Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = bond constitutive law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 394
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 10042 KiB  
Article
Verification of Crack Width Evaluation in Fiber-Reinforced Cementitious Composite Reinforced with Various Types of Fiber-Reinforced Polymer Bars
by Hideto Sasaki, Helen Negash Shiferaw and Toshiyuki Kanakubo
Fibers 2025, 13(5), 60; https://doi.org/10.3390/fib13050060 - 7 May 2025
Viewed by 1587
Abstract
This study aims to verify the adaptability of a crack width evaluation method for fiber-reinforced cementitious composite (FRCC) proposed by the authors to various combinations of fiber-reinforced polymer (FRP) bars and FRCCs. As this evaluation method requires bond constitutive laws between FRP bars [...] Read more.
This study aims to verify the adaptability of a crack width evaluation method for fiber-reinforced cementitious composite (FRCC) proposed by the authors to various combinations of fiber-reinforced polymer (FRP) bars and FRCCs. As this evaluation method requires bond constitutive laws between FRP bars and FRCC, bond tests between FRP and FRCCs were conducted. The FRP and FRCC combinations used in the bond tests were spiral-type CFRP and GFRP bars with PVA-FRCC, as well as strand-type CFRP bars with aramid–FRCC. The maximum bond stress tended to increase as the rib–height ratio of the spiral-type bars increased. When the rib–height ratio increased by 50%, the maximum bond stress of the CFRP and GFRP bars increased by 11% and 33%, respectively. For aramid–FRCC, the average maximum bond stress in the FRCC with a 0.25% volume fraction was 1.67 times that in mortar, and that in 0.50% was 2.01 times that in mortar. The bond constitutive laws were modeled using the trilinear model. Verifications of the method’s adaptability were conducted using tension tests on prisms made of spiral-type CFRP and GFRP bars with PVA-FRCC. As a result of the tension tests, when the FRP strain reached approximately 0.3%, the crack width was about 0.2 mm for CFRP bars and about 0.1 mm for GFRP bars. Verifications were also conducted using four-point bending tests on strand-type CFRP bar beams with aramid–FRCC. The crack width at the same FRP strain tended to become smaller as the fiber volume fraction of FRCC increased. When the FRP strain reached approximately 0.2%, the average crack width of the mortar specimen was around 0.25 mm, whereas it was about 0.15 mm in FRCC with a 0.25% volume fraction and about 0.10 mm at 0.5%. The test results for FRP strain versus crack width relationships were compared with the calculations using the crack width prediction formula. The test results and calculation results were in good agreement. Full article
Show Figures

Figure 1

17 pages, 5981 KiB  
Article
Influence of Specimen Width on Crack Propagation Process in Lightly Reinforced Concrete Beams
by Hongwei Wang, Hui Jin, Zhimin Wu, Baoping Zou and Wang Zhang
Materials 2024, 17(22), 5586; https://doi.org/10.3390/ma17225586 - 15 Nov 2024
Cited by 1 | Viewed by 759
Abstract
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the [...] Read more.
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the influence of specimen width on reinforced concrete fracture behavior, a 3D numerical method was used to simulate the crack propagation processes of lightly reinforced concrete beams based on Fracture Mechanics. Nonlinear spring elements with different stress-displacement constitutive laws were employed to characterize the softening behavior of concrete and the bond-slip behavior between the steel bars and concrete, respectively. It is assumed that the crack begins to propagate when the maximum stress intensity factor at the crack tip along the beam width reaches the initial fracture toughness of concrete. To verify the validity of the proposed method, the completed crack propagation processes of lightly reinforced concrete three-point bending notched beams were simulated, and the calculated load-crack mouth opening displacement curves showed a reasonable agreement with the experimental data. Moreover, the impact of the 2D reinforced concrete beam model on the crack propagation process was analyzed. The results indicate that at the initial loading stage, the external load P obtained from the 2D model is significantly larger than the result from the presented 3D model. Full article
Show Figures

Figure 1

15 pages, 2700 KiB  
Article
Study on the Force Transfer Process of Bolt–Slurry Interface of Full-Length Bonding Anchor System at Earthen Sites
by Jiaxing Wan, Donghua Wang and Kai Cui
Coatings 2024, 14(9), 1188; https://doi.org/10.3390/coatings14091188 - 13 Sep 2024
Viewed by 947
Abstract
The debonding and sliding of the bolt–slurry interface is the main failure form of the full-length bonding anchor system (FLBAS) of earthen sites, so it is urgent to carry out a quantitative study of the force transfer process of the anchorage interface. Based [...] Read more.
The debonding and sliding of the bolt–slurry interface is the main failure form of the full-length bonding anchor system (FLBAS) of earthen sites, so it is urgent to carry out a quantitative study of the force transfer process of the anchorage interface. Based on field test results and existing research results, it was found that the bilinear bond–slip model is in line with the description of the constitutive relationship of the bolt–slurry interface. The whole process of debonding slip is discussed accordingly; the expressions for the slip, the axial strain of the bolt, and the load displacement at the bolt–slurry interface corresponding to the different loading stages are deduced; and the calculations of the ultimate load-carrying capacity and the effective anchorage length are given at the same time. On this basis, the bond–slip model parameters were calibrated by identifying the characteristic points of the bond–slip curve; a multi-parameter cross-comparison validation of the reasonableness of the theoretical analytical model was carried out on the basis of in situ pull-out tests; and the law of the influence of anchor bond length and axial stiffness on the anchorage performance was analyzed. The analytical model proposed in this study is widely applicable to the analysis of force transfer processes at the bolt–slurry interface in the presence of complete debonding phenomena and provides a useful reference for optimizing the design of anchors while minimizing interventions. Full article
Show Figures

Figure 1

19 pages, 10658 KiB  
Article
Experimental and Simulation Study on Failure of Thermoplastic Carbon Fiber Composite Laminates under Low-Velocity Impact
by Lei Yang, Xiaolin Huang, Zhenhao Liao, Zongyou Wei and Jianchao Zou
Polymers 2024, 16(18), 2581; https://doi.org/10.3390/polym16182581 - 12 Sep 2024
Cited by 1 | Viewed by 1997
Abstract
Numerous studies have demonstrated that under low-velocity, low-energy impact conditions, although the surface damage to fiber-reinforced composite laminates may be minimal, significant internal damage can occur. Consequently, a progressive damage finite element model was specifically developed for thermoplastic carbon fiber-reinforced composite laminates subjected [...] Read more.
Numerous studies have demonstrated that under low-velocity, low-energy impact conditions, although the surface damage to fiber-reinforced composite laminates may be minimal, significant internal damage can occur. Consequently, a progressive damage finite element model was specifically developed for thermoplastic carbon fiber-reinforced composite laminates subjected to low-speed impact loads, with the objective of analyzing the damage behavior of laminates under impacts of varying energy levels. The model utilizes a three-dimensional Hashin criterion for predicting intralayer damage initiation, with cohesive elements based on bilinear traction–separation law for predicting interlaminar delamination initiation, and incorporates a damage constitutive model based on equivalent displacement to characterize fiber damage evolution, along with the B-K criterion for interlaminar damage evolution. The impact response of laminates at energy levels of 5 J, 10 J, 15 J, 20 J, and 25 J was analyzed through numerical simulation, drop-hammer experiments, and XCT non-destructive testing. The results indicated that the simulation outcomes closely correspond with the experimental findings, with both the predicted peak error and absorbed energy error maintained within a 5% margin, and the trends of the mechanical response curves aligning closely with the experimental data. The damage patterns predicted by the numerical simulations were consistent with the results obtained from XCT scans. The study additionally revealed that the impact damage of the laminates primarily stems from interlaminar delamination and intralayer tensile failure. Initial damage typically presents as internal delamination; hence, enhancing interlaminar bonding performance can significantly augment the overall load-bearing capacity of the laminate. Full article
(This article belongs to the Special Issue Computational and Experimental Approaches in Polymeric Materials)
Show Figures

Graphical abstract

15 pages, 6840 KiB  
Article
Dynamic Binary-Medium Model for Jointed Rock Subjected to Cyclic Loading
by Mingxing Liu, Enlong Liu, Xingyan Liu and Qingsong Zheng
Mathematics 2024, 12(11), 1765; https://doi.org/10.3390/math12111765 - 6 Jun 2024
Cited by 4 | Viewed by 1000
Abstract
Revealing the damage mechanism of jointed rocks under a cyclic loading and formulating the corresponding dynamic constitutive model to meet the requirements for the evaluation of anti-vibration safety for critical engineering construction and operation is an essential, urgent and basic subject. Based on [...] Read more.
Revealing the damage mechanism of jointed rocks under a cyclic loading and formulating the corresponding dynamic constitutive model to meet the requirements for the evaluation of anti-vibration safety for critical engineering construction and operation is an essential, urgent and basic subject. Based on the breakage mechanics for geological material, jointed rock is considered as a binary-medium material composed of the bonded elements and frictional elements. The bonded elements are regarded as elastic-brittle elements, and the frictional elements are regarded as elastic-plastic elements. Firstly, the static binary-medium model for jointed rock is established based on the homogenization method and by introducing the breakage ratio and the strain concentration coefficient. Then, the dynamic binary-medium model for jointed rock under cyclic loads is established considering the nonlinear damage effect resulting from cyclic loads. The breakage ratio formula is improved, and the Drucker–Prager criterion is introduced. During the unloading stage, it is supposed that the breakage ratios and strain concentration coefficients remain unchanged and the stress–strain ratios of both bonded elements and frictional elements are constant. The model is verified by static and dynamic triaxial tests of jointed rock samples with an interpenetrated joint. It is found that the model can describe the nonlinear stress–strain characteristics of a jointed rock subjected to cyclic loads relatively well and can reflect the effects of cyclic loading on the deformation and damage, including the lateral deformation characteristics. Meanwhile, the typical three-stage (varying from sparse to dense to sparse) evolution laws of the stress–strain curves are also reflected relatively well. Full article
(This article belongs to the Special Issue Numerical Modeling and Simulation in Geomechanics)
Show Figures

Figure 1

18 pages, 8739 KiB  
Article
Bond and Cracking Characteristics of PVA-Fiber-Reinforced Cementitious Composite Reinforced with Braided AFRP Bars
by Shugo Takasago, Toshiyuki Kanakubo, Hiroya Kobayashi and Hideto Sasaki
Fibers 2023, 11(12), 107; https://doi.org/10.3390/fib11120107 - 6 Dec 2023
Cited by 3 | Viewed by 2417
Abstract
Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout [...] Read more.
Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout tests on specimens with varying bond lengths were conducted. Beam specimens were also subjected to four-point bending tests. In the pullout tests, experimental parameters included the cross-sectional dimensions and the fiber volume fractions of PVA-FRCC. A trilinear model for the bond constitutive law (bond stress–loaded-end slip relationship) was proposed. In the pullout bond test with specimens of long bond length, bond strength was found to increase with increases in both the fiber volume fraction and the cross-sectional dimension of the specimens. Bond behavior in specimens of long bond length was analyzed numerically using the proposed bond constitutive law. The calculated average bond stress–loaded-end slip relationships favorably fitted the test results. In bending tests with AFRP/PVA-FRCC beam specimens, high ductility was indicated by the bridging effect of fibers. The number of cracks increased with increases in the fiber volume fraction of PVA-FRCC. In specimens with a fiber volume fraction of 2%, the load reached its maximum value due to compression fracture of the FRCC. The crack width in PVA-FRCC calculated by the predicted formula, considering the bond constitutive law and the fiber bridging law, showed good agreement with the reinforcement strain–crack width relationship obtained from the tests. Full article
Show Figures

Graphical abstract

16 pages, 1084 KiB  
Article
Scott Blair Fractional-Type Viscoelastic Behavior of Thermoplastic Polyurethane
by Christian Pichler, Stefan Oberparleiter and Roman Lackner
Polymers 2023, 15(18), 3770; https://doi.org/10.3390/polym15183770 - 14 Sep 2023
Cited by 1 | Viewed by 1580
Abstract
In this paper, the experimental characterization of the viscoelastic properties of thermoplastic polyurethane (TPU) samples through creep experiments is presented. Experiments were conducted at different constant temperature levels (15, 25, and 35 C), for three different tensile stress levels (0.3, 0.5, and [...] Read more.
In this paper, the experimental characterization of the viscoelastic properties of thermoplastic polyurethane (TPU) samples through creep experiments is presented. Experiments were conducted at different constant temperature levels (15, 25, and 35 C), for three different tensile stress levels (0.3, 0.5, and 0.7 MPa), and at different physisorbed water contents, providing access to: (i) the temperature dependency of creep parameters and (ii) the assessment, if behavior is indeed viscoelastic. The physisorbed water content was achieved by exposing virgin samples to environments with relative humidity ranging from 0 to 80 percent until mass stability was reached. Creep tests were conducted immediately afterwards with this particular humidity level. The main results of this study are as follows. The temperature dependency of the obtained creep parameters is well described in Arrhenius plots. With regard to water content, two prototype material responses were observed in the experimental program and accurately modeled using the following fractional-type models: (i) Scott Blair-type (i.e., power-law-type) only behavior, pronounced for the combination of low water content/low temperature; (ii) combined Scott Blair plus Lomnitz (i.e., log-type) behavior for high water content/high temperature. This change in behavior associated with certain thresholds for the specified environmental conditions (temperature and relative humidity) may indicate the initiation of hydrogen bond breakage and rearrangement (carbamate H-bonds and physisorbed water H-bonds). Regarding the short-term or quasi-instantaneous behavior, the Scott Blair element seems highly appropriate and may be better suited than the standard elastic model: the Hookean spring. We associated Scott Blair behavior with the load-induced, quasi-instantaneous re-arrangement of polymer network chains. The secondary viscoelastic mechanism associated with the Lomnitz element, hydrogen bond breakage and rearrangement, comes into play for higher temperatures and/or higher physisorbed water contents. In this case, the contribution of the two constitutive elements is well separated due to the large number of the characteristic time of the Lomnitz element, much larger than the respective value for the Scott Blair element. Full article
Show Figures

Figure 1

37 pages, 26459 KiB  
Article
Non-Linear Analysis of R.C. and P.R.C. Girder Bridges
by Marco Givonetti, Mattia Mairone, Rebecca Asso, Emanuela De Luca, Luis Alberto Bohorquez Grateron, Davide Masera and Giuseppe Carlo Marano
Designs 2023, 7(4), 102; https://doi.org/10.3390/designs7040102 - 17 Aug 2023
Viewed by 2360
Abstract
In professional practice, the design and verification of Reinforced Concrete (RC) and Prestressed Reinforced Concrete (PRC) structures are performed using a simplified calculation provided by the Eurocodes that limits resistance but that also includes a certain level of structural safety. Some aspects that [...] Read more.
In professional practice, the design and verification of Reinforced Concrete (RC) and Prestressed Reinforced Concrete (PRC) structures are performed using a simplified calculation provided by the Eurocodes that limits resistance but that also includes a certain level of structural safety. Some aspects that directly affect the simplified methods involve the use of linear constitutive laws of materials. The use of non-linear laws is evident in the exploitation of reservoirs of strength and deformations of plastic materials in the Ultimate Limit State. The purpose of this research is to evaluate the increase in resistance to bending actions during the plasticization of the beam of existing bridges to support the decision-making process of the engineer in the assessment of existing structures. To achieve this, two codes (MEG Ductility, MEG Fiber Sections) were developed to provide the moment–curvature diagram of RC and PRC sections using non-linear bonds, and in this paper, the study of RC sections is reported. Furthermore, through a push-down analysis, two RC and PRC viaducts have been analyzed using the moment–curvature characteristics obtained from the realized codes and by varying the non-linear constitutive bonds. The results of this study provide valuable insights into the behavior of RC structures under bending actions and demonstrate the importance of considering non-linear material laws for accurate structural assessments. The findings contribute to the enhancement of the decision-making process of engineers when dealing with existing infrastructures. Full article
(This article belongs to the Section Civil Engineering Design)
Show Figures

Figure 1

25 pages, 5649 KiB  
Article
Experimental Research and Numerical Analysis of CFRP Retrofitted Masonry Triplets under Shear Loading
by Houria Hernoune, Benchaa Benabed, Rajab Abousnina, Abdalrahman Alajmi, Abdullah M GH Alfadhili and Abdullah Shalwan
Polymers 2022, 14(18), 3707; https://doi.org/10.3390/polym14183707 - 6 Sep 2022
Cited by 10 | Viewed by 2868
Abstract
This paper presents an experimental and numerical study into the shear response of brick masonry triplet prisms under different levels of precompression, as well as samples reinforced with carbon fiber-reinforced polymer (CFRP) strips. Masonry triplets were constructed with two different mortar mix ratios [...] Read more.
This paper presents an experimental and numerical study into the shear response of brick masonry triplet prisms under different levels of precompression, as well as samples reinforced with carbon fiber-reinforced polymer (CFRP) strips. Masonry triplets were constructed with two different mortar mix ratios (1:1:3 and 1:1:5). In this study, finite element models for the analysis of shear triplets are developed using detailed micro-modelling (DMM) approach and validated with the experimental data. The failure mechanisms observed in the masonry triplets were simulated using a coupled XFEM-cohesive behaviour approach in ABAQUS finite element software. The nonlinear behaviour of mortar and brick was simulated using the concrete damaged plasticity (CDP) constitutive laws. The cohesive element with zero thicknesses was employed to simulate the behaviour of the unit–mortar interfaces. The extended finite element method (XFEM) was employed to simulate the crack propagation in the mortar layer without an initial definition of crack location. CFRP strips were simulated by 3D shell elements and connected to masonry elements by an interface model. The changes in failure mechanism and shear strength are calculated for varying types of mortar and fiber orientation of CFRP composite. Based on this study, it was concluded that the ultimate shear strength of masonry triplets is increased due to the external bonding of CFRP strips. The performance of masonry specimens strengthened with CFRP strips is assessed in terms of gain in shear strength and post-peak behaviour for all configurations and types of mortar considered. The comparison of FE and experimental results proved that the models have the potential to be used in practice to accurately predict the shear strength and reflect damage progression in unreinforced and CFRP-reinforced masonry triplets under in-plane loading, including the debonding of the CFRP reinforcement. Additionally, XFEM was found to be a powerful technique to be used for the location of crack initiation and crack propagation in the mortar layer. Full article
(This article belongs to the Special Issue Polymer Fiber and Nanowire Reinforced Materials)
Show Figures

Figure 1

19 pages, 9964 KiB  
Article
Numerical Analysis Exterior RC Beam-Column Joints with CFRP Bars as Beam’s Tensional Reinforcement under Cyclic Reversal Deformations
by Violetta K. Kytinou, Parthena-Maria K. Kosmidou and Constantin E. Chalioris
Appl. Sci. 2022, 12(15), 7419; https://doi.org/10.3390/app12157419 - 24 Jul 2022
Cited by 25 | Viewed by 4794
Abstract
In this paper the cyclic lateral response of reinforced concrete (RC) beam-column joints with composite carbon fiber-reinforced polymer (CFRP) bars as a longitudinal reinforcement in the beam is simulated with finite element (FE) modeling using software Abaqus. An experimental project of two full-scale [...] Read more.
In this paper the cyclic lateral response of reinforced concrete (RC) beam-column joints with composite carbon fiber-reinforced polymer (CFRP) bars as a longitudinal reinforcement in the beam is simulated with finite element (FE) modeling using software Abaqus. An experimental project of two full-scale joint specimens subjected to cyclic loading with supplementary accompanying pull-out tests of CFRP bars is also included in this study. These test results are used to calibrate the developed FE model, the constitutive laws of the materials and the bond response between CFRP bars and concrete. Comparisons between test data and numerical results indicate that the calibrated model accurately predicts the cyclic response of RC beam-column joint specimens with CFRP longitudinal bars as the beam’s tensional reinforcement. A parametric analysis is also performed to provide useful concluding remarks concerning the design of concrete joints with composite bars and the ability of CFRP bars to substitute for conventional steel bars in RC structural members under seismic excitations. Full article
(This article belongs to the Special Issue Seismic Assessment and Design of Structures)
Show Figures

Figure 1

30 pages, 7826 KiB  
Article
FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics
by Amirali Abbasi, Zine El Abidine Benzeguir, Omar Chaallal and Georges El-Saikaly
J. Compos. Sci. 2022, 6(4), 116; https://doi.org/10.3390/jcs6040116 - 12 Apr 2022
Cited by 10 | Viewed by 3493
Abstract
The objective of this study is to conduct a finite-element (FE) numerical study to assess the effect of size on the shear resistance of reinforced concrete (RC) beams strengthened in shear with externally bonded carbon fibre-reinforced polymer (EB-CFRP). Although a few experimental studies [...] Read more.
The objective of this study is to conduct a finite-element (FE) numerical study to assess the effect of size on the shear resistance of reinforced concrete (RC) beams strengthened in shear with externally bonded carbon fibre-reinforced polymer (EB-CFRP). Although a few experimental studies have been done, there is still a lack of FE studies that consider the size effect. Experimental tests are time-consuming and costly and cannot capture all the complex and interacting parameters. In recent years, advanced numerical models and constitutive laws have been developed to predict the response of laboratory tests, particularly for issues related to shear resistance of RC beams, namely, the brittle response of concrete in shear and the failure modes of the interface layer between concrete and EB-CFRP (debonding and delamination). Numerical models have progressed in recent years and can now capture the interfacial shear stress along the bond and the strain profile along the fibres and the normalized main diagonal shear cracks. This paper presents the results of a nonlinear FE numerical study on nine RC beams strengthened in shear using EB-CFRP composites that were tested in the laboratory under three series, each containing three sizes of geometrically similar RC beams (small, medium, and large). The results reveal that numerical studies can predict experimental results with good accuracy. They also confirm that the shear strength of concrete and the contribution of CFRP to shear resistance decrease as the size of beams increases. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume II)
Show Figures

Figure 1

22 pages, 4944 KiB  
Article
Fire Performance of FRP-RC Flexural Members: A Numerical Study
by Dexin Duan, Lijun Ouyang, Wanyang Gao, Qingfeng Xu, Weidong Liu and Jian Yang
Polymers 2022, 14(2), 346; https://doi.org/10.3390/polym14020346 - 17 Jan 2022
Cited by 8 | Viewed by 3439
Abstract
Fiber-reinforced polymer (FRP) bars are increasingly used as a substitute for steel reinforcements in the construction of concrete structures, mainly due to their excellent durability characteristics. When FRP bar-reinforced concrete (referred to as FRP-RC for simplicity) members are used in indoor applications (e.g., [...] Read more.
Fiber-reinforced polymer (FRP) bars are increasingly used as a substitute for steel reinforcements in the construction of concrete structures, mainly due to their excellent durability characteristics. When FRP bar-reinforced concrete (referred to as FRP-RC for simplicity) members are used in indoor applications (e.g., in buildings), the fire performance of FRP-RC members needs to be appropriately designed to satisfy safety requirements. The bond behavior between the FRP bar and the surrounding concrete governs the composite action between the two materials and the related structural performance of the FRP-RC flexural member that will be affected when exposed to fire. However, there is a lack of reliable numerical models in the literature to quantify the effect of bond degradations of the FRP bar-to-concrete interface at high temperatures on the fire performance of FRP-RC flexural members. This paper presents a three-dimensional (3D) finite element (FE) model of FRP-RC flexural members exposed to fire and appropriately considers the temperature-dependent bond degradations of the FRP bar-to-concrete interface at high temperatures. In addition, the thermal properties of concrete and FRP bars are considered in the heat transfer analysis to predict the cross-sectional temperatures of the FRP-RC members under fire exposure. In the FE model, the mechanical properties and constitutive laws of concrete and FRP bars at high temperatures in addition to the bond degradations between them have been properly defined, thereby accurately predicting the global and local structural responses of the FRP-RC members under fire exposure. The proposed FE model has been validated by comparing the FE predictions (both temperature and midspan deflection responses during fire exposure) and the full-scale fire test results reported in the literature. The validated FE model is then used to study the effects of bond degradations on the global and local structural responses of the FRP-RC members under fire exposure. It is proved that the temperature-dependent bond degradations need to be considered to achieve accurate predictions of the failure mode and deflection responses. Full article
(This article belongs to the Special Issue Mechanical Properties of Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

24 pages, 39464 KiB  
Article
Probabilistic Finite Element Modeling of Textile Reinforced SHCC Subjected to Uniaxial Tension
by Iurie Curosu, Amr Omara, Ameer Hamza Ahmed and Viktor Mechtcherine
Materials 2021, 14(13), 3631; https://doi.org/10.3390/ma14133631 - 29 Jun 2021
Cited by 4 | Viewed by 2424
Abstract
The paper presents a finite element investigation of the effect of material composition and the constituents’ interaction on the tensile behavior of strain-hardening cement-based composites (SHCC) both with and without textile reinforcement. The input material parameters for the SHCC and continuous reinforcement models, [...] Read more.
The paper presents a finite element investigation of the effect of material composition and the constituents’ interaction on the tensile behavior of strain-hardening cement-based composites (SHCC) both with and without textile reinforcement. The input material parameters for the SHCC and continuous reinforcement models, as well for their bond, were adopted from reference experimental investigations. The textile reinforcement was discretized by truss elements in the loaded direction only, with the constitutive relationships simulating a carbon and a polymer textile, respectively. For realistic simulation of macroscopic tensile response and multiple cracking patterns in hybrid fiber-reinforced composites subjected to tension, a multi-scale and probabilistic approach was adopted. SHCC was simulated using the smeared crack model, and the input constitutive law reflected the single-crack opening behavior. The probabilistic definition and spatial fluctuation of matrix strength and tensile strength of the SHCC enabled realistic multiple cracking and fracture localization within the loaded model specimens. Two-dimensional (2D) simulations enabled a detailed material assessment with reasonable computational effort and showed adequate accuracy in predicting the experimental findings in terms of macroscopic stress–strain properties, extent of multiple cracking, and average crack width. Besides material optimization, the model is suitable for assessing the strengthening performance of hybrid fiber-reinforced composites on structural elements. Full article
(This article belongs to the Special Issue Mathematical Modeling of Building Materials)
Show Figures

Figure 1

16 pages, 1566 KiB  
Article
Interface Models in Coupled Thermoelasticity
by Michele Serpilli, Serge Dumont, Raffaella Rizzoni and Frédéric Lebon
Technologies 2021, 9(1), 17; https://doi.org/10.3390/technologies9010017 - 4 Mar 2021
Cited by 30 | Viewed by 3108
Abstract
This work proposes new interface conditions between the layers of a three-dimensional composite structure in the framework of coupled thermoelasticity. More precisely, the mechanical behavior of two linear isotropic thermoelastic solids, bonded together by a thin layer, constituted of a linear isotropic thermoelastic [...] Read more.
This work proposes new interface conditions between the layers of a three-dimensional composite structure in the framework of coupled thermoelasticity. More precisely, the mechanical behavior of two linear isotropic thermoelastic solids, bonded together by a thin layer, constituted of a linear isotropic thermoelastic material, is studied by means of an asymptotic analysis. After defining a small parameter ε, which tends to zero, associated with the thickness and constitutive coefficients of the intermediate layer, two different limit models and their associated limit problems, the so-called soft and hard thermoelastic interface models, are characterized. The asymptotic expansion method is reviewed by taking into account the effect of higher-order terms and defining a generalized thermoelastic interface law which comprises the above aforementioned models, as presented previously. A numerical example is presented to show the efficiency of the proposed methodology, based on a finite element approach developed previously. Full article
(This article belongs to the Special Issue Advances in Multiscale and Multifield Solid Material Interfaces)
Show Figures

Figure 1

Back to TopTop