Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (733)

Search Parameters:
Keywords = bird distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 15616 KiB  
Article
Binary Secretary Bird Optimization Algorithm for the Set Covering Problem
by Broderick Crawford, Felipe Cisternas-Caneo, Ricardo Soto, Claudio Patricio Toledo Mac-lean, José Lara Arce, Fabián Solís-Piñones, Gino Astorga and Giovanni Giachetti
Mathematics 2025, 13(15), 2482; https://doi.org/10.3390/math13152482 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the [...] Read more.
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the binary domain of the SCP. In this work, we present a new approach to solve the SCP based on the Secretary Bird Optimization Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird, known for its ability to hunt prey and evade predators in its environment. Since the SBOA was originally designed for optimization problems in continuous space and the SCP is a binary problem, this paper proposes the implementation of several binarization techniques to adapt the algorithm to the discrete domain. These techniques include eight transfer functions and five different discretization methods. Taken together, these combinations create multiple SBOA adaptations that effectively balance exploration and exploitation, promoting an adequate distribution in the search space. Experimental results applied to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer and Particle Swarm Optimization suggest that the binary version of SBOA is a robust algorithm capable of producing high quality solutions with low computational cost. Given the promising results obtained, it is proposed as future work to focus on complex and large-scale problems as well as to optimize their performance in terms of time and accuracy. Full article
Show Figures

Figure 1

28 pages, 16355 KiB  
Article
Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle
by Kirill V. Galaktionov, Anna I. Solovyeva, Aleksei A. Miroliubov, Kira V. Regel and Anna E. Romanovich
Diversity 2025, 17(8), 512; https://doi.org/10.3390/d17080512 - 25 Jul 2025
Viewed by 261
Abstract
Renicolid digeneans parasitise aquatic birds. In molecular trees, they are divided into three clades, one of which, the ‘duck clade’, parasitises anatids. Renicola mollissima, a member of this clade, parasitises sea ducks, mainly eiders. Its life cycle remains unknown. We verified the [...] Read more.
Renicolid digeneans parasitise aquatic birds. In molecular trees, they are divided into three clades, one of which, the ‘duck clade’, parasitises anatids. Renicola mollissima, a member of this clade, parasitises sea ducks, mainly eiders. Its life cycle remains unknown. We verified the diagnosis of R. mollissima using integrated morphological and molecular data and provided the first information on its life cycle in northern Palaearctic. We proved that intramolluscan stages of R. mollissima, previously known as Cercaria pacifica 2, develop in intertidal snails Littorina squalida and L. saxatilis. We provided a detailed morphological description of cercariae and adults of R. mollissima and a discriminative analysis with closely related species. Molecular data demonstrated an amphiboreal distribution of R. mollissima and the existence of a single population in Europe and the North Pacific. Using molecular methods, we also found metacercariae of an unknown renicolid species from the ‘duck clade’, designated as Cercaria cf. nordica I, in subtidal mussels of the Barents Sea. All individuals of C. cf. nordica I examined in our study were represented by the same haplotype. We discuss possible ways of formation of this phylogeographic structure, the composition of the ‘duck clade’ and the evolutionary pathways of the family Renicolidae. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

14 pages, 5085 KiB  
Communication
Development and Validation of a Histologic Respiratory Index (HRI) in Poultry
by Tamer A. Sharafeldin, Mohamed Selim, Noreen Bashir and Sunil K. Mor
Pathogens 2025, 14(8), 727; https://doi.org/10.3390/pathogens14080727 - 23 Jul 2025
Viewed by 301
Abstract
Respiratory viral diseases infecting poultry lead to variable lesions in the respiratory organs, including nasal sinuses, trachea, lungs, and air sacs. Additional involvement of eyelids/conjunctiva was reported. The distribution and the intensity of lesions depend on multiple factors, including virulence, the host’s immunity, [...] Read more.
Respiratory viral diseases infecting poultry lead to variable lesions in the respiratory organs, including nasal sinuses, trachea, lungs, and air sacs. Additional involvement of eyelids/conjunctiva was reported. The distribution and the intensity of lesions depend on multiple factors, including virulence, the host’s immunity, and secondary or concurrent infections. It may be challenging to detect remarkable lesions during experimental infections conducted in a controlled environment because some viruses fail to produce the intense lesions seen in field cases. This creates a challenge in developing a reliable model to study pathogenicity or vaccine efficacy experimentally. The development of the proposed histologic respiratory index (HRI) aims to help monitor the least microscopic changes that can be scored, thereby creating an objective and accurate grading of lesions in experimentally infected birds. HRI scores the changes in eyelids/conjunctiva and respiratory mucosa, including hyperplasia, metaplasia, inflammatory cellular infiltration in the submucosa, including lymphocytes and heterophils, and vascular changes (vasculitis) in nasal sinuses, trachea, and lungs. The score was validated in birds infected experimentally with avian metapneumovirus (aMPV) and low pathogenic avian influenza (LPAI-H4N6). The HRI reliably graded higher scores in the respiratory organs of experimentally infected birds compared with non-infected control ones. The HRI is the first of its type with poultry viral respiratory pathogens and it was initially proven to be a reliable in pathogenicity and vaccine trials of certain poultry respiratory viral diseases. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

19 pages, 2287 KiB  
Article
Bird Community Structure Changes as Araucaria Forest Cover Increases in the Highlands of Southeastern Brazil
by Carla Suertegaray Fontana, Lucilene Inês Jacoboski, Jonas Rafael Rodrigues Rosoni, Juliana Lopes da Silva, Filipe Augusto Pasa Bernardi, Pamela Eliana Malmoria, Christian Beier and Sandra Maria Hartz
Birds 2025, 6(3), 37; https://doi.org/10.3390/birds6030037 - 16 Jul 2025
Viewed by 777
Abstract
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the [...] Read more.
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the composition and functional diversity of the bird community along a gradient of AF cover in a protected area (Pró-Mata Private Natural Heritage Reserve) in southern Brazil. Bird sampling was conducted using MacKinnon lists along five trails with different histories of vegetation suppression, based on forest cover estimates from landscape imagery. Birds were functionally classified based on morphological and ecological traits. We recorded 191 bird species in total. We found higher bird richness in trails with less forest cover, while functional diversity responded inversely to vegetation cover. Bird species composition shifted from more open-habitat specialists to more forest specialists with the increasing forest cover and vegetation structural complexity. These findings highlight the ecological importance of maintaining vegetation heterogeneity, as vegetation mosaics enhance avian species richness and support a broader range of functional traits and ecosystem processes. We recommend the conservation of Araucaria Forest–grassland mosaics as a strategic approach to support multidimensional biodiversity and sustain key ecological functions in southern Brazil. Full article
Show Figures

Figure 1

7 pages, 788 KiB  
Case Report
Nocardia cyriacigeorgica in a Mallard (Anas platyrhynchos) from Arizona, USA
by Susan Knowles, Brenda M. Berlowski-Zier, Anne Justice-Allen, Barbara L. Bodenstein and Jeffrey M. Lorch
Pathogens 2025, 14(7), 698; https://doi.org/10.3390/pathogens14070698 - 15 Jul 2025
Viewed by 280
Abstract
Nocardia spp. are opportunistic pathogens of humans, domestic animals, and wildlife that can cause high levels of morbidity and mortality. Here, we present a unique case of nocardial airsacculitis in a free-ranging mallard (Anas platyrhynchos) from Arizona, USA, and compare it [...] Read more.
Nocardia spp. are opportunistic pathogens of humans, domestic animals, and wildlife that can cause high levels of morbidity and mortality. Here, we present a unique case of nocardial airsacculitis in a free-ranging mallard (Anas platyrhynchos) from Arizona, USA, and compare it to the hosts, geographic distribution, diagnostic methodology, and infection site of known nocardiosis cases in birds. A gross necropsy, histopathology, and bacterial culture were performed. There were no gross findings associated with the nocardiosis. Histopathology showed multiple granulomas expanding the air sac with intralesional filamentous bacteria that were Grocott’s methenamine silver-positive, Fite–Faraco and Ziehl–Neelsen acid-fast, positive with the Periodic acid–Schiff reaction, and variably Gram-positive. The organism was isolated in culture and identified as Nocardia cyriacigeorgica based on the sequencing of a 463 bp portion of the 16S rRNA gene. While reports of nocardiosis in the class Aves are rare and some are possibly misdiagnosed due to limited diagnostics, cases are reported globally, sometimes resulting in epizootics. More information is needed to understand whether immunosuppression plays a role in disease development in birds. Known to be an emerging pathogen in humans, N. cyriacigeorgica can be considered as a differential diagnosis for pulmonary and potentially cutaneous or disseminated infections in birds. Full article
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
Binary Secretary Bird Optimization Clustering by Novel Fitness Function Based on Voronoi Diagram in Wireless Sensor Networks
by Mohammed Abdulkareem, Hadi S. Aghdasi, Pedram Salehpour and Mina Zolfy
Sensors 2025, 25(14), 4339; https://doi.org/10.3390/s25144339 - 11 Jul 2025
Viewed by 229
Abstract
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster [...] Read more.
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster heads (CHs) are responsible for data collection, aggregation, and forwarding, making their optimal selection essential for prolonging network lifetime. The effectiveness of CH selection is highly dependent on the choice of metaheuristic optimization method and the design of the fitness function. Although numerous studies have applied metaheuristic algorithms with suitably designed fitness functions to tackle the CH selection problem, many existing approaches fail to fully capture both the spatial distribution of nodes and dynamic energy conditions. To address these limitations, we propose the binary secretary bird optimization clustering (BSBOC) method. BSBOC introduces a binary variant of the secretary bird optimization algorithm (SBOA) to handle the discrete nature of CH selection. Additionally, it defines a novel multiobjective fitness function that, for the first time, considers the Voronoi diagram of CHs as an optimization objective, besides other well-known objectives. BSBOC was thoroughly assessed via comprehensive simulation experiments, benchmarked against two advanced methods (MOBGWO and WAOA), under both homogeneous and heterogeneous network models across two deployment scenarios. Findings from these simulations demonstrated that BSBOC notably decreased energy usage and prolonged network lifetime, highlighting its effectiveness as a reliable method for energy-aware clustering in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 2922 KiB  
Review
Zoonotic Orthoflaviviruses Related to Birds: A Literature Review
by Vladimir Savić, Ljubo Barbić, Maja Bogdanić, Ivana Rončević, Ana Klobučar, Alan Medić and Tatjana Vilibić-Čavlek
Microorganisms 2025, 13(7), 1590; https://doi.org/10.3390/microorganisms13071590 - 6 Jul 2025
Viewed by 564
Abstract
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional [...] Read more.
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional geographic boundaries, even crossing continents. Given the long-distance movements of birds, the knowledge of zoonotic orthoflaviviruses associated with birds is essential because of their possible introduction into new regions, as was the case with West Nile virus and Usutu virus. A thorough literature review was conducted on zoonotic orthoflaviviruses related to birds, including lesser-known (re-)emerging and neglected orthoflaviviruses that are limited to specific regions and/or avian hosts but have the potential to spread to a wider geographical area and pose a higher risk of transmission to humans. Several of these viruses possess significant zoonotic potential and can cause a wide spectrum of diseases in humans, ranging from mild febrile illnesses (Zika virus) to severe neuroinvasive diseases (tick-borne encephalitis, West Nile, Japanese encephalitis virus) and hemorrhagic fevers (yellow fever, dengue virus). Geographic distribution, hosts, vectors, incidence of human infections, and impact on human and animal health of zoonotic flaviviruses related to birds are critically reviewed. The viruses have been categorized based on the role of birds as an orthoflavivirus host and the clinical presentation in human infections. Full article
(This article belongs to the Special Issue Emerging Viral Zoonoses, Second Edition)
Show Figures

Figure 1

10 pages, 687 KiB  
Data Descriptor
A DNA Barcode Dataset for the Aquatic Fauna of the Panama Canal: Novel Resources for Detecting Faunal Change in the Neotropics
by Kristin Saltonstall, Rachel Collin, Celestino Aguilar, Fernando Alda, Laura M. Baldrich-Mora, Victor Bravo, María Fernanda Castillo, Sheril Castro, Luis F. De León, Edgardo Díaz-Ferguson, Humberto A. Garcés, Eyda Gómez, Rigoberto G. González, Maribel A. González-Torres, Hector M. Guzman, Alexandra Hiller, Roberto Ibáñez, César Jaramillo, Klara L. Kaiser, Yulang Kam, Mayra Lemus Peralta, Oscar G. Lopez, Maycol E. Madrid C., Matthew J. Miller, Natalia Ossa-Hernandez, Ruth G. Reina, D. Ross Robertson, Tania E. Romero-Gonzalez, Milton Sandoval, Oris Sanjur, Carmen Schlöder, Ashley E. Sharpe, Diana Sharpe, Jakob Siepmann, David Strasiewsky, Mark E. Torchin, Melany Tumbaco, Marta Vargas, Miryam Venegas-Anaya, Benjamin C. Victor and Gustavo Castellanos-Galindoadd Show full author list remove Hide full author list
Data 2025, 10(7), 108; https://doi.org/10.3390/data10070108 - 2 Jul 2025
Viewed by 573
Abstract
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of [...] Read more.
DNA metabarcoding is a powerful biodiversity monitoring tool, enabling simultaneous assessments of diverse biological communities. However, its accuracy depends on the reliability of reference databases that assign taxonomic identities to obtained sequences. Here we provide a DNA barcode dataset for aquatic fauna of the Panama Canal, a region that connects the Western Atlantic and Eastern Pacific oceans. This unique setting creates opportunities for trans-oceanic dispersal while acting as a modern physical dispersal barrier for some terrestrial organisms. We sequenced 852 specimens from a diverse array of taxa (e.g., fishes, zooplankton, mollusks, arthropods, reptiles, birds, and mammals) using COI, and in some cases, 12S and 16S barcodes. These data were collected for a variety of studies, many of which have sought to understand recent changes in aquatic communities in the Panama Canal. The DNA barcodes presented here are all from captured specimens, which confirms their presence in Panama and, in many cases, inside the Panama Canal. Both native and introduced taxa are included. This dataset represents a valuable resource for environmental DNA (eDNA) work in the Panama Canal region and across the Neotropics aimed at monitoring ecosystem health, tracking non-native and potentially invasive species, and understanding the ecology and distribution of these freshwater and euryhaline taxa. Full article
(This article belongs to the Special Issue Benchmarking Datasets in Bioinformatics, 2nd Edition)
Show Figures

Figure 1

20 pages, 1584 KiB  
Article
Causal Effect Analysis of the Relationship Between Relative Bird Abundance and Deforestation in Mexico
by Claudia Itzel Beteta-Hernández, Iriana Zuria, Pedro P. Garcillán, Luis Felipe Beltrán-Morales, María del Carmen Blázquez Moreno and Gerzaín Avilés-Polanco
Birds 2025, 6(3), 36; https://doi.org/10.3390/birds6030036 - 2 Jul 2025
Viewed by 290
Abstract
In this study, we used a causal analysis approach to assess the impact of deforestation on bird abundance in Mexico. Based on records in the eBird and GBIF databases, ten species were selected in 807 grids on the mainland. Relative abundances by species [...] Read more.
In this study, we used a causal analysis approach to assess the impact of deforestation on bird abundance in Mexico. Based on records in the eBird and GBIF databases, ten species were selected in 807 grids on the mainland. Relative abundances by species were estimated using a fixed-effects panel data regression for the period 2016–2018. Deforestation was used as a quasi-natural experiment, classifying treatment and control groups according to the distribution of relative abundances by quintiles of gross deforestation rates during the period 2001–2018. The treatment group was defined as relative abundances of birds present in grids in the last deforestation quintile (≥4% to 12%); the control group included relative abundances of birds present in grids of the first four quintiles (<4%). Extended regression models were used to estimate the impacts of high deforestation rates on the relative abundance of birds, finding mixed causal effects: five showed statistically significant declines in abundance (Ruddy Ground Dove (Columbina talpacoti), Black Vulture (Coragyps atratus), Melodious Blackbird (Dives dives), Bewick’s Wren (Thryomanes bewickii), and Rufous-backed Thrush (Turdus rufopalliatus)), while one specie Yellow-winged Cacique (Cassiculus melanicterus) exhibited significant increases. These findings highlight the importance of causal effect studies in contributing to empirical evidence-based conservation decision-making. Full article
(This article belongs to the Special Issue Resilience of Birds in Changing Environments)
Show Figures

Figure 1

28 pages, 2554 KiB  
Article
Design, Calibration, and Performance Evaluation of a High-Fidelity Spraying Rainfall Simulator for Soil Erosion Research
by Vukašin Rončević, Nikola Živanović, Lazar Radulović, Ratko Ristić, Seyed Hamidreza Sadeghi, María Fernández-Raga and Sergio A. Prats
Water 2025, 17(13), 1863; https://doi.org/10.3390/w17131863 - 23 Jun 2025
Viewed by 381
Abstract
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment [...] Read more.
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment criteria optimized for soil erosion research. The simulator’s design is based on a modified simulator model previously described in the literature and following the defined criteria. The calibration of the simulator was conducted in two phases, on slopes of 0° and 15°, measuring rainfall intensity, drop size, and its spatial distribution, and calculating drop falling velocity, kinetic energy, and momentum. The simulator consists of structural support, a water tank, a water-moving mechanism, a flow regulation system, and sprayers, contributing to its simplicity, cost-effectiveness, durability, rigidity, and stability, ensuring smooth simulator operation. The calibration of the rainfall simulator demonstrated that rainfall intensity increased from 1.4 mm·min−1 to 4.6 mm·min−1 with higher pressure in the hydraulic system (1.0 to 2.0 bar), while spatial uniformity remained within 79–91% across different nozzle configurations. The selected Rain Bird HE-VAN series nozzles proved highly effective in simulating rainfall, achieving drop diameters ranging from 0.8 mm to 1.9 mm, depending on pressure and nozzle type. The rainfall simulator successfully replicates natural rainfall characteristics, offering a controlled environment for investigating soil erosion processes. Drop velocity values varied between 2.5 and 2.9 m·s−1, influencing kinetic energy, which ranged from 0.6 J·min−1·m−2 to 2.9 J·min−1·m−2, and impact momentum, which was measured between 0.005 N·s and 0.032 N·s. The simulator design suggests that it is suitable for future applications in both field and laboratory soil erosion research, ensuring repeatability and adaptability for various experimental conditions. Calibration results emphasized the significance of nozzle selection and water pressure adjustments. These factors significantly affect rainfall intensity, drop size, kinetic energy, and momentum, parameters that are critical for accurate erosion modeling. Full article
Show Figures

Figure 1

13 pages, 1834 KiB  
Article
Ancient Lineages of the Western and Central Palearctic: Mapping Indicates High Endemism in Mediterranean and Arid Regions
by Şerban Procheş, Syd Ramdhani and Tamilarasan Kuppusamy
Diversity 2025, 17(7), 444; https://doi.org/10.3390/d17070444 - 23 Jun 2025
Viewed by 336
Abstract
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start [...] Read more.
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start of a continuum from temperate to tropical forest groups and leading to Indo-Malay endemics. In contrast, western Palearctic endemics are typically associated with arid or seasonally dry (Mediterranean) climates and vegetation. Those lineages occurring in the central Palearctic are typically of western origin. Here, we use phylogenetic age (older than 34 million years (My)) to define a list of tetrapod and vascular plant lineages endemic to the western and central Palearctic, map their distributions at the ecoregion scale, and combine these maps to illustrate and understand lineage richness and endemism patterns. Sixty-three ancient lineages were recovered, approximately half of them reptiles, with several herbaceous and shrubby angiosperms, amphibians, and rodents, and single lineages of woody conifers, insectivores, and birds. Overall, we show high lineage richness in the western Mediterranean, eastern Mediterranean, and Iran, with the highest endemism values recorded in the western Mediterranean (southern Iberian Peninsula, southern France). This paints a picture of ancient lineage survival in areas of consistently dry climate since the Eocene, but also in association with persistent water availability (amphibians in the western Mediterranean). The almost complete absence of ancient endemic bird lineages is unusual and perhaps unique among the world’s biogeographic regions. The factors accounting for these patterns include climate since the end of the Eocene, micro-habitats and micro-climates (of mountain terrain), refugia, and patchiness and isolation (of forests). Despite their aridity adaptations, some of the lineages listed here may be tested under anthropogenic climatic change, although some may extend into the eastern Palearctic. We recommend using these lineages as flagships for conservation in the study region, where their uniqueness and antiquity deserve greater recognition. Full article
Show Figures

Figure 1

23 pages, 15466 KiB  
Article
Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests
by Luna E. Silvetti, Julieta R. Arcamone, Gregorio Gavier Pizarro, Marcos A. Landi and Laura M. Bellis
Forests 2025, 16(6), 1001; https://doi.org/10.3390/f16061001 - 14 Jun 2025
Cited by 1 | Viewed by 559
Abstract
(1) Background: Land-use change threatens biodiversity globally, making it essential to anticipate future impacts. (2) Methods: We assess future land-use change scenarios as a tool for analyzing the taxonomic and functional richness of birds in the Serrano forest. We developed two change scenarios: [...] Read more.
(1) Background: Land-use change threatens biodiversity globally, making it essential to anticipate future impacts. (2) Methods: We assess future land-use change scenarios as a tool for analyzing the taxonomic and functional richness of birds in the Serrano forest. We developed two change scenarios: The “Business as usual” scenario assumes that the trend of land-use change observed between 2004 and 2019 will continue without modifications by 2035 and 2050. The “Sustainable” scenario seeks to achieve a sustainable relationship between anthropogenic land-use activities and ecosystem conservation. We created distribution models and derived the potential distribution of the taxonomic and functional richness of forest and understory specialist birds in the change scenarios. (3) Results: The taxonomic and functional richness of both bird groups was strongly affected in the “Business as usual” change scenario, which presented extreme deforestation events, while the “Sustainable” change scenario tended to maintain bird richness over time. We detected areas with a reduction in richness greater than 20% and areas where richness increased due to being distant from urbanization and exotic forests. Full article
(This article belongs to the Special Issue Conservation of Birds and Their Habitats in Forest Landscapes)
Show Figures

Figure 1

11 pages, 1290 KiB  
Article
The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl
by Luis F. Rossi and María Inés Pigozzi
Animals 2025, 15(12), 1759; https://doi.org/10.3390/ani15121759 - 14 Jun 2025
Viewed by 408
Abstract
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary [...] Read more.
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary dramatically across species and populations, between individuals, and across sexes. The chicken and the guinea fowl exhibit interspecific variation in the distribution of crossovers along their largest chromosomes. In many organisms, an association has been observed between the preferred crossover location and certain sequence parameters, such as high GC content, CpG islands, or gene promoters. Here, we compared the distribution of these genomic parameters with the recombination landscape, represented by MLH1 focus frequencies, in the two birds. We found an association between GC content density and recombination in the chicken, but the remaining parameters showed weak or no association with recombination, especially in the guinea fowl. We conclude that despite the different broad-scale crossover distribution, the investigated genomic parameters remained remarkably similar in these two species. We suggest that the density of these genomic features is more likely related to microscale variations in recombination rates, such as those determined by open chromatin configurations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain
by Andrea Laconi, Roberta Tolosi, Claudia Chirollo, Cristiana Penon, Giacomo Berto, Francesco Galuppo and Alessandra Piccirillo
Antibiotics 2025, 14(6), 604; https://doi.org/10.3390/antibiotics14060604 - 13 Jun 2025
Viewed by 699
Abstract
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes [...] Read more.
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes (ARGs) and characterizes the microbial communities’ composition, using 16S rRNA sequencing and real-time PCR, respectively. Eleven fecal, 76 slaughterhouse surface, 11 cecal, and 11 carcass samples, from 11 poultry farms belonging to the same short food chain, were analyzed in the study. Results: While cleaning and disinfection procedures appeared to reduce the bacterial load on slaughterhouse surfaces, diverse and potentially resistant bacteria, including genera such as Staphylococcus and Streptococcus, persisted both before and after slaughter. ARGs conferring resistance to high-priority critically important antimicrobials (HPCIAs), such as fluoroquinolones and third-generation cephalosporins, were frequently detected on carcasses, with qnrS (76.15%, 95%CI 68.02-84.28%) and blaCMY2 (57.8%, 95%CI 48.38-67.22%) being the most prevalent. The slaughtering process emerged as a critical step for ARG dissemination via intestinal bacteria, such as genus Lactobacillus. Additionally, the detection of mcr genes and blaNDM on carcasses but not in the bird gut samples suggests possible anthropogenic contamination. Discussion: These findings highlight that the evisceration process, slaughterhouse environment, and personnel are all contributing factors in ARG spread and underscore the need for enhanced hygiene protocols and reduced gut ARG carriage in domestic birds to mitigate the risk for the consumer. Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
A Convergent Approach to Investigate the Environmental Behavior and Importance of a Man-Made Saltwater Wetland
by Luigi Alessandrino, Nicolò Colombani, Alessio Usai and Micòl Mastrocicco
Remote Sens. 2025, 17(12), 2019; https://doi.org/10.3390/rs17122019 - 11 Jun 2025
Viewed by 920
Abstract
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management [...] Read more.
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management of protected wetlands necessitates a multidisciplinary approach, the purpose of this study is to provide a comprehensive picture of the hydrological, hydrochemical, and ecological dynamics of a man-made groundwater dependent ecosystem (GDE) by combining remote sensing, hydrochemical data, geostatistical tools, and ecological indicators. The study area, called “Le Soglitelle”, is located in the Campania plain (Italy), which is close to the Domitian shoreline, covering a surface of 100 ha. The Normalized Difference Water Index (NDWI), a remote sensing-derived index sensitive to surface water presence, from Sentinel-2 was used to detect changes in the percentage of the wetland inundated area over time. Water samples were collected in four campaigns, and hydrochemical indexes were used to investigate the major hydrochemical seasonal processes occurring in the area. Geostatistical tools, such as principal component analysis (PCA) and independent component analysis (ICA), were used to identify the main hydrochemical processes. Moreover, faunal monitoring using waders was employed as an ecological indicator. Seasonal variation in the inundation area ranged from nearly 0% in summer to over 50% in winter, consistent with the severe climatic oscillations indicated by SPEI values. PCA and ICA explained over 78% of the total hydrochemical variability, confirming that the area’s geochemistry is mainly characterized by the saltwater sourced from the artesian wells that feed the wetland. The concentration of the major ions is regulated by two contrasting processes: evapoconcentration in summer and dilution and water mixing (between canals and ponds water) in winter. Cl/Br molar ratio results corroborated this double seasonal trend. The base exchange index highlighted a salinization pathway for the wetland. Bird monitoring exhibited consistency with hydrochemical monitoring, as the seasonal distribution clearly reflects the dual behaviour of this area, which in turn augmented the biodiversity in this GDE. The integration of remote sensing data, multivariate geostatistical analysis, geochemical tools, and faunal indicators represents a novel interdisciplinary framework for assessing GDE seasonal dynamics, offering practical insights for wetland monitoring and management. Full article
Show Figures

Figure 1

Back to TopTop