Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Collection and Treatment
2.2. DNA Extraction, Amplification and Sequencing
2.3. Alignments and Phylogenetic Analyses
3. Results
3.1. Description
- Family Renicolidae Dollfus, 1939
- Renicola mollissima Kulachkova, 1957
- [syn. Cercaria pacifica 2 Pois, Tsimbaljuk & Ardasheva, 1974]
- Type host (definitive): common eider Somateria mollissima (Linnaeus, 1758)
- Other hosts (definitive): King eider Somateria spectabilis (Linnaeus, 1758), long-tailed duck Clangula hyemalis (Linnaeus, 1758), common goldeneye Bucephala clangula (Linnaeus, 1758)
- Site of infection in definitive host: kidney tubules
- Type locality: White Sea
- Other localities (in definitive host): Chukotka, Sea of Okhotsk
- Type material: 3 syntypes on the slide of V. G. Kulachkova # 3750 deposited ZISP.
- Representative slides: slides of V.G. Kulachkova ## 3751-1–3751-2 deposited in ZISP. Slides ## 3752-1–3752-2 (paragenophores) and 3752-3 deposited in ZISP.
- First intermediate host: Littorina squalida Broderip & G. B. Sowerby I, 1829, L. saxatilis
- (Olivi, 1792), L. mandshurica (Schrenck, 1861) (under question—see Section 3. Results for details) (Caenogastropoda: Littorinimorpha: Littorinidae) (natural)
- Site of infection in first intermediate host: gonad
- Localities (in first intermediate host): White Sea, Sea of Okhotsk, Sea of Japan
- Second intermediate host: Littorina squalida, L. saxatilis, unknown bivalves
- Representative DNA sequences: cox1 (PV644169–PV644171, PV644173–PV644183), 28S (PV639403–PV639404), 12S rRNA (PV642434–PV642437) (according to Table 1).
R. mollissima from Somateria mollissima, White Sea (OUR Measurements 1: N = 8) | R. mollissima from Somateria mollissima, White Sea (Our Data, N = 5) | R. somateriae from Somateria mollissima, Sea of Okhotsk (After Galaktionov et al. [7]) | R. mediovitellata from Somateria mollissim, Sea of Okhotsk (After Galaktionov et al. [7]) | R. ovocallosa from Clangula hyemalis, Baltic Sea (After Reimer [23]) | |
---|---|---|---|---|---|
Body length | 1181–2220 (1742 ± 118) | 1285–1940 (1723 ± 162) | 1102–1305 (1208 ± 45) | 1174–2422 (1798 ± 160) | 900–1300 |
Body width | 833–1283 (1053 ± 62) | 576–1305 (908 ± 134) | 705–930 (850 ± 43) | 551–1285 (938 ± 89) | 860–1250 |
Oral sucker length | 181–414 (304 ± 27) | 135–423 (285 ± 46) | 210–338 (271 ± 27) | 238–382 (312 ± 21) | 330–475 * |
Oral sucker width | 316–507 (415 ± 24) | 238–493 (368 ± 48) | 278–406 (329 ± 26) | 144–202 (176 ± 9) | – |
Pharynx length | 81–127 (104 ± 6) | 65–108 (92 ± 8) | 79–95 (86 ± 3) | 58–90 (73 ± 4) | 80–87 |
Pharynx width | 78–130 (99 ± 6) | 60–112 (91 ± 10) | 51–68 (62 ± 3) | 54–72 (68 ± 2) | 75–77 |
Esophagus length | – | – | 160–170 (166 ± 3) | – | – |
Ventral sucker length | 62–145 (116 ± 11) | 95–164 (121 ± 14) | 59–68 (63 ± 1) | 41–81 (69 ± 6) | 25–48 * |
Ventral sucker width | 60–175 (127 ± 14) | 102–160 (120 ± 12) | 52–76 (63 ± 4) | 41–77 (66 ± 5) | – |
Left testes length | 95–154 (120 ± 7) | 67–154 (110 ± 21) | 71–92 (84 ± 5) | 54–97 (82 ± 10) | – |
Left testes width | 69–140 (92 ± 9) | 54–117 (86 ± 18) | 51–80 (64 ± 7) | 36–54 (45 ± 9) | – |
Right testes length | 85–153 (110 ± 9) | 67–140 (107 ± 17) | 71–83 (76 ± 3) | 61–97 (77 ± 11) | – |
Right testes width | 63–100 (78 ± 4) | 43–112 (70 ± 16) | 52–75 (62 ± 5) | 50–58 (54 ± 4) | – |
Seminal vesicle length | 46–71 (55 ± 3) | 58–68 (64 ± 3) | 26–57 (46 ± 8) | 58–65 (61 ± 2) | – |
Seminal vesicle width | 40–68 (54 ± 3) | 54–76 (68 ± 7) | 26–58 (46 ± 8) | 29–54 (40 ± 7) | – |
Ovary length | 150–276 (223 ± 15) | 122–320 (217 ± 38) | 133–185 (167 ± 13) | 108–245 (172 ± 40) | – |
Ovary width | 82–204 (148 ± 13) | 82–146 (111 ± 13) | 111–134 (122 ± 5) | 76–162 (121 ± 25) | – |
Egg length (EL) | 25–36 (30 ± 0.5) | 26–35 (31 ± 0.5) | 28–38 (34 ± 0.4) | 25–36 (31 ± 0.6) | 32–35 |
Egg width (EW) | 15–21 (18 ± 0.3) | 17–22 (19 ± 0.3) | 23–32 (29 ± 0.3) | 14–22 (19 ± 0.3) | 25–27 |
EL/EW | 1.3–2 (1.7 ± 0.04) | 1.4–2 (1.6 ± 0.03) | 1.1–1.4 (1.2 ± 0.02) | 1.4–2 (1.7 ± 0.04) | – |
Egg shell sickness | 1.5–2.4 (1.9 ± 0.1) | 1.3–2.1 (1.8 ± 0.05) | 3.6–5.6 (4.4 ± 0.11) | 1.4–3.2 (2.3 ± 0.13) | 4.5 |
Renicola mollissima from Littorina saxatilis, White Sea (Our Data: N = 35) | Cercaria pacifica 2 from Littorina mandshurica Sea of Japan (Our Data: N = 9) | Cercaria pacifica 2 from Littorina squalida, Sea of Okhotsk (Our Data: N = 13) | Cercaria pacifica 2 from Littorina squalida, Sea of Japan (After Pois et al. [12]) | Cercaria nordica 1 from Neptunea borealis, Barents Sea (After Marasaev [24]) | Renicola somateria from Buccinum undatum, Barents Sea (After Galaktionov et al. [7]) | Renicola mediovitellata from Nucella lapillus, Barents Sea (After Galaktionov et al. [7]) | |
---|---|---|---|---|---|---|---|
Body length (BL) | 270–308 (299 ± 3.3) | 260–297 (283 ± 4) | 342–409 (364 ± 7.1) | 229–260 | 355–380 | 312–406 (345 ± 6.4) | 281–312 (300 ± 2.6) |
Body width | 94–125 (113 ± 1.9) | 94–117 (107 ± 2.2) | 104–183 (130 ± 6.2) | 92–98 | 100–120 | 99–130 (110 ± 3.4) | 78–109 (97 ± 1.9) |
Tail length (TL) | 172–229 (192 ± 2.4) | 152–196 (162 ± 5.1) | 183–268 (221 ± 6.1) | 140–182 | 220–265 | 192–250 (218 ± 3.6) | 177–203 (190 ± 2) |
Tail width | 21–34 (25 ± 0.6) | 21–24 (23 ± 0.4) | 24–31 (29 ±1.1) | 16–22 | – | 21–26 (25 ± 0.6) | 16–26 (22 ± 0.6) |
Oral sucker length (OSL) | 48–66 (55 ± 0.9) | 42–54 (47 ± 1.5) | 54–73 * (65 ±1.8) | 39–44 * | 50–55 * | 55–65 (61 ± 0.8) | 43–58 (50 ± 0.8) |
Oral sucker width (OSW) | 40–56 (47 ± 0.7) | 40–45 (43 ± 0.5) | – | – | – | 48–60 (54 ± 1.1) | 40–50 (45 ± 06) |
Pharynx length | 14–25 (18 ± 1.2) | 14–21 (17 ± 0.7) | 15–25 (19 ± 0.9) | – | – | 18–28 (23 ± 0.9) | 15–23 (18 ± 0.5) |
Pharynx width | 13–22 (17 ± 0.8) | 14–20 (17 ± 0.6) | 18–20 (18 ± 0.3) | – | – | 15–25 (20 ± 0.8) | 15–25 (18 ± 0.5) |
Ventral sucker length (VSL) | 45–60 (52 ± 0.7) | 42–51 (46 ± 0.9) | 60–70 * (67 ± 1.5) | 39–47 * | 60–65 * | 40–68 (56 ± 2.1) | 45–53 (50 ± 0.6) |
Ventral sucker width (VSW) | 45–60 (52 ± 0.7) | 43–53 (47 ± 1.1) | – | – | – | 45–60 (53 ± 1.4) | 43–53 (48 ± 0.6) |
Stylet length | 10–15 (12 ± 0.2) | 11–15 (13 ± 0.4) | 10–20 (14 ± 0.9) | 12 | 11 | 9–11 (10 ± 0.4) | 8–10 (9 ± 0.2) |
Stylet width (of the handle) | 7–10 (7 ± 0.1) | 8–9 (8 ± 0.2) | 5–8 (7 ± 0.3) | 4 | – | 5 | 3–4 (3 ± 0.2) |
BL/TL | 1.3–1.8 (1.6 ± 0.05) | 1.5–1.9 (1.7 ± 0.04) | 1.4–2 (1.7 ± 0.04) | – | – | 1.3–1.8 (1.6 ± 0.04) | 1.5–1.7 (1.6 ± 0.02) |
OSL/WSL | 1–1.3 (1 ± 0.02) | 0.9–1 (1 ± 0.03) | 0.8–1.1 * (1 ± 0.03) | – | – | 0.9–1.5 (1.1 ± 0.04) | 0.9–1.2 (1 ± 0.02) |
OSW/VSW | 0.7–1.1 (0.9 ± 0.01) | 0.8–1 (0.9 ± 0.02) | – | – | – | 0.8–1.2 (1 ± 0.04) | 0.9–1.1 (0.9 ± 0.02) |
- Metacercaria
- Cercaria cf. nordica I
3.2. Molecular Results
3.3. Remarks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, D. Family Renicolidae Dollfus, 1939. In Keys to Trematoda 3; CABI Publishing: Wallingford, UK, 2008; pp. 591–594. [Google Scholar]
- Kharoo, V.K. A Review of the history and classification of the family Renicolidae Dollfus, 1939 (Trematoda: Digenea). Indian J. Fundam. Appl. Life Sci. 2013, 3, 6–12. [Google Scholar]
- Sudarikov, V.E.; Stenko, R.P. Trematodes of the family Renicolidae. In Helminths of Farming and Hunting Animals; Nauka: Moscow, Russia, 1984; pp. 34–89. (In Russian) [Google Scholar]
- Blasco-Costa, I.; Poulin, R. Parasite life-cycle studies: A plea to resurrect an old parasitological tradition. J. Helminthol. 2017, 91, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.; Bass, L.G.; Campos-Camacho, J.; Dittel-Meza, F.A.; Fonseca, C.; Huang-Qiu, Y.Y.; Olivares, R.W.I.; Romero-Vega, L.M.; Villegas-Rojas, F.; Solano-Barquero, A. Integrative taxonomy in helminth analysis: Protocols and limitations in the twenty-first century. Parasites Vectors 2025, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, K.V.; Solovyeva, A.I.; Blakeslee, A.M.H.; Skírnisson, K. Overview of Renicolid Digeneans (Digenea, Renicolidae) from marine gulls of Northern Holarctic with remarks on their species statuses, phylogeny and phylogeography. Parasitology 2023, 150, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, K.V.; Solovyeva, A.I.; Miroliubov, A.; Romanovich, A.E.; Skírnisson, K. Untangling the “Renicola somateria” (Digenea, Renicolidae) muddle: Actual number of species and their distribution and transmission in the Holarctic. Diversity 2024, 16, 402. [Google Scholar] [CrossRef]
- Presswell, B.; Bennett, J. Two new species of kidney fluke (Trematoda: Renicolidae) from New Zealand penguins (Spheniscidae), with a description of Renicola websterae n. sp. Syst. Parasitol. 2025, 102, 26. [Google Scholar] [CrossRef] [PubMed]
- Kulachkova, V.G. New Species of renal trematodes Renicola mollissima sp. nov from common eider. Trans. Leningr. Soc. Nat. 1957, 73, 198–203. (In Russian) [Google Scholar]
- Ryzhikov, K.M.; Timofeeva, T.N.; Dudorova, E.N. To cognition of trematodes from the Chukotka eider ducks. Proc. Helminthol. Lab. USSR Acad. Sci. 1966, 17, 157–168. (In Russian) [Google Scholar]
- Atrashkevich, G.I.; Orlovskaja, O.M.; Regel, K.V. The first data about the parasites of common eider’ (Somateria mollissima) population of the Sea of Okhotsk. In Proceedings of the IV Congress of the Russian Society of Parasitologists, St. Petersburg, Russia, 20–25 October 2008; Galaktionov, K.V., Dobrovolskij, A.A., Eds.; Lemma: St Petersburg, Russia, 2008; pp. 35–38. (In Russian). [Google Scholar]
- Pois, N.V.; Tsimbaljuk, A.K.; Ardasheva, N.B. three new species of marine cercariae from the intertidal zone. Parazitologiya 1974, 53, 413–419. (In Russian) [Google Scholar]
- Galaktionov, K.V.; Solovyeva, A.I.; Miroliubov, A. Elucidation of Himasthla leptosoma (Creplin, 1829) Dietz, 1909 (Digenea, Himasthlidae) life cycle with insights into species composition of the North Atlantic Himasthla associated with periwinkles Littorina spp. Parasitol. Res. 2021, 120, 1649–1668. [Google Scholar] [CrossRef] [PubMed]
- Winnepenninckx, B.; Backeljau, T.; De Wachter, R. Extraction of high molecular weight DNA from Molluscs. Trends Genet. 1993, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.H.E.; Saralamba, N.; Saralamba, S.; Ruangsittichai, J.; Thaenkham, U. The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of Trematodes. BMC Genom. 2022, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Palm, H.W.; Waeschenbach, A.; Olson, P.D.; Littlewood, D.T.J. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol. Phylogenet. Evol. 2009, 52, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Olson, P.D.; Cribb, T.H.; Tkach, V.V.; Bray, R.A.; Littlewood, D.T.J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 2003, 33, 733–755. [Google Scholar] [CrossRef] [PubMed]
- Bowles, J.; Blair, D.; McManus, D.P. Genetic Variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 1992, 54, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-Feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Reimer, L.W. Neue Cerearien Der Ostsee Mit Einer Diskussion Ihrer Möglichen Zuordnung Und Einem Bestimmungsschlüssel. Parasitol. Schriftenr. 1971, 21, 125–149. [Google Scholar]
- Marasaev, S.F. New Renicolid cercaria from the mollusc Neptunea borealis (Prosobranchia, Buccinidae). Parazitologiya 1988, 22, 254–258. (In Russian) [Google Scholar]
- Bychovskaja-Pavlovskaja, I.E. New species of kidney parasites (genus Renicola) from birds. Dokl. Akad. Nauk. SSSR 1950, 71, 415–416. (In Russian) [Google Scholar]
- Belopolskaja, M.M. Parasites of marine waterfowl. Uch Zap. Leningr. Gos. Univ. Ser. Biol. Nauk. 1952, 141, 127–180. (In Russian) [Google Scholar]
- Loker, E.S. A Comparative study of the life-histories of mammalian schistosomes. Parasitology 1983, 87, 343–369. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.V.; Springer, Y.P.; Keeney, D.B.; Poulin, R. Intra- and interclonal phenotypic and genetic variability of the trematode Maritrema novaezealandensis. Biol. J. Linn. Soc. 2011, 103, 106–116. [Google Scholar] [CrossRef]
- McCarthy, H.O.; Fitzpatrick, S.; Irwin, S.W.B. Life history and life cycles: Production and behavior of trematode cercariae in relation to host exploitation and next-host characteristics. J. Parasitol. 2002, 88, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Gérard, C.; Moné, H.; Théron, A. Schistosoma mansoni—Biomphalaria glabrata: Dynamics of the sporocyst population in relation to the miracidial dose and the host size. Can. J. Zool. 1993, 71, 1880–1885. [Google Scholar] [CrossRef]
- James, B.L. The Digenea of the intertidal prosobranch, Littorina saxatilis (Olivi). J. Zool. Syst. Evol. Res. 1969, 7, 273–316. [Google Scholar] [CrossRef]
- Sannia, A.; James, B.L. The Digenea in marine molluscs from Eyjafjördur, North Iceland. Ophelia 1977, 16, 97–109. [Google Scholar] [CrossRef]
- O’Dwyer, K.; Blasco-Costa, I.; Poulin, R.; Faltýnková, A. Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data. Syst. Parasitol. 2014, 89, 133–152. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, K.; Faltýnková, A.; Georgieva, S.; Kostadinova, A. An Integrative taxonomic investigation of the diversity of digenean parasites infecting the intertidal snail Austrolittorina unifasciata Gray, 1826 (Gastropoda: Littorinidae) in Australia. Parasitol. Res. 2015, 114, 2381–2397. [Google Scholar] [CrossRef] [PubMed]
- Hechinger, Y.R.; Miura, O. Two “new” Renicolid trematodes (Trematoda: Digenea: Renicolidae) from the California horn snail, Cerithidea californica (Haldeman, 1840) (Gastropoda: Potamidida). Zootaxa 2014, 3784, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Martorelli, S.R.; Fredensborg, B.L.; Leung, T.L.F.; Poulin, R. Four Trematode cercariae from the New Zealand Intertidal snail Zeacumantus subcarinatus (Batillariidae). N. Z. J. Zool. 2008, 35, 73–84. [Google Scholar] [CrossRef]
- Cable, R.M. Marine cercariae of Puerto Rico. In Scientific Survey of Porto Rico and the Virgin Islands; New York Academy of Sciences: New York, NY, USA, 1956; pp. 491–577. [Google Scholar]
- Holliman, R.B. Larval trematodes from the Apalachee Bay Area, Florida, with a checklist of known marine cercariae arranged in a key to their super-families. Tulane Stud. Zool. 1961, 9, 1–74. [Google Scholar]
- Merkel, F.R.; Jamieson, S.E.; Falk, K.; Mosbech, A. The diet of common eiders wintering in Nuuk, Southwest Greenland. Polar Biol. 2007, 30, 227–234. [Google Scholar] [CrossRef]
- Galaktionov, K.V.; Węsławski, J.M.; Stempniewicz, L. Food chain, parasites and climate changes in the High Arctic: A case study on trophically transmitted parasites of common eider Somateria mollissima at Franz Josef Land. Polar Biol. 2021, 44, 1321–1342. [Google Scholar] [CrossRef]
- Belopol’skij, L.O. Ecology of Colonial Seabirds of the Barents Sea; USSR Academy of Sciences Publishing: Moscow, Russia, 1957. (In Russian) [Google Scholar]
- Pethon, P. Food and feeding habits of the common eider (Somateria mollissima). Nytt Mag. Zool. 1967, 15, 97–111. [Google Scholar]
- Bustnes, J.O.; Erikstad, K.E. The Diets of sympatric wintering populations of common eider Somateria mollissima and King Eider S. spectabilis in Northern Norway. Ornis Fenn. 1988, 65, 163–168. [Google Scholar]
- Krasnov, Y.V.; Shklyarevich, G.A.; Goryaev, Y.I. Feeding habit of the common eider Somateria mollissima in the White Sea. Dokl. Biol. Sci. 2009, 427, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Bianki, V.V.; Boiko, N.S.; Ninburg, E.A.; Shklyarevich, G.A. Feeding of common eider of the White Sea. In Ecology and Morphology of Eiders in the USSR (Ecologia i Morphologia gag v SSSR); Uspensky, S.M., Ed.; Nauka: Moscow, Russia, 1979; pp. 126–170. (In Russian) [Google Scholar]
- Golikov, A.N.; Kussakin, O.G. Shell-Bearing gastropods of the intertidal zone of the seas of the USSR. Opredeliteli Po faune SSSR Izd. Zool. Institutom AN SSSR 1978, 116, 292. (In Russian) [Google Scholar]
- Sirenko, B.I. List of Species of Free-Living Invertebrates of Eurasian Arctic Seas and Adjacent Deep Waters; Russian Academy of Sciences, Zoological Institute: St. Petersburg, Russia, 2001. [Google Scholar]
- Sirenko, B.I. Check-List of Species of Free-Living Invertebrates of the Russian Far Eastern Seas; Russian Academy of Sciences, Zoological Institute: St. Petersburg, Russia, 2013. [Google Scholar]
- Krechmar, A.V.; Kondratyev, A.V. Waterfowl Birds of North-East Asia; NESC FEB RAS: Magadan, Russia, 2006; 458p. (In Russian) [Google Scholar]
- Reid, D.G.; Rumbak, E.; Thomas, R.H. DNA, Morphology and fossils: Phylogeny and evolutionary rates of the gastropod genus Littorina. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1996, 351, 877–895. [Google Scholar] [CrossRef]
- Reid, D.G.; Dyal, P.; Williams, S.T. A Global Molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool. Scr. 2012, 41, 125–136. [Google Scholar] [CrossRef]
- Golikov, A.N.; Skarlato, O.A. Evolution of the Arctic ecosystems during the Neogene period. In The Arctic Seas: Climatology, Oceanography, Geology, and Biology; Herman, Y., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1989; pp. 257–279. [Google Scholar]
- Vermeij, G.J. Anatomy of an Invasion: The Trans-Arctic Interchange. Paleobiology 1991, 17, 281–307. [Google Scholar] [CrossRef]
- Briggs, J.C. Global Biogeography; Briggs, J.C., Ed.; Elsvier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Briggs, J.C. Marine centres of origin as evolutionary engines. J. Biogeogr. 2003, 30, 1–18. [Google Scholar] [CrossRef]
- Thieltges, D.W.; Hussel, B.; Baekgaard, H. Endoparasites in common eiders Somateria mollissima from birds killed by an oil spill in the Northern Wadden Sea. J. Sea Res. 2006, 55, 301–308. [Google Scholar] [CrossRef]
- Skirnisson, K. Association of Helminth infections and food consumption in common eiders Somateria mollissima in Iceland. J. Sea Res. 2015, 104, 41–50. [Google Scholar] [CrossRef]
- Garden, E.; Rayski, C.; Thom, V. A Parasitic disease in eider ducks. Bird. Study 1964, 11, 280–287. [Google Scholar] [CrossRef]
- Grytner-Zięcina, B.; Sulgostowska, T. Trematodes of Oidemia fusca (L.), Oidemia nigra (L.) and Somateria mollissima (L.) from the Baltic coast. Acta Parasitol. Pol. 1978, 25, 121–128. [Google Scholar]
- Kuklin, V.V.; Kuklina, M.M. Helminths of Birds of the Barents Sea: Fauna, Ecology and Impact on the Hosts; Kola Science Centre Russian Academy Science Publication: Apatity, Russia, 2005. (In Russian) [Google Scholar]
- Podlipaev, S.A. Trematode parthenitae and larvae in the intertidal molluscs of the Eastern Murman. In Ecological and Experimental Parasitology. Vol. 2.; Poljansky, Y.I., Ed.; Izdatel’stvo Leningradskogo Universiteta: Leningrad, Russia, 1979; pp. 47–101. (In Russian) [Google Scholar]
- Laukner, G. Diseases of Mollusca: Gastropoda. In Diseases of Marine Animals. Vol I.; Kinne, O., Ed.; Wiley: Chichester, UK; New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1980; pp. 311–424. [Google Scholar]
- Irwin, S.W.B. Incidence of trematode parasites in two populations of Littorina saxatilis (Olivi) from the North shore of Belfast Lough. Irish Nat. J. 1983, 21, 26–29. [Google Scholar]
- Matthews, P.M.; Montgomery, W.I.; Hanna, R.E.B. Infestation of Littorinids by larval Digenea around a Small Fishing port. Parasitology 1985, 90, 277–287. [Google Scholar] [CrossRef]
- Newell, C.R. The Marine fauna and flora of the Isles of Scilly: Some marine Digeneans from invertebrate hosts. J. Nat. Hist. 1986, 20, 71–77. [Google Scholar] [CrossRef]
- Galaktionov, K.V.; Bustness, J. Distribution patterns of marine bird Digenean larvae in periwinkles along the Southern Barents sea coast. Dis. Aquat. Organ. 1999, 37, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Thieltges, D.W.; Krakau, M.; Andresen, H.; Fottner, S.; Reise, K. Macroparasite community in molluscs of a tidal basin in the Wadden Sea. Helgol. Mar. Res. 2006, 60, 307–316. [Google Scholar] [CrossRef]
- Granovitch, A.; Johannesson, K. Digenetic trematodes in four species of Littorina from the West coast of Sweden. Ophelia 2000, 53, 55–65. [Google Scholar] [CrossRef]
- James, B.L. The Distribution and keys of species in the family Littorinidae and of their Digenean parasites, in the region of Dale, Pembrokeshire. F. Stud. 1968, 2, 615–650. [Google Scholar]
- Werding, B. Morphologie, Entwicklung Und Ökologie Digener Trematoden-Larven Der Strandschnecke Littorina littorea. Mar. Biol. 1969, 3, 306–333. [Google Scholar] [CrossRef]
- Pohley, W.J. Relationships among three species of Littorina and their larval Digenea. Mar. Biol. 1976, 37, 179–186. [Google Scholar] [CrossRef]
- Chubrik, G.K. Fauna and ecology of trematode larvae from the molluscs of Barents and White Seas. In Life Cycles of Parasitic Worms of Northern Seas (Proceedings of the Murmansk Marine Biological Institute of the Kola Branch of the USSR Academy of Sciences 10(14)); Polanski, Y.I., Ed.; Nauka: Moscow-Leningrad, Russia, 1966; pp. 78–159. (In Russian) [Google Scholar]
- Robson, E.M.; Williams, I.C. Relationships of some species of digenea with the marine prosobranch Littorina littorea (L.) II. The effect of larval Digenea on the reproductive biology of L. littorea. J. Helminthol. 1971, 45, 145–159. [Google Scholar] [CrossRef]
- Combescot-Lang, C. Étude Des Trématodes Parasiles de Littorina saxalilis (Olivi) et de Leurs Effets Sur Cet Hôte. Ann. Parasitol. 1976, 51, 27–36. [Google Scholar] [CrossRef]
- Isakov, Y. MAR Project and conservation of waterfowl breeding in the USSR. In Proceedings of the Second European Meeting on Wildfowl Conservation, Noordwijk aan Zee, The Netherlands, 9–14 May 1966; Salverda, Z., Ed.; Ministry of Cultural Affairs, Recreation and Social Welfare: The Hague, The Netherlands, 1967; pp. 125–138. [Google Scholar]
- Scott, D.A.; Rose, P.M. Atlas of Anatidae Populations in Africa and Western Eurasia; Wetlands International: Wageningen, The Netherlands, 1996. [Google Scholar]
- Krasnov, Y.V.; Gavrilo, M.V.; Chernook, V.I. Distribution of Birds over the Pechora Sea: Data of Aerial Surveys. Zool. Z. 2004, 83, 449–458. (In Russian) [Google Scholar]
- Krasnov, Y.V.; Ezhov, A.V.; Galaktionov, K.V.; Shavykin, A.A. The numbers and seasonal distribution of the western population of the king eider (Somateria spectabilis): Monitoring organization in the northern seas of Russia. Biol. Bull. 2021, 48, 1041–1050. [Google Scholar] [CrossRef]
- Krasnov, Y.V.; Goryaev, Y.I.; Shavykin, A.A.; Nikolaeva, N.G.; Gavrilo, M.V.; Chernook, V.I. Atlas of the Pechora Sea Birds: Distribution, Abundance, Dynamics, Problems of Protection; Publishing Company of the Kola Branch of the Russian Academy of Sciences: Apatity, Russia, 2002. (In Russian) [Google Scholar]
- Sukhotin, A.A.; Krasnov, Y.V.; Galaktionov, K.V. Subtidal populations of the blue mussel Mytilus eEdulis as key determinants of waterfowl flocks in the Southeastern Barents Sea. Polar Biol. 2008, 31, 1357–1363. [Google Scholar] [CrossRef]
- Golikov, A.N. Gastropod molluscs of the genus Neptunea Bolten. In Fauna SSSR. Mollyuski. Vol. V, No. 1; USSR Academy of Sciences Publishing: Saint Petersburg, Russia, 1963. (In Russian) [Google Scholar]
- Odening, K. Neue Trematoden Aus Vietnamesischen Vogeln Des Berliner Tierparks (Mit Einer Revision Der Familie Renicolidae). Bijdr. Dierkd. 1962, 32, 49–63. [Google Scholar] [CrossRef]
- Pérez-Ponce De León, G.; Hernández-Mena, D.I. Testing the Higher-Level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the “next-generation” tree of life. J. Helminthol. 2019, 93, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Cribb, T.H.; Bray, R.A.; Olson, P.D.; Littlewood, D.T.J. Life cycle evolution in the Digenea: A new perspective from phylogeny. Adv. Parasitol. 2003, 54, 197–254. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.A. Probable relationship between the Rhodometopa group of cercariæ and the trematode genus Renicola Cohn. Nature 1953, 171, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.A. Studies on the life-history and ecology of the trematode genus Renicola Cohn, 1904. Proc. Zool. Soc. Lond. 1956, 126, 1–50. [Google Scholar] [CrossRef]
- Cable, R.M. Marine cercariae from Curaçao and Jamaica. Z. Parasitenkd. 1963, 23, 429–469. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Host Species | Place | Region | Coordinates | GenBank Accession Numbers | ||
---|---|---|---|---|---|---|---|
28S | cox1 | 12S | |||||
2sqOR | Littorina squalidae | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | PP379180 | PP378886 | - |
9sqOR | Littorina squalida | Vostok Bay | Sea of Japan, Russia | 42°43.474′ N 132°44.075′ E | PV639403 | PV644183 | - |
55saxWS | Littorina saxatilis | Kem-ludy archipelago | White Sea, Russia | 66°25.065′ N 33°49.075′ E | - | PV644173 | PV642434 |
56saxWS | Littorina saxatilis | Kem-ludy archipelago | White Sea, Russia | 66°25.065′ N 33°49.075′ E | - | PV644174 | - |
59sqO | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | - | PV644175 | PV642435 |
60sqO | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | - | PV644176 | PV642436 |
61sqO | Littorina squalidae | Vostok Bay | Sea of Japan, Russia | 42°43.474′ N 132°44.075′ E | - | PP378887 | PP379181 |
62metPS | Mythilus edulis | Khaipudyr Bay | Pechora Sea | 68°43.965′ N 59°57.131′ E | - | PV644201 | - |
87mWS | Somateria mollissima | Chupa Inlet | White Sea, Russia | 66°18.602′ N 33°50′ E | PV639404 | PV644177 | PV642437 |
88mWS | Somateria mollissima | Chupa Inlet | White Sea, Russia | 66°18.602′ N 33°50′ E | - | PV644178 | - |
89mWS | Somateria mollissima | Chupa inlet | White Sea, Russia | 66°18.602′ N 33°50′ E | - | PV644179 | - |
90mWS | Somateria mollissima | Chupa Inlet | White Sea, Russia | 66°18.602′ N 33°50′ E | - | PV644180 | - |
91mWS | Somateria mollissima | Chupa Inlet | White Sea, Russia | 66°18.602′ N 33°50′ E | - | PV644181 | - |
93saxWS | Littorina saxatilis | Kem-ludy archipelago | White Sea, Russia | 66°25.065′ N 33°49.075′ E | - | PV644182 | - |
95myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644184 | - |
96myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644186 | - |
98myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644194 | - |
99myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644187 | - |
100myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644188 | - |
101myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644189 | - |
102myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°52.686′ N 48°27.067′ E | - | PV644190 | - |
103myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°44.717′ N 46°26.448′ E | - | PV644191 | - |
104myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°44.717′ N 46°26.448′ E | - | PV644185 | - |
105myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°44.717′ N 46°26.448′ E | - | PV644192 | PV642437 |
106myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°44.717′ N 46°26.448′ E | - | PV644193 | - |
107myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°44.717′ N 46°26.448′ E | - | PV644197 | - |
108myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°45.328′ N 46°35.400′ E | - | PV644195 | - |
109myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°45.328′ N 46°35.400′ E | - | PV644196 | - |
110myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°45.328′ N 46°35.400′ E | - | PV644199 | - |
116sqO | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | - | PV644169 | - |
117sqO | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | - | PV644170 | - |
118sqO | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | - | PV644171 | - |
119mO | Somateria mollissima | Shelikhov Bay, Cape Taygonos | Sea of Okhotsk, Russia | 60°40.681′ N 160°10.810′ E | - | PV644172 | - |
120myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°45.328′ N 46°35.400′ E | - | PV644198 | - |
121myBS | Mythilus edulis | Chosha Bay | Barents Sea, Russia | 67°45.328′ N 46°35.400′ E | - | PV644200 | - |
Location | Number of Dissected Molluscs | Prevalence ± SE, % |
---|---|---|
Impoveem (61°17.601′ N 159°56.126′ E) | 40 | 12.5 ± 5.2 |
Astronomicheskaya Bay (59°8.613′ N 153°18.760′ E) | 141 | 39.7 ± 4.1 |
Tavatum cape (61°44.001′ N 158°4.327′ E) | 11 | 18.2 ± 11.6 |
Vnutrenniaya Bay (59° 29.585′ N 154°24.306′ E) | 78 | 3.8 ± 2.2 |
Umara island (59°9.037′ N 151°47.154′ E) | 100 | 0 |
Ola lagoon (59°34.330′ N 151°20.649′ E) | 168 | 0 |
Svetlaya Bay (59°27.926′ N 150°46.601′ E) | 179 | 2.8 ± 1.2 |
Cape Njuklya (59°29.700′ N 151°4.282′E) | 47 | 21.3 ± 6 |
Veselaya Bay (59°29.701′ N 150°55.176′ E) | 70 | 0 |
Nagaeva Bay (59°33.616′ N 150°55.480′ E) | 873 | 0.5 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaktionov, K.V.; Solovyeva, A.I.; Miroliubov, A.A.; Regel, K.V.; Romanovich, A.E. Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle. Diversity 2025, 17, 512. https://doi.org/10.3390/d17080512
Galaktionov KV, Solovyeva AI, Miroliubov AA, Regel KV, Romanovich AE. Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle. Diversity. 2025; 17(8):512. https://doi.org/10.3390/d17080512
Chicago/Turabian StyleGalaktionov, Kirill V., Anna I. Solovyeva, Aleksei A. Miroliubov, Kira V. Regel, and Anna E. Romanovich. 2025. "Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle" Diversity 17, no. 8: 512. https://doi.org/10.3390/d17080512
APA StyleGalaktionov, K. V., Solovyeva, A. I., Miroliubov, A. A., Regel, K. V., & Romanovich, A. E. (2025). Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle. Diversity, 17(8), 512. https://doi.org/10.3390/d17080512