Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,628)

Search Parameters:
Keywords = blockchain research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
91 pages, 7336 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

22 pages, 1156 KiB  
Article
An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access Control
by Gangzheng Zhao, Weijie Tan and Changgen Peng
Electronics 2025, 14(15), 2988; https://doi.org/10.3390/electronics14152988 - 26 Jul 2025
Viewed by 76
Abstract
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges [...] Read more.
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges in privacy leakage risks. Existing academic research indicates current proxy re-encryption schemes remain insufficient for cloud access control scenarios characterized by diversified user requirements and personalized permission management, thus failing to fulfill the security needs of emerging computing paradigms. To resolve these issues, a revocable attribute-based proxy re-encryption scheme supporting policy-hiding is proposed. Data owners encrypt data and upload it to the blockchain while concealing attribute values within attribute-based encryption access policies, effectively preventing sensitive information leaks and achieving fine-grained secure data sharing. Simultaneously, proxy re-encryption technology enables verifiable outsourcing of complex computations. Furthermore, the SM3 (SM3 Cryptographic Hash Algorithm) hash function is embedded in user private key generation, and key updates are executed using fresh random factors to revoke malicious users. Ultimately, the scheme proves indistinguishability under chosen-plaintext attacks for specific access structures in the standard model. Experimental simulations confirm that compared with existing schemes, this solution delivers higher execution efficiency in both encryption/decryption and revocation phases. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

28 pages, 7241 KiB  
Systematic Review
Anomaly Detection in Blockchain: A Systematic Review of Trends, Challenges, and Future Directions
by Ruslan Shevchuk, Vasyl Martsenyuk, Bogdan Adamyk, Vladlena Benson and Andriy Melnyk
Appl. Sci. 2025, 15(15), 8330; https://doi.org/10.3390/app15158330 - 26 Jul 2025
Viewed by 56
Abstract
Blockchain technology’s increasing adoption across diverse sectors necessitates robust security measures to mitigate rising fraudulent activities. This paper presents a comprehensive bibliometric analysis of anomaly detection research in blockchain networks from 2017 to 2024, conducted under the PRISMA paradigm. Using CiteSpace 6.4.R1, we [...] Read more.
Blockchain technology’s increasing adoption across diverse sectors necessitates robust security measures to mitigate rising fraudulent activities. This paper presents a comprehensive bibliometric analysis of anomaly detection research in blockchain networks from 2017 to 2024, conducted under the PRISMA paradigm. Using CiteSpace 6.4.R1, we systematically map the knowledge domain based on 363 WoSCC-indexed articles. The analysis encompasses collaboration networks, co-citation patterns, citation bursts, and keyword trends to identify emerging research directions, influential contributors, and persistent challenges. The study reveals geographical concentrations of research activity, key institutional players, the evolution of theoretical frameworks, and shifts from basic security mechanisms to sophisticated machine learning and graph neural network approaches. This research summarizes the state of the field and highlights future directions essential for blockchain security. Full article
Show Figures

Figure 1

37 pages, 2573 KiB  
Article
Assessing Blockchain Health Devices: A Multi-Framework Method for Integrating Usability and User Acceptance
by Polina Bobrova and Paolo Perego
Computers 2025, 14(8), 300; https://doi.org/10.3390/computers14080300 - 23 Jul 2025
Viewed by 92
Abstract
Integrating blockchain into healthcare devices offers the potential for improved data control but faces significant usability and acceptance challenges. This study addresses this gap by evaluating CipherPal, an improved blockchain-enabled Smart Fidget Toy prototype, using a multi-framework approach to understand the interplay between [...] Read more.
Integrating blockchain into healthcare devices offers the potential for improved data control but faces significant usability and acceptance challenges. This study addresses this gap by evaluating CipherPal, an improved blockchain-enabled Smart Fidget Toy prototype, using a multi-framework approach to understand the interplay between technology, design, and user experience. We synthesized insights from three complementary frameworks: an expert review assessing adherence to Web3 Design Guidelines, a User Acceptance Toolkit assessment with professionals based on UTAUT2, and an extended three-day user testing study. The findings revealed that users valued CipherPal’s satisfying tactile interaction and perceived benefits for well-being, such as stress relief. However, significant usability barriers emerged, primarily related to challenging device–application connectivity and data synchronization. The multi-framework approach proved valuable in revealing these core tensions. While the device was conceptually accepted, the blockchain integration added significant interaction friction that overshadowed its potential benefits during the study. This research underscores the critical need for user-centered design in health-related blockchain applications, emphasizing that seamless usability and abstracting technical complexity are paramount for adoption. Full article
(This article belongs to the Special Issue When Blockchain Meets IoT: Challenges and Potentials)
Show Figures

Figure 1

17 pages, 1377 KiB  
Article
Technology Adoption Framework for Supreme Audit Institutions Within the Hybrid TAM and TOE Model
by Babalwa Ceki and Tankiso Moloi
J. Risk Financial Manag. 2025, 18(8), 409; https://doi.org/10.3390/jrfm18080409 - 23 Jul 2025
Viewed by 223
Abstract
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies [...] Read more.
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies into their auditing processes using a hybrid theoretical approach based on the TAM (Technology Acceptance Model) and TOE (Technology–Organisation–Environment) models. The framework was informed by insights from nineteen highly experienced experts in the field from eight countries. Through a two-round Delphi questionnaire, the experts provided valuable input on the key factors, challenges, and strategies for successful technology adoption by public sector audit organisations. The findings of this research reveal that technology adoption in SAIs starts with solid management support led by the chief technology officer. They must evaluate the IT infrastructure and readiness for advanced technologies, considering the budget and funding. Integrating solutions like the SAI of Ghana’s Audit Management Information System can significantly enhance audit efficiency. Continuous staff training is essential to build a positive attitude toward new technologies, covering areas like data algorithm auditing and big data analysis. Assessing the complexity and compatibility of new technologies ensures ease of use and cost-effectiveness. Continuous support from technology providers and monitoring advancements will keep SAIs aligned with technological developments, enhancing their auditing capabilities. Full article
(This article belongs to the Special Issue Financial Management)
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 193
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

16 pages, 5175 KiB  
Data Descriptor
From Raw GPS to GTFS: A Real-World Open Dataset for Bus Travel Time Prediction
by Aigerim Mansurova, Aigerim Mussina, Sanzhar Aubakirov, Aliya Nugumanova and Didar Yedilkhan
Data 2025, 10(8), 119; https://doi.org/10.3390/data10080119 - 23 Jul 2025
Viewed by 268
Abstract
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing [...] Read more.
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing transit modeling tools. Unlike typical static GTFS feeds, this dataset provides empirically observed dwell times, run times, and travel times, offering a detailed snapshot of operational variability in urban bus systems. The dataset supports applications in machine learning–based travel time prediction, timetable optimization, and transit reliability analysis, especially in settings where live feeds are unavailable. By releasing this dataset publicly, we aim to promote transparent, data-driven transport research in emerging urban contexts. Full article
Show Figures

Figure 1

21 pages, 4519 KiB  
Article
Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability
by Kenan Zhao, Meng Zhang, Xiaofei Fan, Bo Peng, Huanyue Wang, Dongfang Zhang, Dongxiao Li and Xuesong Suo
Agriculture 2025, 15(15), 1569; https://doi.org/10.3390/agriculture15151569 - 22 Jul 2025
Viewed by 190
Abstract
Traditional seed supply chains face several hidden risks. Certain regulatory departments tend to focus primarily on entity circulation while neglecting the origin and accuracy of data in seed quality supervision, resulting in limited precision and low credibility of traceability information related to quality [...] Read more.
Traditional seed supply chains face several hidden risks. Certain regulatory departments tend to focus primarily on entity circulation while neglecting the origin and accuracy of data in seed quality supervision, resulting in limited precision and low credibility of traceability information related to quality and safety. Blockchain technology offers a systematic solution to key issues such as data source distortion and insufficient regulatory penetration in the seed supply chain by enabling data rights confirmation, tamper-proof traceability, smart contract execution, and multi-node consensus mechanisms. In this study, we developed a system that integrates blockchain and neural networks to provide seed traceability services. When uploading seed traceability information, the neural network models are employed to verify the authenticity of information provided by humans and save the tags on the blockchain. Various neural network architectures, such as Multilayer Perceptron, Recurrent Neural Network, Fully Convolutional Neural Network, and Long Short-term Memory model architectures, have been tested to determine the authenticity of seed traceability information. Among these, the Long Short-term Memory model architecture demonstrated the highest accuracy, with an accuracy rate of 90.65%. The results demonstrated that neural networks have significant research value and potential to assess the authenticity of information in a blockchain. In the application scenario of seed quality traceability, using blockchain and neural networks to determine the authenticity of seed traceability information provides a new solution for seed traceability. This system empowers farmers by providing trustworthy seed quality information, enabling better purchasing decisions and reducing risks from counterfeit or substandard seeds. Furthermore, this mechanism fosters market circulation of certified high-quality seeds, elevates crop yields, and contributes to the sustainable growth of agricultural systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

23 pages, 740 KiB  
Article
A Multi-Paradigm Ethical Framework for Hybrid Intelligence in Blockchain Technology and Cryptocurrency Systems Governance
by Haris Alibašić
FinTech 2025, 4(3), 34; https://doi.org/10.3390/fintech4030034 - 22 Jul 2025
Viewed by 178
Abstract
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and [...] Read more.
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and artificial intelligence—in the governance of blockchain technology and cryptocurrency systems. Drawing upon complexity theory and institutional theory, this study employs a theory synthesis methodology to investigate inherent paradoxes within hybrid intelligence systems, including how transparency creates new opacities in AI decision-making, decentralization enables centralized control, and algorithmic efficiency undermines ethical sensitivity. Through PRISMA-compliant systematic literature analysis of 50 relevant publications and theoretical synthesis, this research demonstrates how blockchain technology fundamentally redefines hybrid intelligence by establishing novel forms of trust, accountability, and collective decision-making. The framework advances three testable propositions regarding emergent intelligence properties, adaptive capacity, and institutional legitimacy while providing practical governance principles and implementation methodologies for blockchain developers, regulators, and participants. This study contributes theoretically by bridging the fields of complex systems and institutional analysis, integrating complex adaptive systems with institutional legitimacy processes through a multi-paradigm integration methodology. It delivers an ethical framework that addresses accountability distribution in Decentralized Autonomous Organizations, quantifies ethical challenges across major platforms, and offers empirically validated guidelines for balancing algorithmic autonomy with human oversight in decentralized systems. Full article
Show Figures

Figure 1

40 pages, 16352 KiB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 568
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

30 pages, 4522 KiB  
Review
Mapping Scientific Knowledge on Patents: A Bibliometric Analysis Using PATSTAT
by Fernando Henrique Taques
FinTech 2025, 4(3), 32; https://doi.org/10.3390/fintech4030032 - 18 Jul 2025
Viewed by 600
Abstract
The digital economy has amplified the role of technological innovation in transforming financial services and business models. Patent data offer valuable insights into these dynamics, especially within the growing FinTech ecosystem. This study conducts a bibliometric analysis of academic research that utilizes PATSTAT, [...] Read more.
The digital economy has amplified the role of technological innovation in transforming financial services and business models. Patent data offer valuable insights into these dynamics, especially within the growing FinTech ecosystem. This study conducts a bibliometric analysis of academic research that utilizes PATSTAT, a global database managed by the European Patent Office, focusing on its application in studies related to digital innovation, finance, and economic transformation. A systematic mapping of publications indexed in Scopus, Web of Science, Wiley, Emerald, and Springer Nature is carried out using Biblioshiny and Bibliometrix in RStudio 2025.05.0, complemented by graph-based visualizations via VOSviewer 1.6.20. The findings reveal a growing body of research that leverages PATSTAT to explore technological trajectories, intellectual property strategies, and innovation systems, particularly in areas such as blockchain technologies, AI-driven finance, digital payments, and smart contracts. This study contributes to the literature by highlighting the strategic value of patent analytics in the FinTech landscape and offers a reference point for researchers and decision-makers aiming to understand emerging trends in financial technologies and the digital economy. Full article
Show Figures

Figure 1

33 pages, 3547 KiB  
Article
Mapping the Intellectual Structure of Computational Risk Analytics in Banking and Finance: A Bibliometric and Thematic Evolution Study
by Sotirios J. Trigkas, Kanellos Toudas and Ioannis Chasiotis
Computation 2025, 13(7), 172; https://doi.org/10.3390/computation13070172 - 17 Jul 2025
Viewed by 327
Abstract
Modern financial practices introduce complex risks, which in turn force financial institutions to rely increasingly on computational risk analytics (CRA). The purpose of our research is to attempt to systematically explore the evolution and intellectual structure of CRA in banking using a detailed [...] Read more.
Modern financial practices introduce complex risks, which in turn force financial institutions to rely increasingly on computational risk analytics (CRA). The purpose of our research is to attempt to systematically explore the evolution and intellectual structure of CRA in banking using a detailed bibliometric analysis of the literature sourced from Web of Science from 2000 to 2025. A comprehensive search in the Web of Science (WoS) Core Collection yielded 1083 peer-reviewed publications, which we analyzed using analytical tools like VOSviewer 1.6.20 and Bibliometrix (Biblioshiny 5.0) so as to examine the dataset and uncover bibliometric characteristics like citation patterns, keyword occurrences, and thematic clustering. Our initial analysis results uncover the presence of key research clusters focusing on bankruptcy prediction, AI integration in financial services, and advanced deep learning applications. Furthermore, our findings note a transition of CRA from an emerging to an expanding domain, especially after 2019, with terms like machine learning (ML), artificial intelligence (AI), and deep learning (DL) being identified as prominent keywords and a recent shift towards blockchain, explainability, and financial stability being present. We believe that this study tries to address the need for an updated mapping of CRA, providing valuable insights for future academic inquiry and practical financial risk management applications. Full article
Show Figures

Figure 1

21 pages, 1186 KiB  
Article
How Digital Technology and Business Innovation Enhance Economic–Environmental Sustainability in Legal Organizations
by Linhua Xia, Zhen Cao and Muhammad Bilawal Khaskheli
Sustainability 2025, 17(14), 6532; https://doi.org/10.3390/su17146532 - 17 Jul 2025
Viewed by 416
Abstract
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how [...] Read more.
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how the development of artificial intelligence, resource management, big data analysis, blockchain, and the Internet of Things enables companies to maximize supply efficiency and address evolving environmental regulations and sustainable decision-making. Through digital technology, businesses can facilitate supply chain transparency, adopt circular economy practices, and produce in an equitable and environmentally friendly manner. Additionally, intelligent business management practices, such as effective decision-making and sustainability reporting, enhance compliance with authorities while ensuring long-term profitability from a legal perspective. Integrating business innovation and digital technology within legal entities enhances economic efficiency, reduces operational costs, improves environmental sustainability, reduces paper usage, and lowers the carbon footprint, creating a double-benefit model of long-term resilience. The policymakers’ role in formulating policy structures that lead to green digital innovation is also to ensure that economic development worldwide is harmonized with environmental protection and international governance. Using example studies and empirical research raises awareness about best practices in technology-based sustainability initiatives across industries and nations, aligning with the United Nations Sustainable Development Goals. Full article
Show Figures

Figure 1

43 pages, 2816 KiB  
Article
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
by Sameer Misbah, Muhammad Farrukh Shahid, Shahbaz Siddiqui, Tariq Jamil S. Khanzada, Rehab Bahaaddin Ashari, Zahid Ullah and Mona Jamjoom
Smart Cities 2025, 8(4), 118; https://doi.org/10.3390/smartcities8040118 - 16 Jul 2025
Viewed by 480
Abstract
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart [...] Read more.
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart transportation services that share their data with smart safety services to execute emergency response, surveillance, and criminal prevention measures. However, an important issue in this ecosystem is data security, which involves the protection of sensitive data exchange during the interoperability of heterogeneous smart services. Researchers have addressed these issues through blockchain integration and the implementation of smart contracts, where collaborative applications can enhance both the efficiency and security of the smart city ecosystem. Despite these facts, complexity is an issue in smart contracts since complex coding associated with their deployment might influence the performance and scalability of collaborative applications in interconnected systems. These challenges underscore the need to optimize smart contract code to ensure efficient and scalable solutions in the smart city ecosystem. In this article, we propose a new framework that integrates generative AI with blockchain in order to eliminate the limitations of smart contracts. We make use of models such as GPT-2, GPT-3, and GPT4, which natively can write and optimize code in an efficient manner and support multiple programming languages, including Python 3.12.x and Solidity. To validate our proposed framework, we integrate these models with already existing frameworks for collaborative smart services to optimize smart contract code, reducing resource-intensive processes while maintaining security and efficiency. Our findings demonstrate that GPT-4-based optimized smart contracts outperform other optimized and non-optimized approaches. This integration reduces smart contract execution overhead, enhances security, and improves scalability, paving the way for a more robust and efficient smart contract ecosystem in smart city applications. Full article
Show Figures

Figure 1

Back to TopTop