Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = blade pitch angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 25581 KiB  
Article
Phase Synchronisation for Tonal Noise Reduction in a Multi-Rotor UAV
by Burak Buda Turhan, Djamel Rezgui and Mahdi Azarpeyvand
Drones 2025, 9(8), 544; https://doi.org/10.3390/drones9080544 - 1 Aug 2025
Viewed by 182
Abstract
This study aims to investigate the effects of phase synchronisation on tonal noise reduction in a multi-rotor UAV using an electronic phase-locking system. Experiments at the University of Bristol explored the impact of relative phase angle, propeller spacing, and blade geometry on acoustic [...] Read more.
This study aims to investigate the effects of phase synchronisation on tonal noise reduction in a multi-rotor UAV using an electronic phase-locking system. Experiments at the University of Bristol explored the impact of relative phase angle, propeller spacing, and blade geometry on acoustic performance, including psychoacoustic annoyance. Results show that increasing the phase angle consistently reduces the sound pressure level (SPL) due to destructive interference. For the two-bladed configuration, the highest noise reduction occurred at relative phase angle Δψ=90, with a 19 dB decrease at the first blade-passing frequency (BPF). Propeller spacing had minimal impact when phase synchronisation was applied. The pitch-to-diameter (P/D) ratio also influenced results: for P/D=0.55, reductions ranged from 13–18 dB; and for P/D=1.0, reductions ranged from 10–20 dB. Maximum psychoacoustic annoyance was observed when propellers were in phase (Δψ=0), while annoyance decreased with increasing phase angle, confirming the effectiveness of phase control for noise mitigation. For the five-bladed configuration, the highest reduction of 15 dB occurred at Δψ=36, with annoyance levels also decreasing with phase offset. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

19 pages, 4166 KiB  
Article
Power Consumption and Mixing Intensity of Jet Flow Mixer in Industrial Tank
by Julia Wilewska, Wojciech Orciuch, Adam Dudała, Pawel Gierycz and Łukasz Makowski
Energies 2025, 18(15), 3975; https://doi.org/10.3390/en18153975 - 25 Jul 2025
Viewed by 241
Abstract
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were [...] Read more.
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were chosen to calculate the positioning of the jet flow mixer in the tank. Calculations were performed using computational fluid dynamics (CFD) software and validated using literature data. Simulations were conducted to consider the inside of the jet flow mixer and the inside of the tank. The initial calculations made for jet flow mixers allowed the determination of volume flow and power numbers for three types of mixers (propeller agitator and Pitched Blade Turbine with three and four blades). Those parameters were then used in subsequent calculations, obtaining the optimal inclination angle of the agitator and power consumption for each considered case. The jet flow mixer with a propeller impeller positioned at an angle of 45° proved to be the choice to achieve the best results. Full article
Show Figures

Figure 1

18 pages, 4564 KiB  
Article
Multi-Fidelity Modeling of Isolated Hovering Rotors
by Jason Cornelius, Nicholas Peters, Tove Ågren and Hugo Hjelm
Aerospace 2025, 12(8), 650; https://doi.org/10.3390/aerospace12080650 - 22 Jul 2025
Viewed by 212
Abstract
Surrogate modeling has been rapidly evolving in the field of aerospace engineering, further reducing the cost of computational analyses. These models often require large amounts of information to learn the underlying process, which is at odds with obtaining and using the highest-fidelity data. [...] Read more.
Surrogate modeling has been rapidly evolving in the field of aerospace engineering, further reducing the cost of computational analyses. These models often require large amounts of information to learn the underlying process, which is at odds with obtaining and using the highest-fidelity data. This study assesses the efficacy of multi-fidelity modeling (MFM) to improve simulation accuracy while reducing computational cost. A database of hovering rotor simulations with perturbations of the rotor design and operating conditions was first generated using two different fidelity levels of the OVERFLOW 2.4D Computational Fluid Dynamics software. MFM was then used to quantify the effectiveness of this approach for the development of accurate surrogate models. Multi-fidelity models based on Gaussian Process Regression (GPR) were derived for hovering rotor performance prediction given the geometric rotor blade inputs that currently include twist, planform, airfoil, and the collective pitch angle. The MFM approach was consistently more accurate at predicting the hold-out test data than the surrogate model with high-fidelity data alone. An MFM using just 20% of the available high-fidelity training data was as accurate as a solely high-fidelity model trained on 80% of the available data, representing an approximate fourfold reduction in computational cost. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

26 pages, 4555 KiB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 226
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

14 pages, 1805 KiB  
Proceeding Paper
Helicopter Rotor Aerodynamic Characteristics in Ground Effect: Numerical Study
by Gabriel Georgiev
Eng. Proc. 2025, 100(1), 13; https://doi.org/10.3390/engproc2025100013 - 4 Jul 2025
Viewed by 238
Abstract
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients [...] Read more.
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients CPσ for a hovering state in close proximity to obstacles and their relation to the weighted thrust force coefficients’ values CTσ, varying the relative distance from the helicopter rotational plane to the ground surface HR and the rotor’s collective pitch angle (θ). The represented numerical and experimental results show that an increase in the collective pitch angles (θ) leads to a rise in the generated weighted thrust force coefficients CTσ and in the weighted power coefficients CPσ for every individual fixed normalized distance from the ground surface HR. Moreover, a decline in the relative distance from the ground HR requires less power to keep the rotation going in hover. The dependencies indicate that the ground effect zone covers a distance of up to 2R from the rotational plane to the ground surface. Full article
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Enhancing Wind Turbine Sustainability Through LiDAR Configuration Analysis and Evaluation of Two Reference LiDAR-Assisted Control Strategies
by Cedric D. Steinmann Perez, Alan W. H. Lio and Fanzhong Meng
Sustainability 2025, 17(13), 6083; https://doi.org/10.3390/su17136083 - 2 Jul 2025
Viewed by 299
Abstract
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and [...] Read more.
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and (ii) the performance assessment of commonly used LiDAR assisted feedforward control methods. This study addresses these gaps by (i) analysing how the coherence of LiDAR estimated rotor effective wind speed is influenced by the number of beams, measurement locations, and turbulence box resolution, and (ii) comparing two established control strategies. Numerical simulations show that applying a low cut-off frequency in the low-pass filter can impair preview time compensation. This is particularly critical for large turbines, where reduced coherence due to fewer beams undermines the effectiveness of LiDAR assisted control compared to the smaller turbines. The subsequent evaluation of control strategies shows that the Schlipf method offers greater robustness and consistent load reduction, regardless of the feedback control design. In contrast, the Bossanyi method, which uses the current blade pitch measurements, performs well when paired with carefully tuned baseline controllers. However, using the actual pitch angle in the feedforward pitch rate calculation can lead to increased excitation at certain frequencies, particularly if the feedback controller is not well tuned to avoid dynamics in those ranges. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 4216 KiB  
Article
Stochastic Blade Pitch Angle Analysis of Controllable Pitch Propeller Based on Deep Neural Networks
by Xuanqi Zhang, Wenbin Shao, Yongshou Liu, Xin Fan and Ruiyun Shi
Modelling 2025, 6(3), 54; https://doi.org/10.3390/modelling6030054 - 25 Jun 2025
Viewed by 313
Abstract
The accuracy of the blade pitch angle (BPA) motion in controllable pitch propellers (CPPs) is considered crucial for the efficacy and reliability of marine propulsion systems. The pitch adjustment process of CPPs is highly complex and influenced by various uncertain factors. A parametric [...] Read more.
The accuracy of the blade pitch angle (BPA) motion in controllable pitch propellers (CPPs) is considered crucial for the efficacy and reliability of marine propulsion systems. The pitch adjustment process of CPPs is highly complex and influenced by various uncertain factors. A parametric kinematic model for the pitch adjustment process for CPPs was established, incorporating the geometric dimensions and material surface friction coefficients caused during workpiece production as uncertainty parameters. The aim was to establish the correspondence between these uncertainty parameters and the BPA of CPPs. A large dataset was generated by batch calling on Adams. Based on the collected dataset, five surrogate models (e.g., deep neural network (DNN), Kriging, support vector regression (SVR), random forest (RF), and polynomial chaos expansion Kriging (PCK)) were constructed to predict the BPA. Among these, the DNN approach demonstrated the highest prediction accuracy. Accordingly, the influence of uncertainties on the BPA was investigated using the DNN model, focusing on variations in the slider width, crank pin diameter, crank disc diameter, piston rod–slider friction coefficient, crank pin–slider friction coefficient, and hub bearing–crank disc friction coefficient. The high-fidelity model established in this study can replace the kinematic model of the CPP pitch adjustment process, significantly improving computational efficiency. The research findings also provide important references for the design optimization of CPPs. Full article
Show Figures

Figure 1

18 pages, 2291 KiB  
Article
Experimental Results in a Variable-Pitch Wells Rotor
by Fabio Licheri, Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu and Mario Carta
Int. J. Turbomach. Propuls. Power 2025, 10(2), 10; https://doi.org/10.3390/ijtpp10020010 - 11 Jun 2025
Viewed by 367
Abstract
Systems based on the oscillating water column (OWC) principle are often equipped with Wells turbines as power take-offs (PTOs) to convert sea-wave energy. The self-rectifying nature of the Wells turbine represents a strength for such applications, while its limited operating range, due to [...] Read more.
Systems based on the oscillating water column (OWC) principle are often equipped with Wells turbines as power take-offs (PTOs) to convert sea-wave energy. The self-rectifying nature of the Wells turbine represents a strength for such applications, while its limited operating range, due to stall, is one of the most relevant limitations. A possible improvement lies in varying the blade stagger angle during operation as this can delay stall by reducing the incidence angle. Although the performance of variable-pitch Wells turbines has been studied in the past, their local aerodynamic performance has never been investigated before. This study addresses this important task by experimentally reconstructing the flow field along the blade height of a Wells turbine prototype, coupled to an OWC simulator, for three values of the stagger angle. The aerodynamic behavior of the Wells rotor is characterized at its inlet and outlet, showing how the interaction between adjacent blades changes due to the stagger angle. The rotor performance is evaluated and compared, providing useful information that is of general validity for similar rows of symmetric blade profiles when pitched at different stagger angles. Full article
Show Figures

Figure 1

27 pages, 2239 KiB  
Article
Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints
by Nicolas Lima Oliveira, Afonso Celso de Castro Lemonge, Patricia Habib Hallak, Konstantinos Kyprianidis, Stavros Vouros and Manuel A. Rendón
Machines 2025, 13(6), 490; https://doi.org/10.3390/machines13060490 - 5 Jun 2025
Viewed by 615
Abstract
This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary [...] Read more.
This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary algorithms generated a Pareto front, from which the optimal propeller design is selected. The selected propeller design is evaluated under optimal operational conditions for a specific mission. In this context, two operational approaches for the optimized propellers during flight missions are evaluated. The first approach considers the possibility of only three values for the propeller rotation, while the second allows continuous changes in the rotational speed and pitch angle values, known as the multi-rotational-speed approach. In the second approach, a modal analysis of the propeller is performed using rotating beam theory. The natural frequencies of vibration, constrained by the Campbell diagram, enable an operational analysis and ensure structural integrity by preventing resonance between propeller blades and the rotational procedures. The multi-rotational approach is conducted with and without frequency constraints, resulting in general flight energy reductions of 1.40% and 1.47%, respectively. However, substantial power savings are achieved, namely up to 10% during critical flight states, which can have a significant impact on future engine design and operability. The main contributions of the research lie in analyzing the multi-rotational approach with vibrational constraints of the optimized propeller. This research advances sustainable aviation practices by focusing on reducing power consumption while maintaining performance. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

31 pages, 4895 KiB  
Article
Dynamic Analysis and Experimental Research on Anti-Swing Control of Distributed Mass Payload for Marine Cranes
by Guoliang Jin, Shenghai Wang, Yufu Gao, Maokai Sun, Haiquan Chen and Yuqing Sun
J. Mar. Sci. Eng. 2025, 13(6), 1112; https://doi.org/10.3390/jmse13061112 - 2 Jun 2025
Viewed by 453
Abstract
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes [...] Read more.
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes a dynamic coupling model considering ship roll and pitch environmental excitations. Then, under the maximum environmental excitation set in the experiment, the flexible cable parallel anti-swing system achieves swing suppression rates of 41.0% and 58.0% for the in-plane and out-of-plane angles of the DMP with regular geometric shape and mass distribution, respectively. For the DMP with irregular geometry and mass distribution, the suppression rates are 48.4% and 39.3% for the in-plane and out-of-plane angles, respectively. It is found that, after adjusting the lifting method and increasing the distance between the lifting points, the maximum in-plane angle of the payload decreases by 2.3%, while the out-of-plane angle maximum decreases by 52.0%. These results demonstrate the effectiveness of adjusting lifting methods in suppressing swing for irregular DMPs, thereby verifying the reliability and applicability of the flexible cable parallel anti-swing system and providing a reference for improving anti-swing performance and lifting efficiency in offshore DMP operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3112 KiB  
Article
Structural Load Optimization of 15 MW Offshore Wind Turbine Using LHS-Based Design Space
by Sajid Ali, Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(6), 1066; https://doi.org/10.3390/jmse13061066 - 28 May 2025
Cited by 1 | Viewed by 460
Abstract
The structural integrity of next-generation offshore wind turbines is highly sensitive to inflow variability, yet current standards often simplify wind conditions without capturing their combined effects on dynamic loads. To address this, we analyzed the NREL IEA 15 MW offshore wind turbine using [...] Read more.
The structural integrity of next-generation offshore wind turbines is highly sensitive to inflow variability, yet current standards often simplify wind conditions without capturing their combined effects on dynamic loads. To address this, we analyzed the NREL IEA 15 MW offshore wind turbine using 27 simulation cases strategically selected through Latin Hypercube Sampling (LHS) from a design space of over 14 million combinations. Four key environmental variables—Extreme Wind Speed (30–40 m/s), turbulence intensity (12–16%), Shear Exponent (0.1–0.3), and Flow Inclination Angle (−8° to +8°)—were varied to assess their influence on structural response using BLADED simulations. Results showed that the combined structural moment (Mxyz) ranged from 159,502.5 kNm (minimum) to 189,829.2 kNm (maximum), indicating a 19% increase due to inflow conditions. Maximum-moment case exhibited a 2.6× higher drag coefficient, a 13% rise in pitch bearing moment, and dominant frequency content near 0.175 Hz, closely matching the first tower side-side natural mode (0.17593 Hz), confirming potential resonance. These findings highlight the importance of multidimensional inflow modeling for identifying worst-case load scenarios and establishing a foundation for future load prediction models and support structure optimization. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

26 pages, 8452 KiB  
Article
Synchronised Control of Multiple Actuators of Wind Turbines
by Adrian Gambier
Actuators 2025, 14(6), 264; https://doi.org/10.3390/act14060264 - 27 May 2025
Cited by 1 | Viewed by 385
Abstract
Wind turbines align with the wind direction and adjust to wind speed by rotating their nacelle and blades using electromechanical or hydraulic actuators. Due to the fact that the rated capacity of wind turbines is increasing and that the actuators are reaching some [...] Read more.
Wind turbines align with the wind direction and adjust to wind speed by rotating their nacelle and blades using electromechanical or hydraulic actuators. Due to the fact that the rated capacity of wind turbines is increasing and that the actuators are reaching some size limits, the current solution is to install several actuators at each joint until the required torque is reached. The problem with this approach is that, despite the fact the actuators can be selected from the same type and series, they typically have distinct parameters, resulting in different behaviours. The synchronisation of actuators of wind turbines has still not been studied in the specialised literature. Therefore, a control approach for the synchronisation of the pitch actuators is proposed in this work. Two cases are considered: the synchronisation of torque outputs and the synchronisation of position angle. The simulation results indicate that the proposed solution is effective for synchronising actuators, either when they are placed together on the same blade or when they are on separate blades while simultaneously following the collective pitch control command. Full article
(This article belongs to the Special Issue New Control Schemes for Actuators—2nd Edition)
Show Figures

Figure 1

16 pages, 2807 KiB  
Article
Real-Time Estimation Methods for the Frequency Support Function Based on a Virtual Wind Turbine
by Bo-Hyun Woo, Ye-Chan Kim and Seung-Ho Song
Energies 2025, 18(11), 2774; https://doi.org/10.3390/en18112774 - 27 May 2025
Viewed by 329
Abstract
With the increasing penetration of renewable energy sources, reduced system inertia and weakened frequency regulation capability have emerged as critical issues in power systems. As a result, wind turbines are now required to provide frequency support functions. To enable accurate analysis of the [...] Read more.
With the increasing penetration of renewable energy sources, reduced system inertia and weakened frequency regulation capability have emerged as critical issues in power systems. As a result, wind turbines are now required to provide frequency support functions. To enable accurate analysis of the operational characteristics of wind turbines equipped with such control functions, this study proposes a virtual wind turbine model that estimates the operating point of a wind turbine in real-time under the assumption that frequency support functions are not performed. The proposed model is based on a turbine state observer that estimates wind speed and the power coefficient, and subsequently estimates generator power, generator speed, and blade pitch angle across various operating modes. Simulations were conducted under conditions with fluctuating wind speed and grid frequency, including MPPT, speed control, and pitch control operating regions. The accuracy of the proposed estimation model was evaluated, and the results demonstrated low estimation errors for key variables such as generator speed, power output, pitch angle, and wind speed across all conditions. These results quantitatively validate the robustness and applicability of the proposed model. Full article
Show Figures

Figure 1

38 pages, 14799 KiB  
Article
Investigation of Tilt-Proprotor Loads Correlation Between Wind Tunnel Test Data and Comprehensive Modeling
by Yin Ruan, Weite Wang and Wei Zhang
Aerospace 2025, 12(6), 452; https://doi.org/10.3390/aerospace12060452 - 22 May 2025
Viewed by 299
Abstract
The loads of a model tilt-proprotor with a gimbaled hub were measured in the wind tunnel of CHRDI, operating at 90°, 80°, 70°, 60°, and 45° inclination angles to represent the rotor loads of helicopter and transient flight modes. The flap, lead-lag moments, [...] Read more.
The loads of a model tilt-proprotor with a gimbaled hub were measured in the wind tunnel of CHRDI, operating at 90°, 80°, 70°, 60°, and 45° inclination angles to represent the rotor loads of helicopter and transient flight modes. The flap, lead-lag moments, and pitch rod forces were measured. A comprehensive model was established with both linear inflow and free-wake non-linear inflow models. It is shown that there is a better correlation of alternating flap bending moments between test data and linear inflow model predicted values for the helicopter mode and a good correlation between measured data and free-wake predicted values for transition modes. The static moments are well captured by all inflow models at high thrust coefficients, while they fail to reflect the flap bending direction of the blade root at low thrust coefficients. Neither of the inflow models captured higher harmonics of the blade flap bending moments. The measured 2/rev harmonics of the lag bending moments lie between the linear inflow model and the free wake model predicted values. The current model with no dynamic stall model failed to capture the oscillating loads of the pitch rod. Full article
(This article belongs to the Special Issue Recent Advances in Flight Testing)
Show Figures

Figure 1

27 pages, 3598 KiB  
Article
Sustainable Wind Energy Security: Assessing the Impact of False Data Injection on Wind Turbine Performance
by Mohammad Hassan Tanha, Zahra Tanha, Ali Aranizadeh and Mirpouya Mirmozaffari
Sustainability 2025, 17(10), 4654; https://doi.org/10.3390/su17104654 - 19 May 2025
Viewed by 505
Abstract
As the global transition to sustainable energy accelerates, wind power remains pivotal in reducing carbon emissions and achieving renewable energy targets. However, greater reliance on wind energy systems increases susceptibility to cyberattacks, notably False Data Injection (FDI) attacks, which manipulate operational data and [...] Read more.
As the global transition to sustainable energy accelerates, wind power remains pivotal in reducing carbon emissions and achieving renewable energy targets. However, greater reliance on wind energy systems increases susceptibility to cyberattacks, notably False Data Injection (FDI) attacks, which manipulate operational data and undermine the decision-making critical for efficient energy production. This study introduces a novel analytical framework to assess the impact of FDI attacks on variable-speed wind turbine output power. Simulations, conducted using a MATLAB-based induction generator model, evaluate the effects of injecting false data into parameters such as wind speed, blade pitch angle, and generator angular speed. Results demonstrate that FDI attacks targeting wind speed induce significant power output deviations, causing decision-making errors that threaten operational reliability. In contrast, pitch angle manipulations have negligible effects on power generation. These findings emphasize the urgent need for robust cybersecurity measures to protect wind energy infrastructure from evolving cyber-threats. This research advocates advanced detection and mitigation strategies to enhance system resilience, ensuring wind power’s role in a low-carbon future. By identifying critical vulnerabilities, the analysis informs policymakers and industry stakeholders, guiding investments in cybersecurity to safeguard renewable energy systems. Such efforts are essential to maintain operational stability and support global sustainability goals, reinforcing wind power’s contribution to clean energy transitions. Full article
Show Figures

Figure 1

Back to TopTop