Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability
Abstract
1. Introduction
2. Materials and Methods
2.1. Blockchain
2.2. Neural Network Architecture
2.3. Deployment and Integration of Neural Networks and Blockchains
3. Results
- X—Number of correctly predicted samples by the model
- Y—Total number of samples predicted by the model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
RFID | Radio Frequency Identification |
EFFNN | Efficient Net feedforward neural network |
MSP | Microsoft Student Partners |
Azure AD | Azure Active Directory |
PKI | Public Key Infrastructure |
CA | Certificate Authority |
MLP | Multilayer Perceptron |
FCNN | Fully Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long Short-term Memory |
TP | true positive |
TN | true negative |
FP | false positive |
FN | false negative |
TPS | transaction processing speed |
References
- Bogdanović, S.; Mladenov, V.; Balešević, S. The importance of using certified seed. Sel. I Semen. 2015, 21, 63–67. [Google Scholar] [CrossRef]
- Elias, S.G. The importance of using high quality seeds in agriculture systems. Agric. Res. Technol. Open Access J. 2018, 15, 555961. [Google Scholar] [CrossRef]
- Munyaka, N.; Mvumi, B.M.; Mazarura, U.M. Seed Security: Exploring the Potential for Smallholder Production of Certified Seed Crop at Household Level. J. Sustain. Dev. 2015, 8, 242. [Google Scholar] [CrossRef]
- Marino, L.A.; Pavese, V.; Ruffa, P.; Ferrero, M.; Acquadro, A.; Barchi, L.; Botta, R.; Marinoni, D.T. Guardians of quality: Advancing Castanea sativa traceability using DNA analysis from seed to processed food. Sci. Hortic. 2024, 325, 112713. [Google Scholar] [CrossRef]
- Francois, G.; Fabrice, V.; Didier, M. Traceability of fruits and vegetables. Phytochemistry 2020, 173, 112291. [Google Scholar] [CrossRef] [PubMed]
- Loftus, R. Traceability of biotech-derived animals: Application of DNA technology. Rev. Sci. Tech.-Nique-Off. Int. Des Epizoot. 2005, 24, 231–242. [Google Scholar] [CrossRef]
- Zambianchi, S.; Soffritti, G.; Stagnati, L.; Patrone, V.; Morelli, L.; Vercesi, A.; Busconi, M. Applicability of DNA traceability along the entire wine production chain in the real case of a large Italian cooperative winery. Food Control 2021, 124, 107929. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liu, C.; Li, X. Where Do Milk Microbes Originate? Traceability of Microbial Community Structure in Raw Milk. Foods 2025, 14, 1490. [Google Scholar] [CrossRef] [PubMed]
- Ferrández-Pastor, F.-J.; Mora-Pascual, J.; Díaz-Lajara, D. Agricultural traceability model based on IoT and Blockchain: Application in industrial hemp production. J. Ind. Inf. Integr. 2022, 29, 100381. [Google Scholar] [CrossRef]
- Agnusdei, G.; Coluccia, B.; Elia, V.; Miglietta, P. IoT technologies for wine supply chain traceability: Potential application in the Southern Apulia Region (Italy). Procedia Comput. Sci. 2022, 200, 1125–1134. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Farooq, U.; Ma’ARif, M.R.; Syaekhoni, M.A.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control 2020, 110, 107016. [Google Scholar] [CrossRef]
- Li, Z.; Xu, H.; Lyu, R. Effectiveness analysis of the data-driven strategy of AI chips supply chain considering blockchain traceability with capacity constraints. Comput. Ind. Eng. 2024, 189, 109947. [Google Scholar] [CrossRef]
- Chen, X.; Cao, F.; Wang, Q.; Ye, Z.; Chen, W.; Cui, W.; Feng, D.; Ji, G.; Lin, Z.; Meng, Q.; et al. 2024 Chinese guideline on the construction and application of medical blockchain. Intell. Med. 2025, 5, 73–83. [Google Scholar] [CrossRef]
- Uyar, H.; Papanikolaou, A.; Kapassa, E.; Touloupos, M.; Rizou, S. Blockchain-Enabled Traceability and Certification for Frozen Food Supply Chains: A Conceptual Design. Smart Agric. Technol. 2025, 12, 101085. [Google Scholar] [CrossRef]
- Khan, A.; Hossain, E.; Shahaab, A.; Khan, I. ShrimpChain: A blockchain-based transparent and traceable framework to enhance the export potentiality of Bangladeshi shrimp. Smart Agric. Technol. 2022, 2, 100041. [Google Scholar] [CrossRef]
- Lai, M.B.; Vergamini, D.; Brunori, G. Food Supply Chain: A Framework for the Governance of Digital Traceability. Foods 2025, 14, 2032. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.E.; Kim, J.-H.; Kim, J.-Y.; Ahn, J.-H. Food Safety Distribution Systems Using Private Blockchain: Ensuring Traceability and Data Integrity Verification. Foods 2025, 14, 1405. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.H.; Malik, M.N.; Konečná, Z.; Chofreh, A.G.; Goni, F.A.; Klemeš, J.J. Blockchain technology for agricultural supply chains during the COVID-19 pandemic: Benefits and cleaner solutions. J. Clean. Prod. 2022, 347, 131268. [Google Scholar] [CrossRef] [PubMed]
- El Hajji, M.; Es-Saady, Y.; Addi, M.A.; Antari, J. Optimization of agrifood supply chains using Hyperledger Fabric blockchain technology. Comput. Electron. Agric. 2024, 227, 109503. [Google Scholar] [CrossRef]
- Rehan, M.; Javed, A.R.; Kryvinska, N.; Gadekallu, T.R.; Srivastava, G.; Jalil, Z. Supply Chain Management Using an Industrial Internet of Things Hyperledger Fabric Network. Hum.-Centric Comput. Inf. Sci. 2023, 13, 4. [Google Scholar] [CrossRef]
- Farjon, G.; Huijun, L.; Edan, Y. Deep-learning-based counting methods, datasets, and applications in agriculture: A review. Precis. Agric. 2023, 24, 1683–1711. [Google Scholar] [CrossRef]
- Bi, H.; Chen, W.; Yang, Y. Extracting illuminated vegetation, shadowed vegetation and background for finer fractional vegetation cover with polarization information and a convolutional network. Precis. Agric. 2024, 25, 1106–1125. [Google Scholar] [CrossRef]
- Feng, J.; Chao, X.; Zhang, Z.; He, D.; Zhang, J.; Ye, Z. A pooling module with multidirectional and multi-scale spatial information and its application on semantic segmentation of leaf lesions. Precis. Agric. 2023, 24, 2416–2437. [Google Scholar] [CrossRef]
- Fajardo, M.; Whelan, B.M. Within-farm wheat yield forecasting incorporating off-farm information. Precis. Agric. 2021, 22, 569–585. [Google Scholar] [CrossRef]
- Li, Y.; Ren, Z.; Zhao, C.; Liang, G. Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning. Foods 2025, 14, 484. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; León, L.; Ramírez, M.R.; Tejerina, D. Near-Infrared Spectroscopy as a Tool for the Traceability Control of High-Quality Iberian Dry-Cured Meat Products. Foods 2025, 14, 432. [Google Scholar] [CrossRef] [PubMed]
- Maram, B.; Gullipalli, N.; Nayak, R.K.; Tripathy, R.; Muppidi, S.; Saini, M.L. Hybrid EfficientNet feed forward neural network for ransomware detection in blockchain. Eng. Appl. Artif. Intell. 2025, 149, 110292. [Google Scholar] [CrossRef]
- Wang, J. Multi agent system based smart grid anomaly detection using blockchain machine learning model in mobile edge computing network. Comput. Electr. Eng. 2025, 121, 109825. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X. Development Trajectory of Blockchain Platforms: The Role of Multirole. Inf. Syst. Res. 2023, 35, 1296–1323. [Google Scholar] [CrossRef]
- Habib, G.; Sharma, S.; Ibrahim, S.; Ahmad, I.; Qureshi, S.; Ishfaq, M. Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing. Future Internet 2022, 14, 341. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Blockchain Integration in the Era of Industrial Metaverse. Appl. Sci. 2023, 13, 1353. [Google Scholar] [CrossRef]
- Psaila, G.; Garcia-Bringas, P. Blockchain: Challenges and opportunities beyond bitcoin. Dyna 2017, 92, 517–521. [Google Scholar]
- Chatterjee, K.; Goharshady, A.K.; Pourdamghani, A. Hybrid mining: Exploiting blockchain’s computational power for dis-tributed problem solving. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 374–381. [Google Scholar]
- Marchese, A.; Tomarchio, O. A Blockchain-Based System for Agri-Food Supply Chain Traceability Management. SN Comput. Sci. 2022, 3, 279. [Google Scholar] [CrossRef]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the 2022 26th International Computer Science and Engineering Conference (ICSEC), Sakon Nakhon, Thailand, 21–23 December 2018. [Google Scholar]
- Ahmed, T.; Mukta, S.F.; Al Mahmud, T.; Al Hasan, S.; Hussain, M.G. Bangla Text Emotion Classification using LR, MNB and MLP with TF-IDF & CountVectorizer. In Proceedings of the 2022 26th International Computer Science and Engineering Conference (ICSEC), Sakon Nakhon, Thailand, 21–23 December 2022. [Google Scholar]
- Mostarda, L.; Pinna, A.; Sestili, D.; Tonelli, R. Performance Analysis of a BESU Permissioned Blockchain. In Advanced Information Networking and Applications; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Ucbas, Y.; Eleyan, A.; Hammoudeh, M.; Alohaly, M. Performance and Scalability Analysis of Ethereum and Hyperledger Fabric. IEEE Access 2023, 11, 67156–67167. [Google Scholar] [CrossRef]
- Ravi, D.; Ramachandran, S.; Vignesh, R.; Falmari, V.R.; Brindha, M. Privacy preserving transparent supply chain management through Hyperledger Fabric. Blockchain Res. Appl. 2022, 3, 100072. [Google Scholar] [CrossRef]
- Fan, C.; Lin, C.; Khazaei, H.; Musilek, P. Performance Analysis of Hyperledger Besu in Private Blockchain. In Proceedings of the 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Newark, CA, USA, 15–18 August 2022. [Google Scholar]
- Al-Selwi, S.M.; Hassan, M.F.; Abdulkadir, S.J.; Muneer, A.; Sumiea, E.H.; Alqushaibi, A.; Ragab, M.G. RNN-LSTM: From applications to modeling techniques and review. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102068. [Google Scholar] [CrossRef]
- Das, T.; Guchhait, S. A hybrid GRU and LSTM-based deep learning approach for multiclass structural damage identification using dynamic acceleration data. Eng. Fail. Anal. 2025, 170, 109259. [Google Scholar] [CrossRef]
#Network initialization org1 = Organization(“Org1MSP”, peers = [“peer0.org1.example.com”]) org2 = Organization(“Org2MSP”, peers = [“peer0.org2.example.com”]) channel = Channel(“mychannel”, orderer = “orderer.example.com”, orgs = [org1, org2]) channel.create_genesis_block() #Chaincode deployment cc_package = package_chaincode(“mycc”, “github.com/chaincode”, “go”, “1.0”) peer0.org1.install_chaincode(cc_package) peer0.org2.install_chaincode(cc_package) peer0.org1.approve_chaincode(“mychannel”, “mycc”, “1.0”, “AND(‘Org1MSP.member’,‘Org2MSP.member’)”) peer0.org2.approve_chaincode(“mychannel”, “mycc”, “1.0”, “AND(‘Org1MSP.member’,‘Org2MSP.member’)”) peer0.org1.commit_chaincode(“mychannel”, “mycc”) | #transaction proposal = client.org1.new_proposal( channel = “mychannel”, chaincode = “mycc”, fcn = “TransferAsset”, args = [“asset1”, “org1”, “org2”], peers = [peer0.org1, peer0.org2] ) endorsement1 = peer0.org1.endorse(proposal) endorsement2 = peer0.org2.endorse(proposal) transaction = client.org1.send_to_orderer([endorsement1, endorsement2], “orderer.example.com”) block = orderer.deliver_block(“mychannel”, transaction) peer0.org1.commit_block(block) peer0.org2.commit_block(block) #query response = peer0.org1.query( channel = “mychannel”, chaincode = “mycc”, fcn = “GetAsset”, args = [“asset1”] ) print(response) |
Seed Information Fields | Synthetic Fraudulent Data Generation Ranges | Seed Information Fields | Synthetic Fraudulent Data Generation Ranges |
---|---|---|---|
Seed Name | Random selection from all available seed names | Germination Rate (%) | 80–95 |
Original Weight (g) | 1–100 | Moisture Content (%) | 1–12 |
Seeds per Bag | 50–2000 | Shelf Life (years) | 1–2 |
Maturity Period | Random selection from all available maturity periods | Origin | Random selection from all available origins |
Purity (%) | 92–98 | Seeding Rate per Mu (bag) | 1–100 |
Cleanliness (%) | 92–98 | Price (RMB) | 1–300 |
Name | Succ | Fail | Send Rate (TPS) | Max Latency (s) | Min Latency (s) | Avg Latency (s) | Throughput (TPS) |
---|---|---|---|---|---|---|---|
Create a commodity with 10 tx. | 10 | 0 | 10.8 | 0.5 | 0.1 | 0.3 | 10.0 |
Create a commodity with 30 tx. | 30 | 0 | 10.6 | 0.8 | 0.2 | 0.4 | 9.8 |
Create a commodity with 50 tx. | 50 | 0 | 10.3 | 1.5 | 0.3 | 0.7 | 9.5 |
Create a commodity with 100 tx. | 100 | 0 | 10.1 | 2.8 | 0.4 | 1.2 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Zhang, M.; Fan, X.; Peng, B.; Wang, H.; Zhang, D.; Li, D.; Suo, X. Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability. Agriculture 2025, 15, 1569. https://doi.org/10.3390/agriculture15151569
Zhao K, Zhang M, Fan X, Peng B, Wang H, Zhang D, Li D, Suo X. Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability. Agriculture. 2025; 15(15):1569. https://doi.org/10.3390/agriculture15151569
Chicago/Turabian StyleZhao, Kenan, Meng Zhang, Xiaofei Fan, Bo Peng, Huanyue Wang, Dongfang Zhang, Dongxiao Li, and Xuesong Suo. 2025. "Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability" Agriculture 15, no. 15: 1569. https://doi.org/10.3390/agriculture15151569
APA StyleZhao, K., Zhang, M., Fan, X., Peng, B., Wang, H., Zhang, D., Li, D., & Suo, X. (2025). Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability. Agriculture, 15(15), 1569. https://doi.org/10.3390/agriculture15151569