen-bonding networks. The material exhibits rapid kinetics (5 min equilibrium), alkaline pH optimization, and resistance to ion interference, making it suitable for emergency Sr2+ treatment. It shows promise as a cost-effective and good performing adsorbent for radioactive waste solutions. Full article
Show Figures

Graphical abstract

23 pages, 7171 KiB  
Article
Modification Mechanism of Low-Dosage Vinyl Acetate-Ethylene on Ordinary Portland Cement–Sulfoaluminate Cement Binary Blended Rapid Repair Mortar
by Hecong Wang, Yuxue Zhu, Ting Li, Xiaoning Li, Shuai Peng, Jinzhu Guo, Xuqiang Pei, Congchun Zhong, Yihang Yang, Qiang Ma, Zhonglun Zhang, Minghui Wu, Qunchao Zhang, De’an Shi and Zuobao Song
Polymers 2025, 17(11), 1501; https://doi.org/10.3390/polym17111501 - 28 May 2025
Viewed by 398
Abstract
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, [...] Read more.
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, interfacial bonding, and microstructure were systematically investigated. The results reveal that VAE delayed cement hydration via physical encapsulation and chemical chelation, extending the initial setting time to 182 min at P/C = 2.0%. At the optimal P/C = 0.9%, a synergistic organic–inorganic network enhanced flexural strength (14.62 MPa at 28 d, 34.0% increase) and interfacial bonding (2.74 MPa after interface treatment), though compressive strength decreased to 65.7 MPa due to hydration inhibition. Excessive VAE (P/C ≥ 1.5%) suppressed AFt/C-S-H growth, increasing harmful pores (>1 μm) and degrading performance. Microstructural analysis via scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) demonstrates that VAE films bridged hydration products, filled interfacial transition zones (ITZ), and refined pore structures, reducing the most probable pore size from 62.8 nm (reference) to 23.5 nm. VAE-RRM 3 (P/C = 0.9%) exhibited rapid hardening (initial setting time: 75 min), high substrate recovery (83.3%), and low porosity (<10%), offering an efficient solution for urban infrastructure repair. This work elucidates the dual mechanisms of pore refinement and interface reinforcement driven by VAE, providing theoretical guidance for designing high-performance repair materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Experimental Investigation and Molecular Dynamics Modeling of the Effects of K2O on the Structure and Viscosity of SiO2-CaO-Al2O3-MgO-K2O Slags at High Temperatures
by Fan Yang, Qingguo Xue, Haibin Zuo, Yu Liu and Jingsong Wang
Metals 2025, 15(6), 590; https://doi.org/10.3390/met15060590 - 25 May 2025
Viewed by 431
Abstract
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, [...] Read more.
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, FTIR spectroscopy, and molecular dynamics simulations. The results revealed a rapid 52% decrease in slag viscosity and an 18.32 kJ/mol reduction in activation energy as K2O content increased from 0% to 3%. K2O releases O2− ions that depolymerize Si-O network structures. Within the 3% to 5% range, structural network formation is promoted by the K2O-SiO2 reaction, resulting in increased slag viscosity and elevated activation energy. Molecular dynamics simulations elucidate the depolymerization of complex Si-O networks, accompanied by a proliferation of smaller [AlO4] tetrahedral fragments. The diminished Si-O-Si bridging oxygen (BO) bonds contrast with the enhanced increase in Si-O-K non-bridging oxygen (NBO) linkages. When K2O exceeds 3%, the diffusion capacity of K atoms becomes constrained as K2O participates in structural network assembly, a phenomenon validated by FTIR spectroscopic analysis. Elevated K2O concentrations enhance slag network polymerization, leading to increased viscosity. Therefore, the precise control of K2O content is critical during smelting operations and by-product manufacturing (e.g., glass or mineral wool) to optimize material performance. These findings provide theoretical support for controlling the alkali metal content during the actual metallurgical process and thus further optimizing blast furnace operation. Full article
Show Figures

Figure 1

22 pages, 4907 KiB  
Article
Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures
by Zhantao Li, Shuangxi Li and Chunmeng Jiang
Buildings 2025, 15(11), 1770; https://doi.org/10.3390/buildings15111770 - 22 May 2025
Viewed by 347
Abstract
Hydraulic concrete is subject to severe durability challenges when abraded by the high-speed flow of sandy water. Conventional concrete frequently needs to be repaired because of its high brittleness and insufficient abrasion resistance, while granular rubber can easily be dislodged from the matrix [...] Read more.
Hydraulic concrete is subject to severe durability challenges when abraded by the high-speed flow of sandy water. Conventional concrete frequently needs to be repaired because of its high brittleness and insufficient abrasion resistance, while granular rubber can easily be dislodged from the matrix during abrasion, forming a new source of abrasion and increasing the damage to the matrix. For this reason, we used fibrous rubber concrete to systematically study the mechanisms of the influence of the dosage of nitrile rubber (5%, 10%, and 15%) and fiber length (6, 12, and 18 mm) on resistance to impact and abrasion performance. Through mechanical tests, underwater steel ball abrasion tests, three-dimensional morphology measurements, and fractal dimension analysis, the law behind the damage evolution of fibrous rubber concrete was revealed. The results show that concrete with 15% NBR and 12 mm fibers yielded the best performance, and its 144-hour abrasion resistance reached 25.0 h/(kg/m2), which is 163.7% higher than that for the baseline group. Fractal dimension analysis (D = 2.204 for the optimum group vs. 2.356 for the benchmark group) showed that the fiber network effectively suppressed surface damage extension. The long-term mass loss rate was only 2.36% (5.82% for the benchmark group), and the elastic energy dissipation mechanism remained stable under dynamic loading. The results of a microanalysis showed that the high surface roughness of NBR enhances interfacial bonding, which synergizes with crack bridging and stress dispersion and, thus, forms a multiscale anti-impact abrasion barrier. This study provides a new material solution for the design of durable concrete for use in high-impact and high-abrasion environments, which combines mechanical property preservation and resource recycling value. However, we did not systematically examine the evolution of the performance of fiber rubber concrete concrete under long-term environmental coupling conditions, such as freeze–thaw cycles, ultraviolet aging, or chemical attacks, and there are limitations to our assessment of full life-cycle durability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 4303 KiB  
Communication
The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers
by My Phan, Hao Liu, Lina M. Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F. Cozzolino, Dimitri Pappas and Guigen Li
Molecules 2025, 30(9), 1981; https://doi.org/10.3390/molecules30091981 - 29 Apr 2025
Viewed by 467
Abstract
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. [...] Read more.
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. Structures, thermal, and optical properties were examined using multiple analytical techniques. Fourier transform-infrared (FT-IR) spectroscopy was used to study the hydrogen bonding within the polymer system, suggesting the formation of the polymer through the Suzuki–Miyaura coupling reaction. Ultraviolet–visible (UV-vis) spectroscopy indicated strong electronic delocalization, with maximum absorbance peaks between 257 and 280 nm. Thermal characterization, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was used to investigate the thermal stability. TGA results showed that all four polymers retained more than 20% of their initial mass at 1000 °C, indicating good thermal stability across the series. DSC analysis revealed that polymer 1A exhibited a glass transition temperature (Tg) of 167 °C, indicating the presence of a network formed by aromatic conjugation and hydrogen bonding. Furthermore, the subtle Tg step observed for 1A suggests a degree of crystallinity within the polymer matrix, which was further supported by X-ray diffraction (XRD) analysis. Aggregation-induced emission (AIE) experiments provided further insights into intermolecular packing, and scanning electron microscopy (SEM) contributed to a better understanding of the morphology of the obtained polymers. These results highlight the potential of these polymers as thermally stable and conductive materials for biomedical and industrial applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

28 pages, 14266 KiB  
Article
Identification of CDK1 as a Biomarker for the Treatment of Liver Fibrosis and Hepatocellular Carcinoma Through Bioinformatics Analysis
by Jiayi Qin and Zhuan Li
Int. J. Mol. Sci. 2025, 26(8), 3816; https://doi.org/10.3390/ijms26083816 - 17 Apr 2025
Viewed by 1452
Abstract
Cyclin-dependent kinase 1 (CDK1) has emerged as a critical regulator of cell cycle progression, yet its role in liver fibrosis-associated hepatocellular carcinoma (LF-HCC) remains underexplored. This study aimed to systematically evaluate CDK1’s prognostic significance, immune regulatory functions, and therapeutic potential in LF-HCC pathogenesis. [...] Read more.
Cyclin-dependent kinase 1 (CDK1) has emerged as a critical regulator of cell cycle progression, yet its role in liver fibrosis-associated hepatocellular carcinoma (LF-HCC) remains underexplored. This study aimed to systematically evaluate CDK1’s prognostic significance, immune regulatory functions, and therapeutic potential in LF-HCC pathogenesis. Integrated bioinformatics approaches were applied to multi-omics datasets from GEO, TCGA, and TIMER databases. Differentially expressed genes were identified through enrichment analysis and protein–protein interaction networks. Survival outcomes were assessed via Kaplan–Meier analysis, while immune cell infiltration patterns were quantified using CIBERSORT. Molecular docking simulations evaluated CDK1’s binding affinity with pharmacologically active compounds (alvocidib, seliciclib, alsterpaullone) using AutoDock Vina. CDK1 demonstrated significant overexpression in LF-HCC tissues compared to normal controls (p < 0.001). Elevated CDK1 expression correlated with reduced overall survival (HR = 2.41, 95% CI:1.78–3.26, p = 0.003) and advanced tumor staging (p = 0.007). Immune profiling revealed strong associations between CDK1 levels and immunosuppressive cell infiltration, particularly regulatory T cells (r = 0.63, p = 0.001) and myeloid-derived suppressor cells (r = 0.58, p = 0.004). Molecular docking confirmed high-affinity binding of CDK1 to kinase inhibitors through conserved hydrogen-bond interactions (binding energy ≤ −8.5 kcal/mol), with alvocidib showing optimal binding stability. This multimodal analysis establishes CDK1 as both a prognostic biomarker and immunomodulatory regulator in LF-HCC pathogenesis. The enzyme’s dual role in driving tumor progression and reshaping the immune microenvironment positions it as a promising therapeutic target. Computational validation of CDK1 inhibitors provides a rational basis for developing precision therapies against LF-HCC, bridging translational gaps between biomarker discovery and clinical application. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 3022 KiB  
Article
Insights into the Mechanism Underpinning Composite Molecular Docking During the Self-Assembly of Fucoidan Biopolymers with Peptide Nanofibrils
by Rui Li, Min-Rui Tai, Xian-Ni Su, Hong-Wu Ji, Jian-Ping Chen, Xiao-Fei Liu, Bing-Bing Song, Sai-Yi Zhong, David. R. Nisbet, Colin J. Barrow and Richard J. Williams
Mar. Drugs 2025, 23(4), 169; https://doi.org/10.3390/md23040169 - 15 Apr 2025
Cited by 1 | Viewed by 621
Abstract
Composite hydrogels with improved mechanical and chemical properties can be formed by non-covalently decorating the nanofibrillar structures formed by the self-assembly of peptides with fucoidan. Nevertheless, the precise interactions, and the electrochemical and thermodynamic stability of these composite materials have not been determined. [...] Read more.
Composite hydrogels with improved mechanical and chemical properties can be formed by non-covalently decorating the nanofibrillar structures formed by the self-assembly of peptides with fucoidan. Nevertheless, the precise interactions, and the electrochemical and thermodynamic stability of these composite materials have not been determined. Here, we present a thermodynamic analysis of the interacting forces that drive the formation of a composite fucoidan/9-fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF) hydrogel. The results showed that the co-assembly of fucoidan and Fmoc-FRGDF was spontaneous and exothermic. The melting point increased from 87.0 °C to 107.7 °C for Fmoc-FRGDF with 8 mg/mL of added fucoidan. A complex network of hydrogen bonds formed between the molecules of Fmoc-FRGDF, and electrostatic, hydrogen bond, and van der Waals interactions were the main interactions driving the co-assembly of fucoidan and Fmoc-FRGDF. Furthermore, the sulfate group of fucoidan formed a strong salt bridge with the arginine of Fmoc-FRGDF. This study provides useful biomedical engineering design parameters for the inclusion of other highly soluble biopolymers into these types of hydrogel vectors. Full article
(This article belongs to the Special Issue Marine Polysaccharides-Based Biomaterials)
Show Figures

Figure 1

Back to TopTop