Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results
Abstract
:1. Introduction
- It is necessary to increase the 235U fissile isotope mass to maintain the current parameters (power density and neutron flux) of the core.
- The core volume increases. To compensate for the lower 235U concentration, more fuel is required, which increases the core physical size and complicates the layout.
- LEU reactors, as a rule, require more frequent fuel replacement due to the fuel’s lower initial energy intensity.
- There is a need to redesign the fuel and/or core. Many reactors required the recycling of fuel assemblies and the design of fuel rods or cooling systems to adapt to the new fuel.
2. The IVG.1M Research Reactor
3. Objectives and Procedure for the Power Start-Up of the IVG.1M Research Reactor with Low-Enriched Uranium Fuel
- Are the reactor thermal parameters maintained? This is important to consider when commissioning the reactor. While hydraulic characteristics were not expected to change during conversion, minor modifications to the first and second rows of LEU fuel assemblies could impact channel hydraulic resistance.
- Is it possible to reproduce the results of computer simulation of the reactor operating on new fuel [25]? The positive results of the tests confirm prior safety analysis conclusions, based on neutron and thermal modeling of various events in the reactor. Such tests include volumetric power distribution measurements and reactivity feedback evaluation.
- What is the impact of the coolant flow rate reactivity effect that is not taken into account in the safety analysis?
- Are the LEU fuel rods reliable to operate safely? Since the fuel rods act as a primary barrier to the release of fission products, the power start-up serves as the final test of the newly manufactured fuel rods.
4. Study of the Reactor Thermal–Hydraulic Parameters
- Qi—water flow rate through the ith WCTC, kg/s;
- Cp—water specific heat capacity at an average temperature in the WCTC, J/(kg∙°C);
- Tin—water temperature at the reactor inlet, °C;
- Tout—water temperature at the WCTC outlet, °C.
5. Study of Power Distribution in the Reactor Core
6. Studying the Reactivity Effects
- ∆R—reactivity increment, βeff;
- ∆x—parameter increment.
6.1. Determining the Temperature Coefficient of Reactivity
6.2. Determining the Power Reactivity Effect
6.3. Determination of the Hydrodynamic (Flow Rate) Reactivity Effect
7. Monitoring of Fuel Fission Product Activity in the Coolant
8. Summary and Future Work
- The power distribution within the reactor core is practically identical to that observed before the conversion, as confirmed by the preliminary computer modeling and the results of the physical start-up experiments.
- The temperature coefficient of reactivity for both LEU and HEU fuel in the IVG.1M reactor is positive within the operating range and is 0.02 βeff/°C. The agreement of the values is explained by similar thermohydraulic operating conditions.
- The power reactivity effect has a negative value throughout the reactor power range and becomes more pronounced with reduced fuel enrichment, contributing to enhanced inherent safety.
- The hydrodynamic (barometric) reactivity effect has been determined. It is positive and equal to +0.028 βeff.
- Changes in fuel content and enrichment in the fuel rods did not significantly affect the release of fission products into the coolant. The R/B levels for LEU and HEU fuel are comparable. The fuel rod cladding thickness (250 µm) is impervious to 235U fission fragments. The intermetallic composition itself is also a barrier: uranium filaments in a zirconium matrix.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbol Index
LEU | Low-enriched uranium |
HEU | Highly enriched uranium |
IAEA | International Atomic Energy Agency |
FA | Fuel assembly |
WCTC | Water-cooled technological channel |
CD | Control drum |
MCL | Minimally controlled power level |
RM | Reactivity margin |
TCR | Temperature coefficient of reactivity |
PRE | Power reactivity effect |
SS | Steady state |
RIA | Reactivity-Initiated Accident |
SAR | Safety Analysis Report |
HRE | Hydrodynamic (flow rate) reactivity effect |
FP | Fission product |
Ni | Thermal power of WCTC-LEU (MW) |
Qi | Water flow rate through the ith WCTC (kg/s) |
Cp | Water specific heat capacity at an average temperature in the WCTC (J/(kg∙°C) |
Tin | Water temperature at the reactor inlet (°C) |
Tout | Water temperature at the WCTC outlet (°C) |
Reactivity increment (βeff/°C) | |
∆R | Reactivity increment, βeff |
∆x | Parameter increment (−) |
T | Water temperature (°C) |
ΔT | Temperature increment (°C) |
RM | Reactivity margin (βeff) |
α | Reactivity coefficient (βeff/°C) |
N | Reactor power (MW) |
R/B | The ratio of the FP release rate in the coolant to its birth rate (−) |
Average value of the ratio of the fission product release rate in the coolant to its birth rate (−) |
References
- Research Reactors: Purpose and Future; IAEA: Vienna, Austria, 2016; p. 20. Available online: https://www.iaea.org/sites/default/files/18/05/research-reactors-purpose-and-future.pdf (accessed on 19 May 2025).
- Nuclear Technology Review. Report by the Director General; IAEA: Vienna, Austria, 2024; p. 112. Available online: https://www.iaea.org/sites/default/files/gc/gc68-inf4_rus.pdf (accessed on 19 May 2025).
- Toth, G.; Benkovics, I. HEU-LEU core conversion at Budapest research reactor. Int. Nucl. Saf. J. 2014, 3, 60–67. [Google Scholar]
- Cherepnin, Y.S.; Pulinets, A.A.; Kravtsova, O.A.; Simonidi, A.R.; Chizhova, E.S.; Larionov, I.A.; Logvenchev, S.I. Development of FA with High-Density Fuel for Foreign Research Nuclear Reactors of Russian Design. At. Energy 2021, 129, 234–236. [Google Scholar] [CrossRef]
- Arinkin, F.M.; Shaimerdenov, A.A.; Gizatulin, S.K.; Dyusambaev, D.S.; Koltochnik, S.N.; Chakrov, P.V.; Chekushina, L.V. Core Conversion of VVR-K Research Reactors. At. Energy 2017, 123, 17–24. [Google Scholar] [CrossRef]
- Sairanbayev, D.S.; Koltochnik, S.N.; Shaimerdenov, A.A.; Tulegenov, M.S.; Kenzhin, Y.A.; Tsuchiya, K. Time History of Performance Parameters of WWR-K Reactor during Gradual Replacement of the Water Reflector by a Beryllium One. Russ. Phys. J. 2021, 63, 2165–2177. [Google Scholar] [CrossRef]
- Shaimerdenov, A.; Sairanbayev, D.; Gizatulin, S.; Nessipbay, A.; Bugubay, Z.; Nugumanov, D.; Sakhiyev, S. WWR-K reactor LEU core design optimization for improving the experimental characteristics. Ann. Nucl. Energy 2024, 195, 110174. [Google Scholar] [CrossRef]
- Amoah, P.; Shitsi, E.; Ampomah-Amoako, E.; Odoi, H.C. Transient Studies on Low-Enriched-Uranium Core of Ghana Research Reactor–1 (GHARR-1). Nucl. Technol. 2020, 206, 1615–1624. [Google Scholar] [CrossRef]
- Wilson, E.H.; Newton, T.H. Comparison and Validation of HEU and LEU Modeling Results to HEU Experimental Benchmark Data for the Massachusetts Institute of Technology MITR Reactor, Nuclear Engineering Division, Argonne National Laboratory, ANL/RERTR/TM-10-41. 2010; p. 74. Available online: https://publications.anl.gov/anlpubs/2011/03/68856.pdf (accessed on 19 May 2025).
- Hussaini, S.M.; Ekwu Mary, T.; Ndawashi, M. The Nigerian Research Reactor-1 (NIRR-1) Power and Isothermal Temperature Parameters Measurements. Fudma J. Sci. 2023, 7, 171–174. [Google Scholar] [CrossRef]
- SSG-80; Commissioning of Research Reactors. International Atomic Energy Agency: Vienna, Austria, 2023.
- Bays, S.E.; Jaradat, M.K.H.; Gleicher, F.N.; Trivedi, I.; Stewart, R.H.; Martin, N.P.; Weir, S.G.; Rymer, J. Startup Physics Testing of Advanced Reactors January: A Survey of Historical Practices; Rymer Idaho National Laboratory: Pocatello, ID, USA, 2024; p. 98. [Google Scholar]
- Bess, J.D.; Maddock, T.L.; Smolinski, A.T.; Marshall, M.A. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurementsm. Nucl. Sci. Eng. 2017, 178, 550–561. [Google Scholar] [CrossRef]
- Deo, K.; Kumar, R.; Devan, K.; Umasankari, K. Chapter 10—Experimental and operational reactor physics. In Physics of Nuclear Reactors; Academic Press: Cambridge, MA, USA, 2021; pp. 571–633. [Google Scholar] [CrossRef]
- Anan’ev, V.D.; Vinogradov, A.V.; Dolgikh, A.V.; Edunov, L.V.; Pepelyshev, Y.N.; Rogov, A.D.; Zaikin, A.A. First Power of the IBR-2 Modernized Reactor; Frank Lab. of Neutron Physics: Dubna, Russia, 2012. [Google Scholar]
- Dien, N.N.; Vien, L.B.; Van Lam, P.; Vinh, L.V.; Nghiem, H.T. Some Main Results of Commissioning of the Dalat Research Reactor with Low Enriched Fuel. Nucl. Sci. Technol. 2014, 4, 36–45. [Google Scholar]
- Ali Khan, L.; Ahmad, N.; Zafar, M.; Ahmad, A. Reactor physics calculations and their experimental validation for conversion and upgrading of a typical swimming pool type research reactor. Ann. Nucl. Energy 2000, 27, 873–885. [Google Scholar] [CrossRef]
- Gil, L. Countries move towards low enriched uranium to fuel their research reactors. IAEA Bull. 2019, 60, 26–27. [Google Scholar]
- Irkimbekov, R.A.; Akayev, A.S.; Zhagiparova, L.K.; Khazhidnov, A.S.; Gnyrya, V.S.; Vurim, A.D.; Garner, P.L.; Hanan, N.A. Safety analysis of the IVG.1M reactor with LEU fuel. In Proceedings of the RERTR-2019: International Meeting on Reduced Enrichment for Research and Test Reactor, Zagreb, Croatia, 6–9 October 2019; Available online: https://www.rertr.anl.gov/RERTR40/pdfs/RERTR-2019-program.pdf (accessed on 19 May 2025).
- Irkimbekov, R.A.; Surayev, A.S.; Vityuk, G.A.; Zhanbolatov, O.M.; Kozhabaev, Z.B.; Bedenko, S.V.; Ghal-Eh, N.; Vurim, A.D. Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel. Nucl. Eng. Technol. 2023, 55, 1439–1447. [Google Scholar] [CrossRef]
- Sabitova, R.; Popov, Y.; Irkimbekov, R.; Prozorova, I.; Derbyshev, I.; Nurzhanov, E.; Surayev, A.; Gnyrya, V.; Azimkhanov, A. Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor. Energies 2023, 16, 6263. [Google Scholar] [CrossRef]
- Dyakov, Y.K.; Zhalilov, R.K.; Karetnikov, I.A.; Kolganov, A.A.; Martynenko, A.V.; Nuzhin, V.N.; Soldatkin, D.M.; Solncev, I.A. Dispersion Heat-Generating Element and Method of Its Manufacturing. Eurasian Patent Office 027036 B1, 30 June 2017. Available online: https://patents.google.com/patent/EA027036B1/en (accessed on 19 May 2025).
- Zaytsev, D.A.; Repnikov, V.M.; Soldatkin, D.M.; Solntsev, V.A. Studies of behavior of the fuel compound based on the U-Zr micro-heterogeneous quasialloy during cyclic thermal tests. J. Phys. Conf. Ser. 2017, 891, 012181. [Google Scholar] [CrossRef]
- Irkimbekov, R.A.; Azimkhanov, A.S.; Vityuk, G.A.; Surayev, A.S.; Derbyshev, I.K. Experimental data on the IVG.1M RCCS influence on the reactor downtime between start-ups. Eurasian J. Phys. Funct. Mater. 2022, 6, 190–197. [Google Scholar] [CrossRef]
- Irkimbekov, R.; Vurim, A.; Vityuk, G.; Zhanbolatov, O.; Kozhabayev, Z.; Surayev, A. Modeling of dynamic operation modes of IVG. 1M reactor. Energies 2023, 16, 932. [Google Scholar] [CrossRef]
- Sabitova, R.R.; Popov, Y.A.; Irkimbekov, R.A.; Bedenko, S.V.; Prozorova, I.V.; Svetachev, S.N.; Medetbekov, B.S. Experimental studies of power distribution in LEU-fuel of the IVG.1M reactor. Appl. Radiat. Isot. 2023, 200, 110942. [Google Scholar] [CrossRef]
- Kazanskiy, Y.A.; Matusevich, Y.S. Experimental Methods of Reactor Physics: Textbook for Universities; Energoatomizdat: Moscow, Russia, 1984; p. 272. [Google Scholar]
- Svetachev, S.N.; Popov, Y.A.; Sabitova, R.R.; Bedenko, S.V.; Prozorova, I.V.; Medetbekov, B.S. Experimental studies of fission product release from model fuel elements at the physical start-up of the IVG.1M research reactor. Appl. Radiat. Isot. 2023, 201, 111023. [Google Scholar] [CrossRef]
- Medetbekov, B.S.; Vurim, A.D.; Prozorova, I.V.; Popov, Y.A. Fission product release from high and low-enriched uranium fuel of the IVG.1M research reactor. Eurasian Phys. Tech. J. 2023, 20, 54–60. [Google Scholar] [CrossRef]
- Kashaykin, P.; Tomashuk, A.L.; Vasiliev, S.A.; Britskiy, V.A.; Ignatyev, A.D.; Ponkratov, Y.V.; Kulsartov, T.V.; Samarkhanov, K.K.; Gnyrya, V.S.; Zarenbin, A.V.; et al. Radiation Resistance of Singlemode Optical Fibers at λ = 1.55 μm under Irradiation at IVG.1M Nuclear Reactor. IEEE Trans. Nucl. Sci. 2020, 67, 2162–2171. [Google Scholar] [CrossRef]
- Ponkratov, Y.; Bochkov, V.; Samarkhanov, K.; Karambayeva, I.; Askerbekov, S. Methodology of Corrosion Testing of Nuclear and Fusion Reactors Materials Using TGA/DSC and MS Complex Techniques. Eurasian Chem.-Technol. J. 2019, 21, 35–40. [Google Scholar] [CrossRef]
- Batyrbekov, E.; Vityuk, V.; Zarva, D.; Sharipov, M. Conceptual View of the Implementation of the Nuclear Energy Program in the Republic of Kazakhstan. Energies 2024, 17, 5788. [Google Scholar] [CrossRef]
- Gordienko, Y.; Ponkratov, Y.; Kulsartov, T.; Zaurbekova, Z.; Koyanbayev, Y.; Chikhray, Y. Research facilities of IAE NNC RK (Kurchatov) for investigations of tritium interaction with structural materials of fusion reactors. Fusion. Sci. Technol. 2020, 76, 703–709. [Google Scholar] [CrossRef]
- Samarkhanov, K.; Khasenov, M.; Batyrbekov, E.; Gordienko, Y.; Baklanova, Y.; Kenzhina, I.; Tulubayev, Y.; Karambayeva, I. Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products. Eurasian Chem. J. 2021, 23, 95–102. [Google Scholar] [CrossRef]
Start-Up | Reactor Power, MW | Reactor Operating Time at Power, Min | Average Power of One WCTC-LEU, kW | ||
---|---|---|---|---|---|
1st Row | 2nd Row | 3rd Row | |||
#01 | 0.99 | 30 | 39 | 38 | 29 |
#02 | 1.05 | 20 | 41 | 40 | 31 |
1.98 | 30 | 77 | 75 | 60 | |
#03 | 1.98 | 30 | 77 | 74 | 59 |
4.09 | 30 | 159 | 154 | 123 | |
#04 | 4.00 | 30 | 156 | 151 | 120 |
6.08 | 30 | 237 | 229 | 182 | |
#05 | 6.13 | 30 | 239 | 232 | 184 |
10.22 | 30 | 397 | 385 | 307 | |
#06 | 0.11 | 15 | 4 | 4 | 3 |
2.89 | 15 | 112 | 109 | 87 | |
6.09 | 15 | 237 | 230 | 183 | |
9.12 | 15 | 354 | 344 | 274 | |
6.11 | 15 | 237 | 231 | 183 | |
#07 | 1.00 | 60 | 39 | 38 | 30 |
9.10 | 10 | 354 | 343 | 274 | |
#08 | 2.98 | 30 | 116 | 113 | 90 |
#09 | 3.01 | 30 | 117 | 113 | 90 |
WCTC Relative Power | Activation Method (HEU Fuel) | Thermal Method (HEU Fuel) | Computer Modeling (HEU Fuel) | Activation Method (LEU Fuel) | Thermal Method (LEU Fuel) | Computer Modeling (LEU Fuel) |
---|---|---|---|---|---|---|
1st row | 1.25 ± 0.06 | 1.26 ± 0.03 | 1.25 ± 0.03 | 1.26 ± 0.03 | 1.30 ± 0.015 | 1.28 ± 0.03 |
2nd row | 1.18 ± 0.06 | 1.24 ± 0.03 | 1.21 ± 0.03 | 1.21 ± 0.03 | 1.26 ± 0.015 | 1.25 ± 0.03 |
3rd row | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
State | T, °C | ΔT, °C | RM, βeff | ΔR, βeff | α, βeff/°C |
---|---|---|---|---|---|
1 | 20.6 | 4.0 | 4.310 | 0.085 ± 0.007 | 0.0213 ± 0.002 |
2 | 24.6 | 4.395 |
State | T, °C | ΔT, °C | RM, βeff | ΔR, βeff | α, βeff/°C |
---|---|---|---|---|---|
1 | 31.5 | −10.9 | 4.475 | −0.222 ± 0.013 | 0.0204 ± 0.0014 |
2 | 20.6 | 4.253 |
Start-Up | Power N, MW | Reactivity Margin for MCL, βeff | Reactivity Margin for SS, βeff | ΔR (PRE) Exp., βeff | ΔR (PRE) calc., βeff |
---|---|---|---|---|---|
#01 | 1 | 4.674 | 4.654 | −0.020 ± 0.005 | −0.028 |
#02 | 1 | 4.658 | 4.621 | −0.036 ± 0.005 | −0.028 |
#03 | 2 | 4.702 | 4.650 | −0.053 ± 0.006 | −0.055 |
#04 | 4 | 4.686 | 4.569 | −0.118 ± 0.009 | −0.111 |
#05 | 6 | 4.690 | 4.484 | −0.207 ± 0.014 | −0.168 |
#05 | 10 | 4.690 | 4.301 | −0.427 ± 0.025 * | −0.283 |
#06 | 3 | 4.844 | 4.739 | −0.105 ± 0.009 | −0.084 |
#07 | 1 | 4.816 | 4.779 | −0.036 ± 0.005 | −0.028 |
#07 | 9 | 4.816 | 4.423 | −0.412 ± 0.024 * | −0.253 |
#08 | 3 | 4.625 | 4.552 | −0.073 ± 0.007 | −0.084 |
#09 | 3 | 4.613 | 4.548 | −0.065 ± 0.007 | −0.084 |
State | Flow Rate, kg/s | Pressure, kg/cm2 | Reactivity Margin, βeff | Reactivity Effect, βeff |
---|---|---|---|---|
1 | 4.9 | 1.1 | 4.561 | +0.028 ± 0.003 |
2 | 64.0 | 10.3 | 4.589 |
Isotope | Cell #18 (WCTC-HEU Third Row) [17] | Cell #16 (WCTC-LEU Third Row) | Cell # 27 (WCTC-HEU Second Row) | Cell # 25 (WCTC-LEU Second Row) | ||||
---|---|---|---|---|---|---|---|---|
A(t), 103 Bq/L | R/B, 10−7 rel. Units | A(t), 103 Bq/L | R/B, 10−7 rel. Units | A(t), 103 Bq/L | R/B, 10−7 rel. Units | A(t), 103 Bq/L | R/B, 10−7 rel. Units | |
Kr-85 | 0.4 | 2.4 | 0.16 | 2.0 | 0.8 | 4.0 | 0.6 | 5.9 |
Kr-87 | 1.8 | 2.1 | 1.6 | 3.2 | 3.6 | 4.5 | 3.0 | 4.7 |
Kr-88 | 1.1 | 1.6 | 1.4 | 4.1 | 2.8 | 3.0 | 1.8 | 4.2 |
Rb-89 | 4.9 | 2.8 | 6.0 | 3.1 | 8.1 | 2.5 | 18.0 | 4.8 |
Sr-92 | 1.9 | 1.7 | 1.2 | 2.0 | 1.9 | 1.2 | 1.2 | 1.6 |
Y-94 | 2.3 | 0.9 | 3.5 | 1.4 | 2.6 | 2.2 | 5.3 | 1.2 |
Te-131 | 1.2 | 1.1 | 0.9 | 0.8 | 1.5 | 1.0 | 1.3 | 0.8 |
I-133 | 0.5 | 2.6 | 0.3 | 3.2 | 7.2 | 4.5 | 0.8 | 7.1 |
I-134 | 1.6 | 0.7 | 1.0 | 0.6 | 2.6 | 2.2 | 1.4 | 0.6 |
Te-134 | 1.1 | 0.4 | 2.3 | 1.2 | 3.6 | 0.7 | 2.9 | 1.1 |
I-135 | - | - | 0.1 | 0.35 | - | - | 0.1 | 0.3 |
Cs-138 | 8.2 | 3.0 | 5.8 | 2.6 | 15.2 | 5.9 | 10.0 | 3.1 |
Xe-138 | 3.9 | 1.7 | 5.8 | 2.2 | 8.5 | 2.7 | 20.0 | 3.7 |
La-142 | 1.8 | 1.1 | 2.3 | 2.4 | 2.9 | 1.4 | 2.1 | 1.7 |
1.7 ± 0.5 | 2.1 ± 0.6 | 2.6 ± 0.8 | 2.9 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batyrbekov, E.; Vityuk, V.; Baklanov, V.; Gnyrya, V.; Azimkhanov, A.; Sabitova, R.; Prozorova, I.; Popov, Y.; Irkimbekov, R.; Martynenko, Y. Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results. Energies 2025, 18, 3187. https://doi.org/10.3390/en18123187
Batyrbekov E, Vityuk V, Baklanov V, Gnyrya V, Azimkhanov A, Sabitova R, Prozorova I, Popov Y, Irkimbekov R, Martynenko Y. Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results. Energies. 2025; 18(12):3187. https://doi.org/10.3390/en18123187
Chicago/Turabian StyleBatyrbekov, Erlan, Vladimir Vityuk, Viktor Baklanov, Vyacheslav Gnyrya, Almas Azimkhanov, Radmila Sabitova, Irina Prozorova, Yuriy Popov, Ruslan Irkimbekov, and Yekaterina Martynenko. 2025. "Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results" Energies 18, no. 12: 3187. https://doi.org/10.3390/en18123187
APA StyleBatyrbekov, E., Vityuk, V., Baklanov, V., Gnyrya, V., Azimkhanov, A., Sabitova, R., Prozorova, I., Popov, Y., Irkimbekov, R., & Martynenko, Y. (2025). Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results. Energies, 18(12), 3187. https://doi.org/10.3390/en18123187