The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skotheim, T.A.; Elsenbaumer, R.L.; Reynolds, J.R. (Eds.) Handbook of Conducting Polymers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1997; ISBN 9780824700508. [Google Scholar]
- Hill, D.J.; Mio, M.J.; Prince, R.B.; Hughes, T.S.; Moore, J.S. A Field Guide to Foldamers. Chem. Rev. 2001, 101, 3893–4012. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.J.; Martin, P.J. Plastics Engineering; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Liou, G.-S.; Chen, W.-C.; Kakuchi, T. Current progress in advanced polymer materials for electronics/photonics functions. React. Funct. Polym. 2016, 108, 1. [Google Scholar] [CrossRef]
- Pugliese, R.; Beltrami, B.; Regondi, S.; Lunetta, C. Polymeric Biomaterials for 3D Printing in Medicine: An Overview. Ann. 3D Print. Med. 2021, 2, 100011. [Google Scholar] [CrossRef]
- de Leon, A.C.; Chen, Q.; Palaganas, N.B.; Palaganas, J.O.; Manapat, J.; Advincula, R.C. High Performance Polymer Nanocomposites for Additive Manufacturing Applications. React. Funct. Polym. 2016, 103, 141–155. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Tang, Y.; Wu, G.-Z.; Zhang, S.; Rouh, H.; Jin, S.; Xu, T.; Wang, Y.; Unruh, D.; Surowiec, K.; et al. Asymmetric Catalytic Assembly of Triple-columned and Multilayered Chiral Folding Polymers Showing Aggregation-induced Emission (AIE). Chem. Eur. J. 2022, 28, e202104102. [Google Scholar] [CrossRef]
- Takale, B.S.; Thakore, R.R.; Irvine, N.M.; Schuitman, A.D.; Li, X.; Lipshutz, B.H. Sustainable and cost-effective Suzuki–Miyaura couplings toward the key biaryl subunits of Arylex and Rinskor active. Org. Lett. 2020, 22, 4823–4827. [Google Scholar] [CrossRef]
- Patil, R.C.; Dongare, P.R.; Patil, S.S. Aqueous extract of CAP-ash: A greener benchmark for Suzuki-Miyaura coupling reaction in palladium catalyzed ligand-free condition. J. Mol. Struct. 2025, 1321, 140160. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.; Xu, T.; Yuan, Q.; Wang, J.-Y.; Jin, S.; Wang, Y.; Pan, J.; Griffin, I.; Chen, D.; et al. Aggregation-Induced Polarization (AIP): Optical Rotation Amplification and Adjustment of Chiral Aggregates of Folding Oligomers and Polymers. Front. Chem. 2022, 10, 962638. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Yang, Z.; Ma, L.; Tang, Y.; Zhao, X.; Rouh, H.; Zheng, Q.; Zhou, P.; Wang, J.-Y.; et al. Triple-Columned and Multiple-Layered 3D Polymers: Design, Synthesis, Aggregation-Induced Emission (AIE), and Computational Study. Research 2021, 2021, 3565791. [Google Scholar] [CrossRef]
- Tang, Y.; Jin, S.; Zhang, S.; Wu, G.-Z.; Wang, J.-Y.; Xu, T.; Wang, Y.; Unruh, D.; Surowiec, K.; Ma, Y.; et al. Multilayer 3D Chiral Folding Polymers and Their Asymmetric Catalytic Assembly. Research 2022, 2022, 9847949. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Wang, L.-Y.; Dai, J.-K.; Liu, F.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. The Comparative Study of Cocrystal/Salt in Simultaneously Improving Solubility and Permeability of Acetazolamide. J. Mol. Struct. 2019, 1184, 225–232. [Google Scholar] [CrossRef]
- Budziak, I.; Arczewska, M.; Kamiński, D.M. Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-Ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules 2019, 24, 4245. [Google Scholar] [CrossRef] [PubMed]
- Chkirate, K.; Karrouchi, K.; Chakchak, H.; Mague, J.T.; Radi, S.; Adarsh, N.N.; Li, W.; Talbaoui, A.; Essassi, E.M.; Garcia, Y. Coordination Complexes Constructed from Pyrazole–Acetamide and Pyrazole–Quinoxaline: Effect of Hydrogen Bonding on the Self-Assembly Process and Antibacterial Activity. RSC Adv. 2022, 12, 5324–5339. [Google Scholar] [CrossRef] [PubMed]
- Balijapalli, U.; Udayadasan, S.; Panyam Muralidharan, V.; Sukumarapillai, D.K.; Shanmugam, E.; Gopal, A.P.; Rathore, R.S.; Iyer, S.K. An Insight into the Photophysical Properties of Amide Hydrogen Bonded N-(Benzo[d]Thiazol-2-Yl) Acetamide Crystals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Li, X.; Li, Z.; Hao, J. Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres. Polymers 2017, 9, 504. [Google Scholar] [CrossRef]
- Rakipov, I.T.; Sabirzyanov, A.N.; Petrov, A.A.; Akhmadiayrov, A.A.; Varfolomeev, M.A.; Solomonov, B.N. Thermochemistry of Hydrogen Bonding of Linear and Cyclic Amides in Proton Acceptors Media. Thermochim. Acta 2017, 652, 34–38. [Google Scholar] [CrossRef]
- Fornaro, T.; Burini, D.; Biczysko, M.; Barone, V. Hydrogen-Bonding Effects on Infrared Spectra from Anharmonic Computations: Uracil–Water Complexes and Uracil Dimers. J. Phys. Chem. A 2015, 119, 4224–4236. [Google Scholar] [CrossRef]
- Giubertoni, G.; Hilbers, M.; Caporaletti, F.; Laity, P.; Groen, H.; Van der Weide, A.; Bonn, D.; Woutersen, S. Hydrogen Bonds under Stress: Strain-Induced Structural Changes in Polyurethane Revealed by Rheological Two-Dimensional Infrared Spectroscopy. J. Phys. Chem. Lett. 2023, 14, 940–946. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, P.; Tu, Y.; Liu, Z.; Dong, B.-W.; Azad, A.; Ma, D.; Wang, D.; Zhang, X.; Yang, Y.; et al. Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex. iScience 2019, 20, 195–204. [Google Scholar] [CrossRef]
- Purushothaman, P.; Subramanian, K. Conjugated Polymers–a Versatile Platform for Various Photophysical, Electrochemical and Biomedical Applications: A Comprehensive Review. New J. Chem. 2021, 45, 19182–19209. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 29, 4332–4353. [Google Scholar] [CrossRef] [PubMed]
- Laraba, S.R.; Ullah, N.; Bouamer, A.; Ullah, A.; Aziz, T.; Luo, W.; Djerir, W.; Zahra, Q.u.A.; Rezzoug, A.; Wei, J.; et al. Enhancing Structural and Thermal Properties of Poly(Lactic Acid) Using Graphene Oxide Filler and Anionic Surfactant Treatment. Molecules 2023, 28, 6442. [Google Scholar] [CrossRef] [PubMed]
- Wampler, T.P. (Ed.) Applied Pyrolysis Handbook; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781420017496. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Abdan, K. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.J. Biodegradability of polymers: Regulations and methods for testing. Biopolym. Online: Biol. Chem. Biotechnol. Appl. 2005, 10. [Google Scholar]
- Tayouri, M.I.; Estaji, S.; Mousavi, S.R.; Khasraghi, S.S.; Jahanmardi, R.; Nouranian, S.; Arjmand, M.; Khonakdar, H.A. Degradation of polymer nanocomposites filled with graphene oxide and reduced graphene oxide nanoparticles: A review of current status. Polym. Degrad. Stab. 2022, 206, 110179. [Google Scholar] [CrossRef]
- Ng, H.; Saidi, N.M.; Omar, F.S.; Ramesh, K.; Ramesh, S.; Bashir, S. Thermogravimetric analysis of polymers. Encycl. Polym. Sci. Technol. 2002, 1–29. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Industrial Hydrocarbon Processes; Gulf Professional Publishing: Houston, TX, USA, 2019. [Google Scholar]
- Hidalgo Herrador, J.M.; Murat, M.; Tišler, Z.; Frątczak, J.; de Paz Carmona, H. Direct Polypropylene and Polyethylene Liquefaction in CO₂ and N₂ Atmospheres Using MgO Light and CaO as Catalysts. Materials 2022, 15, 844. [Google Scholar] [CrossRef]
- Gonçalves, C.K.; Tenorio, J.A.; Levendis, Y.A.; Carlson, J.B. Emissions from Premixed Combustion of Polystyrene. Energy Fuels 2008, 22, 354–362. [Google Scholar] [CrossRef]
- Xie, F.; Liu, W.; Liu, P.; Wang, J.; Halley, P.J.; Yu, L. Starch Thermal Transitions Comparatively Studied by DSC and MTDSC. Carbohydr. Polym. 2010, 79, 170–176. [Google Scholar] [CrossRef]
- Yerlikaya, Z.; Aksoy, S.; Bayramli, E. Synthesis and Properties of Thermotropic Liquid Crystalline Copolyesters Containing p-Hydroxyphenylacetic Acid and m-Hydroxybenzoic Acid Units. J. Macromol. Sci. A 2006, 43, 433–447. [Google Scholar] [CrossRef]
- Ries, M.D.; Pruitt, L. Effect of Cross-Linking on the Microstructure and Mechanical Properties of Ultra-High Molecular Weight Polyethylene. Clin. Orthop. Relat. Res. 2005, 440, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Rötz, U. Determination of Smectic-Nematic Phase Transitions in Liquid Crystalline Polymers Using X-ray Diffraction Methods. Mol. Cryst. Liq. Cryst. 1994, 250, 315–322. [Google Scholar] [CrossRef]
- Sauer, B.B.; Beckerbauer, R.; Wang, L. Thermally Stimulated Current and DSC Studies of the Broadened Glass Transition in Liquid Crystalline Polymers. J. Polym. Sci. B Polym. Phys. 1993, 31, 1861–1872. [Google Scholar] [CrossRef]
- Sabadini, R.C.; Fernandes, M.; de, Z. Bermudez, V.; Pawlicka, A.; Silva, M.M. Hydrogels Based on Natural Polymers Loaded with Bentonite and/or Halloysite: Composition Impact on Spectroscopic, Thermal, and Swelling Properties. Molecules 2023, 29, 131. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Arrighi, V. Polymers: Chemistry and Physics of Modern Materials, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429125546. [Google Scholar]
- Jolliffe, J.D.; Armstrong, R.J.; Smith, M.D. Catalytic Enantioselective Synthesis of Atropisomeric Biaryls by a Cation-Directed O-Alkylation. Nat. Chem. 2017, 9, 558–562. [Google Scholar] [CrossRef]
- Kuwano, R.; Morioka, R.; Kashiwabara, M.; Kameyama, N. Catalytic Asymmetric Hydrogenation of Naphthalenes. Angew. Chem. Int. Ed Engl. 2012, 51, 4136–4139. [Google Scholar] [CrossRef]
- Vijay, V.; Ramakrishnan, R.; Hariharan, M. Halogen–Halogen Bonded Donor-Acceptor Stacks Foster Orthogonal Electron and Hole Transport. Cryst. Growth Des. 2021, 21, 200–206. [Google Scholar] [CrossRef]
Poly-Product | Yield a (%) | Mn b | Mw b | PDI c | Theor. Layers d |
---|---|---|---|---|---|
1A | 62 | 68,016 | 82,583 | 1.214 | 320 |
1B | 34 | 72,803 | 84,381 | 1.159 | 330 |
1C | 70 | 65,917 | 80,674 | 1.224 | 254 |
1D | 50 | 69,165 | 85,674 | 1.239 | 248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, M.; Liu, H.; Delgado, L.M.; Faleke, H.O.; Zhang, S.; Cozzolino, A.F.; Pappas, D.; Li, G. The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers. Molecules 2025, 30, 1981. https://doi.org/10.3390/molecules30091981
Phan M, Liu H, Delgado LM, Faleke HO, Zhang S, Cozzolino AF, Pappas D, Li G. The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers. Molecules. 2025; 30(9):1981. https://doi.org/10.3390/molecules30091981
Chicago/Turabian StylePhan, My, Hao Liu, Lina M. Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F. Cozzolino, Dimitri Pappas, and Guigen Li. 2025. "The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers" Molecules 30, no. 9: 1981. https://doi.org/10.3390/molecules30091981
APA StylePhan, M., Liu, H., Delgado, L. M., Faleke, H. O., Zhang, S., Cozzolino, A. F., Pappas, D., & Li, G. (2025). The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers. Molecules, 30(9), 1981. https://doi.org/10.3390/molecules30091981