Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = blade cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 211
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

19 pages, 3564 KiB  
Article
Surface Ice Detection Using Hyperspectral Imaging and Machine Learning
by Steve Vanlanduit, Arnaud De Vooght and Thomas De Kerf
Sensors 2025, 25(14), 4322; https://doi.org/10.3390/s25144322 - 10 Jul 2025
Viewed by 324
Abstract
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. [...] Read more.
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. Hyperspectral reflectance data were acquired using a push-broom HSI system under controlled laboratory conditions, with ice and rime ice generated using a thermoelectric cooling setup. Support Vector Machine (SVM) and Random Forest (RF) classifiers were trained on uncoated aluminum samples and evaluated on surfaces with different coatings to assess model generalization. Both models achieved high classification accuracy, though performance declined on black-coated surfaces due to increased absorbance by the coating. The study further examined the impact of spectral band reduction to simulate different sensor types (e.g., NIR vs. SWIR), revealing that model performance is sensitive to wavelength range, with SVM performing optimally in a reduced band set and RF benefiting from the full spectral range. A multiclass classification approach using RF successfully distinguished between glaze and rime ice, offering insights into more targeted mitigation strategies. The results confirm the potential of HSI and machine learning as robust tools for surface ice monitoring in safety-critical environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

26 pages, 20735 KiB  
Article
The Study of the Effect of Blade Sharpening Conditions on the Lifetime of Planar Knives During Industrial Flatfish Skinning Operations
by Paweł Sutowski, Bartosz Zieliński and Krzysztof Nadolny
Materials 2025, 18(13), 3191; https://doi.org/10.3390/ma18133191 - 6 Jul 2025
Viewed by 384
Abstract
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line [...] Read more.
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line downtime due to tool replacement. Meeting these demands is particularly challenging in cutting operations involving heterogeneous materials, especially when the processed raw material contains inclusions and impurities significantly harder than the material itself. This situation occurs, among others, during flatfish skinning operations analyzed in this paper, a common process in the fish processing industry. These fish, due to their natural living environment and behavior, contain a significant proportion of hard inclusions and impurities (shell fragments, sand grains) embedded in their skin. Contact between the tool and hard inclusions causes deformation, wrapping, crushing, and even chipping of the cutting edge of planar knives, resulting in non-uniform blade wear, which manifests as areas of uncut skin on the fish fillet. This necessitates frequent tool changes, resulting in higher tooling costs and longer operating times. This study provides a unique opportunity to review the results of in-service pre-implementation tests of planar knives in the skinning operation conducted under industrial conditions. The main objective was to verify positive laboratory research results regarding the extension of technical blade tool life through optimization of sharpening conditions during grinding. Durability test results are presented for the skinning process of fillets from plaice (Pleuronectes platessa) and flounder (Platichthys flesus). The study also examined the effect of varying cooling and lubrication conditions in the grinding zone on the tool life of technical planar blades. Sharpening knives under flood cooling conditions and using the hybrid method (combining minimum quantity lubrication and cold compressed air) increased their service life in the plaice skinning process (Pleuronectes platessa) by 12.39% and 8.85%, respectively. The increase in effective working time of knives during flounder (Platichthys flesus) skinning was even greater, reaching 17.7% and 16.3% for the flood cooling and hybrid methods, respectively. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 293
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 362
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

16 pages, 6056 KiB  
Article
Heat Transfer Enhancement in Turbine Blade Internal Cooling Channels with Hybrid Pin-Fins and Micro V-Ribs Turbulators
by Longbing Hu, Qiuru Zuo and Yu Rao
Energies 2025, 18(13), 3296; https://doi.org/10.3390/en18133296 - 24 Jun 2025
Viewed by 569
Abstract
To improve the convective heat transfer in internal cooling channels of heavy-duty gas turbine blades, this study experimentally and numerically investigates the thermal performance of rectangular channels with hybrid pin-fins and micro V-ribs turbulators. The transient thermochromic liquid crystal (TLC) technique and ANSYS [...] Read more.
To improve the convective heat transfer in internal cooling channels of heavy-duty gas turbine blades, this study experimentally and numerically investigates the thermal performance of rectangular channels with hybrid pin-fins and micro V-ribs turbulators. The transient thermochromic liquid crystal (TLC) technique and ANSYS 2019 R3 (ICEM CFD 2019 R3, Fluent 2019 R3, CFD-Post 2019 R3) were employed under Reynolds numbers ranging from 10,000 to 50,000, with the numerical model rigorously validated against experimental data (the maximum RMSE is 2.5%). It is found that hybrid pin-fins and continuous V-ribs configuration exhibits the maximum heat transfer enhancement of 27.6%, with an average friction factor increase of 13.3% and 21.9% improvement in thermal performance factor (TPF) compared to the baseline pin-fin channel. In addition, compared to the baseline pin-fin channel, hybrid pin-fins and broken V-ribs configuration exhibits average heat transfer enhancement (Nu/Nu0) of 24.4%, an average friction factor increase of 7.2% and 22.5% improvement across the investigated Reynolds number range (10,000~50,000) based on computational results. The synergistic effects of hybrid pin-fin and micro V-rib structures demonstrate superior coolant flow control, offering a promising solution for next-generation turbine blade cooling designs. This work provides actionable insights for high-efficiency gas turbine thermal management. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 619
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

14 pages, 1743 KiB  
Review
Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results
by Erlan Batyrbekov, Vladimir Vityuk, Viktor Baklanov, Vyacheslav Gnyrya, Almas Azimkhanov, Radmila Sabitova, Irina Prozorova, Yuriy Popov, Ruslan Irkimbekov and Yekaterina Martynenko
Energies 2025, 18(12), 3187; https://doi.org/10.3390/en18123187 - 18 Jun 2025
Viewed by 357
Abstract
In support of global efforts to strengthen the nuclear non-proliferation regime, the IVG.1M research water-cooled thermal reactor at the National Nuclear Center of the Republic of Kazakhstan was successfully converted to low-enriched uranium (LEU, 19.75% 235U) fuel in 2023. The reactor’s operability [...] Read more.
In support of global efforts to strengthen the nuclear non-proliferation regime, the IVG.1M research water-cooled thermal reactor at the National Nuclear Center of the Republic of Kazakhstan was successfully converted to low-enriched uranium (LEU, 19.75% 235U) fuel in 2023. The reactor’s operability with innovative bimetallic, fiber-type, dual-blade LEU fuel rods was experimentally verified during power start-up experiments. The test program included investigations of power distribution in the core, evaluation of temperature, power, and hydrodynamic reactivity effects, and the measurement of fission product release to the coolant. The results were in good agreement with safety calculations, confirming that the enrichment reduction did not degrade reactor performance characteristics. It was shown that the power reactivity effect increased by more than 1.5 times at a power level of 9 MW. The measured temperature reactivity coefficient (≈0.021 βeff/°C) and the level of fission product release remained within acceptable and expected limits. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

64 pages, 3370 KiB  
Review
Review of Film Cooling Techniques for Aerospace Vehicles
by Edidiong Michael Umana and Xiufeng Yang
Energies 2025, 18(12), 3058; https://doi.org/10.3390/en18123058 - 10 Jun 2025
Cited by 1 | Viewed by 1734
Abstract
Film cooling, a vital method for controlling surface temperatures in components subjected to intense heat, strives to enhance efficiency through innovative technological advancements. Over the last several decades, considerable advancements have been made in film cooling technologies for applications such as liquid rocket [...] Read more.
Film cooling, a vital method for controlling surface temperatures in components subjected to intense heat, strives to enhance efficiency through innovative technological advancements. Over the last several decades, considerable advancements have been made in film cooling technologies for applications such as liquid rocket engines, combustion chambers, nozzle sections, gas turbine components, and hypersonic vehicles, all of which operate under extreme temperatures. This review presents an in-depth investigation of film cooling, its applications, and its key mechanisms and performance characteristics. The review also explores design optimization for combustion chamber components and examines the role of gaseous film cooling in nozzle systems, supported by experimental and numerical validation. Gas turbine cooling relies on integrated methods, including internal and external cooling, material selection, and coolant treatment to prevent overheating. Notably, the cross-flow jet in blade cooling improves heat transfer and reduces thermal fatigue. Film cooling is an indispensable technique for addressing the challenges of high-speed and hypersonic flight, aided by cutting-edge injection methods and advanced transpiration coolants. Special attention is given to factors influencing film cooling performance, as well as state-of-the-art developments in the field. The challenges related to film cooling are reviewed and presented, along with the difficulties in resolving them. Suggestions for addressing these problems in future research are also provided. Full article
(This article belongs to the Special Issue Heat and Mass Transfer: Theory, Methods, and Applications)
Show Figures

Figure 1

22 pages, 6517 KiB  
Article
Study on the Impact of Cooling Air Parameter Changes on the Thermal Fatigue Life of Film Cooling Turbine Blades
by Huayang Sun, Xinlong Yang, Yingtao Chen, Yanting Ai and Wanlin Zhang
Aerospace 2025, 12(6), 512; https://doi.org/10.3390/aerospace12060512 - 6 Jun 2025
Viewed by 439
Abstract
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous [...] Read more.
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous studies by domestic and international scholars have extensively investigated factors influencing film cooling effectiveness, including blowing ratio and hole geometry configurations. However, most research has overlooked the investigation of fatigue life in film-cooled blades. This paper systematically investigates blade fatigue life under various cooling air parameters by analyzing the relationships among cooling effectiveness, stress distribution, and fatigue life. Results indicate that maximum stress concentrations occur at cooling hole locations and near the blade root at trailing edge regions. While cooling holes effectively reduce blade surface temperature, they simultaneously create stress concentration zones around the apertures. Both excessive and insufficient cooling air pressure and temperature reduce thermal fatigue life, with optimal parameters identified as 600 K cooling temperature and 0.75 MPa pressure, achieving a maximum thermal fatigue life of 3400 cycles for this blade configuration. A thermal shock test platform was established to conduct fatigue experiments under selected cooling conditions. Initial fatigue damage traces emerged at cooling holes after 1000 cycles, with progressive damage expansion observed. By 3000 cycles, cooling holes near blade tip regions exhibited the most severe failure, demonstrating near-complete functional degradation. These findings provide critical references for cooling parameter selection in practical aeroengine applications of film-cooled blades. Full article
Show Figures

Figure 1

14 pages, 3948 KiB  
Article
Effect of Deposits on Micron Particle Collision and Deposition in Cooling Duct of Turbine Blades
by Shihong Xin, Chuqi Peng, Junchao Qi, Baiwan Su and Yan Xiao
Crystals 2025, 15(6), 510; https://doi.org/10.3390/cryst15060510 - 26 May 2025
Viewed by 347
Abstract
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal [...] Read more.
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal superalloy materials. This work studied the collision and deposition mechanisms between the micron particles and structure surface. A combined theoretical and numerical study was conducted to investigate the effect of deposits on particle collision and deposition. Finite element models of deposits with flat and rough surfaces were generated and analyzed for comparison. The results show that the normal restitution coefficient is much lower when a micron particle impacts a deposit compared to that of particle collisions with DD3 nickel-based single-crystal wall surfaces. The critical deposition velocity of a micron particle is much higher for particle–deposit collisions than for particle–wall collision. The critical deposition velocity decreases with the increase in particle size. When micron particles deposit on the wall surface of the structure, early-stage particle–wall collision becomes particle–deposit collision when the height of the deposits is greater than twice the particle diameter. For contact between particles and rough surface deposits, surfaces with a shorter correlation length, representing a higher density of asperities and a steeper surface, have a much longer contact time but a lower contact area. The coefficient of restitution of the particle reduces as the surface roughness of the deposits increase. The characteristic length of the roughness has little effect on the rebounding rotation velocity of the particle. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 7297 KiB  
Article
Investigation on Designing and Development of a Selective Laser Melting Manufactured Gas Turbine Blade—Proof-of-Concept
by Mihaela Raluca Condruz, Tiberius Florian Frigioescu, Gheorghe Matache, Adina Cristina Toma and Teodor Adrian Badea
Inventions 2025, 10(3), 36; https://doi.org/10.3390/inventions10030036 - 15 May 2025
Viewed by 644
Abstract
In this study, a conceptual turbine blade model with internal cooling channels was designed and fabricated using the selective laser melting (SLM) process. The optimal manufacturing orientation was evaluated through simulations, and the results indicated that vertical orientation yielded the best outcomes, minimizing [...] Read more.
In this study, a conceptual turbine blade model with internal cooling channels was designed and fabricated using the selective laser melting (SLM) process. The optimal manufacturing orientation was evaluated through simulations, and the results indicated that vertical orientation yielded the best outcomes, minimizing support material usage and distortion despite increased manufacturing time. Two configurations were produced, namely, an entire-turbine blade model and a cross-sectional model. Non-destructive analyses, including 3D laser scanning for dimensional accuracy, surface roughness measurements, and liquid penetrant testing, were conducted. Visual inspection revealed manufacturing limitations, particularly in the cooling channels at the leading and trailing edges. The trailing edge was too thin to accommodate the 0.5 mm channel diameter, and the channels in the leading edge were undersized and potentially clogged with unmelted powder. The dimensional deviations were within the acceptable limits for the SLM-fabricated metal parts. The surface roughness measurements were aligned with the literature values for metal additive manufacturing. Liquid penetrant testing confirmed the absence of cracks, pores, and lack-of-fusion defects. The SLM is a viable manufacturing process for turbine blades with internal cooling channels; however, significant attention should be paid to the design of additive manufacturing conditions to obtain the best results after manufacturing. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

41 pages, 15728 KiB  
Review
A Review of Mesh Adaptation Technology Applied to Computational Fluid Dynamics
by Guglielmo Vivarelli, Ning Qin and Shahrokh Shahpar
Fluids 2025, 10(5), 129; https://doi.org/10.3390/fluids10050129 - 13 May 2025
Viewed by 1482
Abstract
Mesh adaptation techniques can significantly impact Computational Fluid Dynamics by improving solution accuracy and reducing computational costs. In this review, we begin by defining the concept of mesh adaptation, its core components and the terminology commonly used in the community. We then categorise [...] Read more.
Mesh adaptation techniques can significantly impact Computational Fluid Dynamics by improving solution accuracy and reducing computational costs. In this review, we begin by defining the concept of mesh adaptation, its core components and the terminology commonly used in the community. We then categorise and evaluate the main adaptation strategies, focusing both on error estimation and mesh modification techniques. In particular, we analyse the two most prominent families of error estimation: feature-based techniques, which target regions of high physical gradients and goal-oriented adjoint methods, which aim to reduce the error in a specific integral quantity of interest. Feature-based methods are advantageous due to their reduced computational cost: they do not require adjoint solvers, and they have a natural ability to introduce anisotropy. A substantial portion of the literature relies on second-order derivatives of scalar flow quantities to construct sensors that can be equidistributed to minimise discretisation error. However, when used carelessly, these methods can lead to over-refinement, and they are generally outperformed by adjoint-based techniques when improving specific target quantities. Goal-oriented methods typically achieve higher accuracy in fewer adaptation steps with coarser meshes. It will be seen that various approaches have been developed to incorporate anisotropy into adjoint-based adaptation, including hybrid error sensors that combine feature-based and goal-oriented indicators, sequential strategies and adjoint weighting of fluxes. After years of limited progress, recent work has demonstrated promising results, including certifiable solutions and applications to increasingly complex cases such as transonic compressor blades and film-cooled turbines. Despite these advances, several critical challenges remain: efficient parallelisation, robust geometry integration, application to unsteady flows and deployment in high-order discretisation frameworks. Finally, examples of the potential role of artificial intelligence in guiding or accelerating mesh adaptation are also discussed. Full article
Show Figures

Figure 1

26 pages, 9803 KiB  
Article
Research on Surrogate Model of Variable Geometry Turbine Performance Based on Backpropagation Neural Network
by Liping Deng, Hu Wu, Yuhang Liu and Qi’an Xie
Aerospace 2025, 12(5), 410; https://doi.org/10.3390/aerospace12050410 - 6 May 2025
Viewed by 402
Abstract
To meet the increasingly stringent performance indicators of gas turbines, the turbine inlet temperature has increased, and variable geometry turbine technology is widely applied. Therefore, this study developed a quasi-two-dimensional (quasi-2D) method for variable geometry turbine performance considering cooling air mixing based on [...] Read more.
To meet the increasingly stringent performance indicators of gas turbines, the turbine inlet temperature has increased, and variable geometry turbine technology is widely applied. Therefore, this study developed a quasi-two-dimensional (quasi-2D) method for variable geometry turbine performance considering cooling air mixing based on the elementary blade method and the cooling airflow mixing model. To address the high-dimensional, multi-variable data fitting problem of variable geometry turbines considering the effects of cooling air, this study adopted a BP neural network to further establish a surrogate model for variable geometry turbine performance. A sensitivity analysis of a single-stage turbine was conducted. The variable geometry cooling performance of a single-stage turbine and an E3 five-stage low-pressure air turbine were calculated, and the corresponding surrogate models were established. The relative errors between the calculated mass flow rate and efficiency of the single-stage turbine and the experimental values were no more than 0.70% and 4.44%, respectively; for the five-stage air turbine, the maximum relative errors in mass flow rate and efficiency were no more than 1.67% and 1.385%, respectively. When the throat area of the single-stage turbine nozzle changed by ±30%, the maximum relative errors between the calculated mass flow rate and efficiency and their experimental values were 3.602% and 4.228%, respectively; thus, the determination coefficients of the constructed BP neural network model for the training samples were all greater than 0.999, indicating that the surrogate model has high prediction accuracy and strong generalization ability and can quickly predict variable geometry turbine cooling performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 11288 KiB  
Article
Quality Evaluation of Micro-Holes Processed by Efficient One-Step Femtosecond Laser Helical Drilling Method in Nickel-Based Superalloy
by Mingquan Li, Yiyu Chen, Li Dong, Dan Liu and Xudong Sun
Appl. Sci. 2025, 15(8), 4384; https://doi.org/10.3390/app15084384 - 16 Apr 2025
Viewed by 363
Abstract
This research work details the main factors affecting the orifice and profile morphology of micro-holes processed by the one-step femtosecond laser helical drilling method. Cylindrical holes or even inverted cone holes can be obtained with the appropriate deflection angle and translation distance. The [...] Read more.
This research work details the main factors affecting the orifice and profile morphology of micro-holes processed by the one-step femtosecond laser helical drilling method. Cylindrical holes or even inverted cone holes can be obtained with the appropriate deflection angle and translation distance. The orifice morphology of the micro-hole is mainly influenced by the rotation speed of the Dove prism installed inside the hollow motor, laser output power, and laser repetition frequency. A higher instantaneous power density can improve the outlet morphology and produce sharper cutting edges and thinner recast layers, although it may increase the splashing around the inlet to some extent. Subsequent to the experiment, it was determined that in order to enhance the quality of the holes, it was necessary to select a higher laser power and a lower repetition frequency, such as 10 W and 100 kHz, according to the experiments. A recast layer thickness of less than 5 µm and a surface roughness value of less than 0.8 µm were obtained within 3–5 s processing time, which can satisfy the requirements for aircraft application of efficiency and quality. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop