Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,683)

Search Parameters:
Keywords = bonded links

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1201 KB  
Article
The Impact of Social Capital on Farmers’ Farmland Quality Protection Behavior: Evidence from the Main Rice-Producing Areas in Southern China
by Jiahao Zhan, Juan Ai, Zhaojiu Chen and Yuhan Zhang
Land 2026, 15(2), 264; https://doi.org/10.3390/land15020264 - 4 Feb 2026
Abstract
Farmland quality protection is an important measure to implement the strategy of “storing grain in the land” and a vital part of promoting ecological agriculture development. This study focuses on the main agents of farmland quality protection, farmers, with a sample of 1013 [...] Read more.
Farmland quality protection is an important measure to implement the strategy of “storing grain in the land” and a vital part of promoting ecological agriculture development. This study focuses on the main agents of farmland quality protection, farmers, with a sample of 1013 households from the rice-growing areas of Jiangxi Province, which is one of the major rice-growing provinces in southern China. We used an Ordered Probit model, a mediation effect model, and a moderation effect model to analyze the influence and mechanism of farmers’ social capital and structure on their farmland quality protection behavior. The result shows that: (1) Social capital significantly promotes the farmers’ farmland quality protection behaviors. The promoting effect of bonding social capital is greater than that of linking social capital. These conclusions remain robust after the endogeneity issue has been addressed and robustness tests have been conducted; (2) Ecological cognition plays a mediating role in this relation, while Internet use exerts a significant positive moderating effect; (3) The effect of social capital is greater for full-time farming households than for part-time farming households, and more significant for risk-neutral and risk-seeking farmers than for risk-averse farmers. Accordingly, this study proposes recommendations, including fostering farmers’ social capital, improving their ecological cognition, promoting the penetration and use of the Internet, vigorously cultivating new agricultural business entities, and expanding agricultural insurance coverage. Full article
(This article belongs to the Section Land Socio-Economic and Political Issues)
Show Figures

Figure 1

40 pages, 8954 KB  
Review
A Review on the Preparation, Properties, and Mechanism of Lignin-Modified Asphalt and Mixtures
by Yu Luo, Guangning Ge, Yikang Yang, Xiaoyi Ban, Xuechun Wang, Zengping Zhang and Bo Bai
Sustainability 2026, 18(3), 1536; https://doi.org/10.3390/su18031536 - 3 Feb 2026
Abstract
Lignin, an abundant and renewable biopolymer, holds significant potential for asphalt modification owing to its unique aromatic structure and reactive functional groups. This review summarizes the main lignin preparation routes and key physicochemical attributes and assesses its applicability for enhancing asphalt performance. The [...] Read more.
Lignin, an abundant and renewable biopolymer, holds significant potential for asphalt modification owing to its unique aromatic structure and reactive functional groups. This review summarizes the main lignin preparation routes and key physicochemical attributes and assesses its applicability for enhancing asphalt performance. The physical incorporation of lignin strengthens the asphalt matrix, improving its viscoelastic properties and resistance to oxidative degradation. These enhancements are mainly attributed to the cross-linking effect of lignin’s polymer chains and the antioxidant capacity of its phenolic hydroxyl groups, which act as free-radical scavengers. At the mixture level, lignin-modified asphalt (LMA) exhibits improved aggregate bonding, leading to enhanced dynamic stability, fatigue resistance, and moisture resilience. Nevertheless, excessive lignin content can have a negative impact on low-temperature ductility and fatigue resistance at intermediate temperatures. This necessitates careful dosage optimization or composite modification with softeners or flexible fibers. Mechanistically, lignin disperses within the asphalt, where its polar groups adsorb onto lighter components to boost high-temperature performance, while its strong interaction with asphaltenes alleviates water-induced damage. Furthermore, life cycle assessment (LCA) studies indicate that lignin integration can substantially reduce or even offset greenhouse gas emissions through bio-based carbon storage. However, the magnitude of the benefit is highly sensitive to lignin production routes, allocation rules, and recycling scenarios. Although the laboratory research results are encouraging, there is a lack of large-scale road tests on LMA. There is also a lack of systematic research on the specific mechanism of how it interacts with asphalt components and changes the asphalt structure at the molecular level. In the future, long-term service-road engineering tests can be designed and implemented to verify the comprehensive performance of LMA under different climates and traffic grades. By using molecular dynamics simulation technology, a complex molecular model containing the four major components of asphalt and lignin can be constructed to study their interaction mechanism at the microscopic level. Full article
Show Figures

Figure 1

12 pages, 1359 KB  
Article
The (Bipyridyl)copper(II) Acetate System: (2,2′-Bipyridyl)copper(II) Acetate Pentahydrate (Ribbons of Planar (H2O)6 Rings Fused with Planar (H2O)4 Rings) and (2,2′-Bipyridyl)copper(II) Acetate Acetonitrile Solvate
by Paul D. Entzminger, Edward J. Valente and Eugenijus Urnezius
Compounds 2026, 6(1), 11; https://doi.org/10.3390/compounds6010011 - 2 Feb 2026
Viewed by 25
Abstract
Two crystalline complexes, (2,2′-bipyridine)Cu(CH3COO)2·5H2O (3) and (2,2′-bipyridine)Cu(CH3COO)2·CH3CN (4), have been isolated and characterized by low-temperature single-crystal X-ray diffraction experiments. Crystals of phase 3 were studied previously at [...] Read more.
Two crystalline complexes, (2,2′-bipyridine)Cu(CH3COO)2·5H2O (3) and (2,2′-bipyridine)Cu(CH3COO)2·CH3CN (4), have been isolated and characterized by low-temperature single-crystal X-ray diffraction experiments. Crystals of phase 3 were studied previously at room temperature (296 K) under conditions leading to rapid desolvation and less distinct characterization of the waters of crystallization. With our redetermination of 3 at 100(2) K, we present a detailed description of ribbon-like structure formed by water molecules in crystals of (2,2′-bipyridine)Cu(CH3COO)2·5H2O. Acetate oxygens are linked by hydrogen-bonding to two inequivalent waters separated by 4.72 Å; the other three water molecules are trapped in polymeric ribbons of anticooperative hydrogen-bonded six-membered rings fused with cooperative hydrogen-bonded four-rings. Water oxygens of the fused ring ribbons associate only with other water oxygens, and this water structure has a local density and pair distribution function which resembles that of liquid water. Crystals of 4 are monoclinic, with acetonitrile of solvation unassociated with the complex. In both 3 and 4, bipyridine planes interleave through π-aryl stacking. Full article
Show Figures

Graphical abstract

15 pages, 4527 KB  
Article
Molecular Docking and MD Modeling Techniques for the Development of Novel ROS1 Kinase Inhibitors
by Mohammad Jahoor Alam, Arshad Jamal, Shaik Daria Hussain, Shahzaib Ahamad, Dinesh Gupta and Ashanul Haque
Pharmaceuticals 2026, 19(2), 229; https://doi.org/10.3390/ph19020229 - 28 Jan 2026
Viewed by 244
Abstract
Background: Chemotherapy is a cornerstone of cancer treatment; however, resistance to first-line chemotherapeutic agents remains a major challenge. ROS1, one of fifty-eight receptor tyrosine kinases, has been implicated in various cancer subtypes, including glioblastoma, non-small-cell lung cancer, and cholangiocarcinoma. Notably, the Gly2032Arg mutation [...] Read more.
Background: Chemotherapy is a cornerstone of cancer treatment; however, resistance to first-line chemotherapeutic agents remains a major challenge. ROS1, one of fifty-eight receptor tyrosine kinases, has been implicated in various cancer subtypes, including glioblastoma, non-small-cell lung cancer, and cholangiocarcinoma. Notably, the Gly2032Arg mutation in the ROS1 protein has been linked to resistance against the kinase inhibitor crizotinib. Objectives: Given the challenge, we conducted a comprehensive in silico study to identify new drug candidates. Methods: The study starts with modeling the Gly2032Arg-mutated ROS1 protein, followed by structure-based screening of the PubChem database. Results: Out of 1760 molecules screened, we selected the top 4 molecules (PubChem CID: 67463531, 72544946, 139431449, and 139431487) with structural features similar to crizotinib, a high docking score, and drug likeness. To further validate the effectiveness of the identified compounds, we assessed their binding affinity using the Molecular Mechanics with Generalized Born Surface Area (MM-GBSA) scoring method. To underpin the behavior and stability of protein–ligand complexes, 500 ns molecular dynamics (MD) simulations were conducted, and parameters including RMSD, RMSF, and H-bond dynamics were studied and compared. Density functional theory (DFT) at the B3LYP/6-31G* level was performed to elucidate molecular features of the identified compounds. Conclusions: Overall, this study sheds light on a new series of compounds effective against mutated targets, thereby offering a new horizon in this area. Full article
Show Figures

Graphical abstract

36 pages, 4837 KB  
Article
Design, Synthesis, Spectral, Structural Analysis, and Biological Evaluation of Novel Pyrazole Derivatives as Anti-Tumor, Antimicrobial, and Anti-Biofilm Agents
by Christina Zalaru, Florea Dumitrascu, Constantin Draghici, Marilena Ferbinteanu, Isabela Tarcomnicu, Maria Marinescu, Zenovia Moldovan, George Mihai Nitulescu, Rodica Tatia and Marcela Popa
Antibiotics 2026, 15(2), 127; https://doi.org/10.3390/antibiotics15020127 - 27 Jan 2026
Viewed by 311
Abstract
Objective: Based on our previous findings, we designed new molecules by extending functionalized pyrazole derivatives containing iodine atoms, which are linked via an amino bond to halogen-substituted phenyl groups. In addition, these newly developed pyrazole compounds exhibit anti-tumor, antibacterial, and anti-biofilm activities. Methods: [...] Read more.
Objective: Based on our previous findings, we designed new molecules by extending functionalized pyrazole derivatives containing iodine atoms, which are linked via an amino bond to halogen-substituted phenyl groups. In addition, these newly developed pyrazole compounds exhibit anti-tumor, antibacterial, and anti-biofilm activities. Methods: Three new series of pyrazole compounds were designed. Fifteen novel pyrazole derivatives, distributed across three series (4ad, 5ad, and 6ag), were synthesized and structurally characterized by 1H-NMR, 13C-NMR, FTIR, UV-Vis spectroscopy, and elemental analysis. Results: Among them, compound 4c, which exhibited notable anti-tumor activity, crystallized in a monoclinic system and was further analyzed via single-crystal X-ray diffraction. All synthesized compounds were evaluated in vitro on NCTC normal fibroblast cells and HEp-2 tumor epithelial cells. Compound 4c demonstrated significant anti-tumor activity while displaying no cytotoxic effects on normal cells. The antibacterial and anti-biofilm activities of the compounds were also assessed against four bacterial strains. Compounds 5a and 5c exhibited the highest antibacterial activity against Staphylococcus aureus ATCC 25923, both with a minimum inhibitory concentration (MIC) of 0.023 μg/mL. Additionally, compounds 4a, 5a, 6a, 6e, and 6f showed the strongest anti-biofilm effects, each presenting a minimum biofilm inhibition concentration (MBIC) of 0.023 μg/mL. ADME and ADMET in silico predictions indicated that all compounds exhibit generally favorable, drug-like physicochemical properties. Conclusions: The study reinforces the applicability of these compounds as promising anticancer, antibacterial, and anti-biofilm drugs. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Antibiotics, 2nd Edition)
Show Figures

Figure 1

19 pages, 611 KB  
Article
Beyond Where We Work: Daily Informal Communication, Knowledge Sharing, and Commitment in Hybrid Teams
by Dorothee Lütjens and Jörg Felfe
Adm. Sci. 2026, 16(2), 63; https://doi.org/10.3390/admsci16020063 - 27 Jan 2026
Viewed by 260
Abstract
Hybrid work not only redistributes where employees work; it also reshapes how they stay connected to their colleagues. Drawing on Communicate–Bond–Belong (CBB) theory, we examine how daily work location shapes employees’ team commitment in hybrid work environments through informal communication and knowledge sharing, [...] Read more.
Hybrid work not only redistributes where employees work; it also reshapes how they stay connected to their colleagues. Drawing on Communicate–Bond–Belong (CBB) theory, we examine how daily work location shapes employees’ team commitment in hybrid work environments through informal communication and knowledge sharing, and how these daily links depend on task interdependence. Using a daily diary study with 219 employees who work at least one day a week from home and one day a week in the office (1655 day-level observations), we applied multilevel structural equation modeling in Mplus 8.8 to capture within-person day-to-day fluctuations. Our findings show that on days when employees worked from home rather than in the office, they reported less informal communication and less knowledge sharing with colleagues, which in turn related to lower team commitment. These indirect effects suggest that it is not physical distance per se, but the loss of cue-rich, relationship-building and task-related exchanges that erodes commitment on remote days. We further show that task interdependence differentially qualifies these daily relationships: for informal communication, the positive association with commitment is stronger when task interdependence is low and weaker when interdependence is high. In contrast, the positive association between knowledge sharing and commitment becomes stronger at higher levels of task interdependence. Together, the results advance understanding of social dynamics in hybrid work environments and offer actionable guidance for leaders and organizations. Full article
Show Figures

Figure 1

19 pages, 2415 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Viewed by 279
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

22 pages, 2631 KB  
Article
Design, Docking, Synthesis, and Biological Evaluation of Pyrazolone Derivatives as Potential Dual-Action Antimicrobial and Antiepileptic Agents
by Yousef Al-ebini, Manojmouli Chandramouli, Naga Prashant Koppuravuri, Thoppalada Yunus Pasha, Mohamed Rahamathulla, Salwa Eltawaty, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceuticals 2026, 19(2), 193; https://doi.org/10.3390/ph19020193 - 23 Jan 2026
Viewed by 287
Abstract
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: [...] Read more.
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: Novel pyrazolone derivatives were designed, synthesized (using 2,4-dinitrophenylhydrazine/semicarbazide condensation with ethyl acetoacetate), and evaluated through molecular docking against antimicrobial (4URM, 3FYV, 3FRA) and neuronal targets (4COF, 5TP9, 5L1F). The in vitro antimicrobial activity was assessed against Gram-positive (S. aureus) and in vitro Gram-negative (E. coli, P. aeruginosa) strains via agar cup plate assays, while in vivo antiepileptic efficacy was tested in a PTZ-induced seizure model in Swiss albino mice. Results: Compound IIa showed potent dual activity, inhibiting E. coli (9 mm zone at 80 μg/mL) and S. aureus (9.5 mm at 80 μg/mL), alongside a significantly delayed seizure onset in the PTZ-induced mouse model (100% survival rate, 45 sec delayed seizure onset, p < 0.001). Compounds Ia and Id showed selective activity against E. coli (6 mm at 80 μg/mL) and P. aeruginosa (7 mm at 80 μg/mL), respectively. Docking studies revealed that compound IIa has a superior binding affinity (−7.57 kcal/mol for 3FYV) compared to standards, driven by hydrogen bonds (SER X: 49) and hydrophobic interactions (LEU X: 20). Conclusions: This study presents a novel approach by proposing a rationally designed pyrazolone scaffold exhibiting both antimicrobial and antiepileptic activity, which integrates in silico modeling with experimental validation. Compound IIa emerged with preliminary dual biological activities, exhibiting strong antibacterial activity, a superior binding affinity toward both bacterial and neuronal targets, and notable seizure prevention in vivo. These findings show the potential of multifunctional pyrazolone derivatives as a new treatment strategy for addressing drug-resistant infections linked to epilepsy and support further optimization toward clinical development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 4030 KB  
Article
Selenoether-Linked Liquid Crystal Trimers and the Twist-Bend Nematic Phase
by Yuki Arakawa and Takuma Shiba
Crystals 2026, 16(1), 69; https://doi.org/10.3390/cryst16010069 - 21 Jan 2026
Viewed by 173
Abstract
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still [...] Read more.
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still remain relatively rare compared to the predominant LC dimers. We report the first homologs of selenium-linked LC trimers, 4,4′-bis[ω-(4-cyanobiphenyl-4′-ylseleno)alkoxy]biphenyls (CBSenOBOnSeCB) with carbon numbers in the alkyl-chain spacers, n = 7 or 9). Polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction (XRD) measurements were performed to investigate the phase transition behavior and mesophase structures of the trimers. Both CBSenOBOnSeCB trimers exhibited nematic (N) and NTB phases. The XRD measurements revealed the presence of smectic A-like cybotactic clusters with a triply intercalated structure in the N and NTB phases. The LC phase transition temperatures of CBSenOBOnSeCB were lower than those of the already-known ether-linked CBOnOBOnOCB and thioether-linked CBSnOBOnSCB counterparts. This trend is ascribed to the enhanced molecular bending and molecular flexibility of CBSenOBOnSeCB, which are caused by the smaller bond angle and greater bond flexibility of C–Se–C compared to C–O–C and C–S–C. This study offers a new molecular design for multiply linked LC oligomers with heavier chalcogen atoms. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

23 pages, 11750 KB  
Article
Computational Identification of Blood–Brain Barrier-Permeant Microbiome Metabolites with Binding Affinity to Neurotransmitter Receptors in Neurodevelopmental Disorders
by Ricardo E. Buendia-Corona, María Fernanda Velasco Dey, Lisset Valencia Robles, Hannia Josselín Hernández-Biviano, Cristina Hermosillo-Abundis and Lucila Isabel Castro-Pastrana
Molecules 2026, 31(2), 366; https://doi.org/10.3390/molecules31020366 - 20 Jan 2026
Viewed by 335
Abstract
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and [...] Read more.
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and receptor-mediated neuromodulation remain unclear. We screened 27,642 microbiome SMILES metabolites for blood–brain barrier permeability using rule-based SwissADME classification and a PyTorch 2.0 neural network trained on 7807 experimental compounds (test accuracy 86.2%, AUC 0.912). SwissADME identified 1696 BBB-crossing metabolites following Lipinski’s criteria, while PyTorch classified 2484 metabolites with expanded physicochemical diversity. Following 3D conformational optimization (from SMILES) and curation based on ≤32 rotatable bonds, molecular docking was performed against five neurotransmitter receptors representing ionotropic (GABRA2, GRIA2, GRIN2B) and metabotropic (DRD4, HTR1A) receptor classes. The top 50 ligands across five receptors demonstrated method-specific BBB classification (44% SwissADME-only, 44% PyTorch-only, 12% overlap), validating complementary prediction approaches. Fungal metabolites from Ascomycota dominated high-affinity top ligands (66%) and menaquinone MK-7 showed broad phylogenetic conservation (71.4% of phylum). Our results establish detailed receptor–metabolite interaction maps, with fungal metabolites dominating high-affinity ligands, challenging the prevailing bacterial focus of the microbiome and providing a foundation for precision medicine and a framework for developing microbiome-targeted therapeutics to address clinical needs in neurodevelopmental disorders. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

18 pages, 3550 KB  
Article
Using Biopolymers to Control Hydraulic Degradation of Natural Expansive-Clay Liners Due to Fines Migration: Long-Term Performance
by Ahmed M. Al-Mahbashi, Abdullah Shaker and Abdullah Almajed
Polymers 2026, 18(2), 272; https://doi.org/10.3390/polym18020272 - 20 Jan 2026
Viewed by 302
Abstract
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these [...] Read more.
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these liners is sustainability and serviceability in the long run. The research conducted revealed significant degradation in hydraulic performance after periods of operation under continuous flow, which was attributed to the migration of fines. This study investigated the stabilization of these liners by using biopolymers as a cementitious agent to prevent the migration of fines and enhance sustainability in the long run. Two different biopolymers were examined in this study, including guar gum (GG) and sodium alginate (SA). The hydraulic conductivity tests were conducted in the laboratory under continuous flow for a long period (i.e., more than 360 days). The results revealed that incorporating biopolymers into these liners is of great significance for enhancing their sustainability and hydraulic performance stability. Further in-depth identification of the interaction mechanisms demonstrates that biopolymer–soil interactions create cross-links between soil particles through adhesive bonding, forming a cementitious gel that stabilizes fines and enhances the stability of the liners’ internal structure. Both examined biopolymers show significant stabilization of fines and stable hydraulic performance within the acceptable range, with high superiority of SA with EC20. The outcomes of this study are valuable for conducting an adequate and sustainable design for liner protection layers as hydraulic barriers or covers. Full article
(This article belongs to the Special Issue Polymers in the Face of Sustainable Development)
Show Figures

Figure 1

20 pages, 6235 KB  
Article
Mutation-Induced Resistance of SARS-CoV-2 Mpro to WU-04 Revealed by Multi-Scale Modeling
by Mengting Liu, Derui Zhao, Hui Duan, Junyao Zhu, Liting Zheng, Nan Yuan, Yuanling Xia, Peng Sang and Liquan Yang
Int. J. Mol. Sci. 2026, 27(2), 1000; https://doi.org/10.3390/ijms27021000 - 19 Jan 2026
Viewed by 162
Abstract
The clinical durability of SARS-CoV-2 main protease (Mpro) inhibitors depends on their resilience to emerging resistance mutations. Recent genomic surveillance and functional reports have highlighted substitutions at positions 49, 165, and 301, raising questions about the robustness of the noncovalent inhibitor [...] Read more.
The clinical durability of SARS-CoV-2 main protease (Mpro) inhibitors depends on their resilience to emerging resistance mutations. Recent genomic surveillance and functional reports have highlighted substitutions at positions 49, 165, and 301, raising questions about the robustness of the noncovalent inhibitor WU-04 in variant backgrounds. Here, we combined μs-scale, triplicate molecular dynamics simulations with end-state binding free energy estimates and a network-rewiring inference (NRI) framework that maps long-range dynamical communication across the full protease dimer. We evaluated wild type (WT), single mutants M49K, M165V, S301P, and selected double mutants (M49K & M165V, M49K & S301P). Relative to WT, single substitutions produced reductions in computed binding affinity of up to ~12kcal/mol, accompanied by loss or reshaping of the S2 subsite and altered ligand burial. Notably, the M49K/S301P double mutant partially restored WU-04 engagement, narrowing the ΔΔGrestore gap to within ΔΔGrestore of WT and re-establishing key hydrophobic and hydrogen-bond contacts. NRI analysis revealed that distal residue 301 participates in a communication corridor linking the C-terminal helical domain to the active-site cleft; its substitution rewires inter-domain coupling that can compensate for local disruptions at residue 49. Together, these results identify structural hotspots and network pathways that may inform the design of next-generation Mpro inhibitors with improved mutation tolerance—specifically by strengthening interactions that do not rely solely on the mutable S2 pocket and by engaging conserved backbone features near the 165–166 region. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 697 KB  
Article
The Impact of a Rosemary Containing Drink on Cognition and Mood: The Role of Eye Blink Dynamics
by Leigh Martin Riby, Dimana Kardzhieva, Sam Fenwick, Sophia Fowler and Mark Moss
NeuroSci 2026, 7(1), 15; https://doi.org/10.3390/neurosci7010015 - 17 Jan 2026
Viewed by 286
Abstract
Rosemary (Salvia rosmarinus) has been linked to improvements in psychological wellbeing through cholinergic mechanisms. However, this study investigated whether individual differences in eye blink rate (EBR) and blink variability (EBV), which are proxies of dopaminergic activity and attentional control, influence the [...] Read more.
Rosemary (Salvia rosmarinus) has been linked to improvements in psychological wellbeing through cholinergic mechanisms. However, this study investigated whether individual differences in eye blink rate (EBR) and blink variability (EBV), which are proxies of dopaminergic activity and attentional control, influence the cognitive and mood-enhancing properties of a rosemary-containing drink. Forty-eight healthy adults completed a three-stimulus odd-ball cognitive task under rosemary or control conditions, while vertical electrooculograms were recorded. Event-related brain potentials (ERPs) were also measured using the P3a component at the Cz scalp electrode as an additional index of dopaminergic activity. Subjective mood and arousal (alert, contented, calm) were collected pre- and post-task using Bond–Lader visual analogue scales. Reaction times during the task were modelled with ex-Gaussian parameters (μ, σ, τ). Rosemary ingestion led to increased alertness and contentedness following the task. Cognitive effects were moderated by blink metrics, with significant interactions between rosemary and blink metrics for mean reaction time μ and response variability σ. Rosemary also increased P3a amplitudes, indicative of dopaminergic contribution. The effects of rosemary on cognition and mood were moderated by individual blink profiles, indicating that baseline neurocognitive state plays a role. Although cholinergic accounts are well established, this study highlights the use of proxies of dopamine to investigate broader neurotransmitter involvement in rosemary’s enhancing properties. Full article
Show Figures

Graphical abstract

27 pages, 3887 KB  
Article
Polarity-Driven Selective Adsorption of Quercetin on Kaolinite: An Integrated DFT and Monte Carlo Study
by Abdelilah Ayad, Achraf Harrou, Abdelouahad El Himri, Mohammed Benali, Abdelouassia Dira, Santiago Aparicio, Alberto Gutiérrez, Armand Soldera and Elkhadir Gharibi
Materials 2026, 19(2), 368; https://doi.org/10.3390/ma19020368 - 16 Jan 2026
Viewed by 292
Abstract
Quercetin’s therapeutic potential is limited by its poor water solubility and rapid degradation. Natural clay minerals such as kaolinite present sustainable platforms for drug delivery, yet the molecular mechanisms of drug encapsulation are not fully understood. Specifically, the role of kaolinite’s structural polarity, [...] Read more.
Quercetin’s therapeutic potential is limited by its poor water solubility and rapid degradation. Natural clay minerals such as kaolinite present sustainable platforms for drug delivery, yet the molecular mechanisms of drug encapsulation are not fully understood. Specifically, the role of kaolinite’s structural polarity, its hydrophilic aluminol (001) and hydrophobic siloxane (00-1) basal surfaces, in selective drug adsorption remains unexplored. This study combines Monte Carlo sampling and Density Functional Theory (DFT) to provide the first quantitative, atomistic comparison of quercetin adsorption on both kaolinite surfaces. The results demonstrate a pronounced polarity-driven selectivity. Strong, exothermic adsorption (−206.65 kJ mol−1) occurs on the hydrophilic (001) surface, stabilized by a network of five hydrogen bonds. In contrast, the hydrophobic (00-1) surface exhibits significantly weaker sorption (−147.16 kJ mol−1), dominated by van der Waals interactions. Charge-transfer analysis shows that the hydrophilic (001) surface exhibits a net charge transfer of −0.198 e, approximately 2.4 times greater than that of the hydrophobic (00-1) surface (−0.083 e), consistent with differential electron density maps and partial density of states. By linking hydrogen bonding and charge transfer to adsorption energy, these results elucidate how surface polarity dictates drug encapsulation. This work establishes a predictive framework for designing kaolinite-based nanocarriers with optimized stability, bioavailability, and controlled release, guiding the development of sustainable drug delivery systems. It is noted that this DFT study models adsorption at 0 K using periodic slab models in a vacuum. Full article
Show Figures

Figure 1

14 pages, 5336 KB  
Article
Time-Dependent Microstructural Transformation and Interfacial Phase Evolution in TLP Bonding of CM247LC Superalloy
by Jaehui Bang, Hyukjoo Kwon, Taewon Park and Eunkyung Lee
Coatings 2026, 16(1), 121; https://doi.org/10.3390/coatings16010121 - 16 Jan 2026
Viewed by 197
Abstract
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron [...] Read more.
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron MBF-20 filler are systematically compared to clarifying the transition between reaction-dominated brazing and diffusion-assisted TLP bonding. Microstructural analyses reveal that MBF-80 promotes the formation of a persistent, reaction-stabilized interlayer characterized by strong boron localization and the development of boron-rich intermetallic reaction products. These features kinetically suppress diffusion-assisted homogenization and prevent isothermal solidification, resulting in pronounced chemical and mechanical discontinuities across the joint. In contrast, MBF-20 enables progressive boron depletion, suppression of stable intermetallic accumulation, and interfacial smoothing, leading to diffusion-assisted chemical redistribution and partial isothermal solidification. This evolution is accompanied by gradual convergence of hardness profiles toward that of the CM247LC base metal, indicating improved mechanical continuity. These results demonstrate that joint hardness alone is insufficient for evaluating bonding quality in CM247LC. Instead, controlled microstructural evolution governed by low-boron filler chemistry is essential for achieving chemically and mechanically compatible joints. The present work establishes a clear mechanistic link between filler metal composition and bonding behavior, providing guidance for the design of reliable TLP bonding strategies in Ni-based superalloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

Back to TopTop