Zoonotic Orthoflaviviruses Related to Birds: A Literature Review
Abstract
1. Introduction
2. Zoonotic Orthoflaviviruses for Which Birds Are the Main Host
2.1. Orthoflaviviruses Causing Clinical Infections in Humans
2.1.1. West Nile Virus (Orthoflavivirus nilense)
2.1.2. Japanese Encephalitis Virus (Orthoflavivirus japonicum)
2.1.3. Saint Louis Encephalitis Virus (Orthoflavivirus louisense)
2.1.4. Murray Valley Encephalitis Virus (Orthoflavivirus murrayense)
2.1.5. Usutu Virus (Orthoflavivirus usutuense)
2.1.6. Ilheus Virus (Orthoflavivirus ilheusense)
2.1.7. Cacipacoré Virus (Orthoflavivirus cacipacoreense)
2.1.8. Tyuleniy Virus (Orthoflavivirus tyuleniyense)
2.1.9. Ntaya Virus (Orthoflavivirus ntayaense)
2.2. Orthoflviviruses Causing Subclinical Infections in Humans
2.2.1. Bagaza Virus (Orthoflavivirus bagazaense)
2.2.2. Tembusu Virus (Orthoflavivirus tembusu)
2.2.3. Gadgets Gully Virus (Orthoflavivirus gadgetsense)
3. Other Zoonotic Orthoflaviviruses Related to Birds
3.1. Orthoflaviviruses Rarely Detected in Birds
3.1.1. Wesselsbron Virus (Orthoflavivirus wesselsbronense)
3.1.2. Powassan Virus (Orthoflavivirus powassanense)
3.1.3. Louping Ill Virus (Orthoflavivirus loupingi)
3.1.4. Tick-Borne Encephalitis Virus (Orthoflavivirus encephalitidis)
3.2. Orthoflaviruses Detected Serologically in Birds
3.2.1. Dengue Virus (Orthoflavivirus dengue)
3.2.2. Yellow Fever Virus (Orthoflavivirus flavi)
3.2.3. Zika Virus (Orthoflavivirus zika)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YFV | Yellow fever virus (Orthoflavivirus flavi) |
DENV | Dengue virus (Orthoflavivirus dengue) |
ZIKV | Zika virus (Orthoflavivirus zika) |
TBEV | Tick-borne encephalitis virus (Orthoflavivirus encephalitidis) |
WNV | West Nile virus (Orthoflavivirus nilense) |
USUV | Usutu virus (Orthoflavivirus usutuense) |
JEV | Japanese encephalitis virus (Orthoflavivirus japonicum) |
SLEV | Saint Louis encephalitis virus (Orthoflavivirus louisense) |
MVEV | Murray Valley encephalitis virus (Orthoflavivirus murrayense) |
ILHV | Ilheus virus (Orthoflavivirus ilheusense) |
CPCV | Cacipacoré virus (Orthoflavivirus cacipacoreense) |
TYUV | Tyuleniy virus (Orthoflavivirus tyuleniyense) |
NTAV | Ntaya virus (Orthoflavivirus ntayaense) |
BAGV | Bagaza virus (Orthoflavivirus bagazaense) |
ITV | Israel turkey meningoencephalomyelitis virus (Orthoflavivirus israelense) |
TMUV | Tembusu virus (Orthoflavivirus tembusu) |
BYDV | Baiyangdian virus |
STWV | Sitiawan virus |
GGYV | Gadgets Gully virus (Orthoflavivirus gadgetsense) |
WSLV | Wesselsbron virus (Orthoflavivirus wesselsbronense) |
POWV | Powassan virus (Orthoflavivirus powassanense) |
LIV | Louping ill virus (Orthoflavivirus loupingi) |
ORF | Open reading frame |
CDC | Centers for Disease Control and Prevention |
NT | Neutralizing |
References
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; de Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P.; et al. Renaming of the Genus Flavivirus to Orthoflavivirus and Extension of Binomial Species Names within the Family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef] [PubMed]
- ICTV Genus: Orthoflavivirus. Available online: https://ictv.global/report/chapter/flaviviridae/flaviviridae/orthoflavivirus (accessed on 23 April 2025).
- Blitvich, B.; Firth, A. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization. Viruses 2015, 7, 1927–1959. [Google Scholar] [CrossRef] [PubMed]
- Meyding-Lamadé, U.; Craemer, E.; Schnitzler, P. Emerging and Re-Emerging Viruses Affecting the Nervous System. Neurol. Res. Pract. 2019, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Braun, M.; Kramer, I.M.; Reuss, F.; Müller, R.; Groneberg, D.A.; Brüggmann, D. A Virus Becomes a Global Concern: Research Activities on West-Nile Virus. Emerg. Microbes Infect. 2023, 12, 2256424. [Google Scholar] [CrossRef]
- Clé, M.; Beck, C.; Salinas, S.; Lecollinet, S.; Gutierrez, S.; Van de Perre, P.; Baldet, T.; Foulongne, V.; Simonin, Y. Usutu Virus: A New Threat? Epidemiol. Infect. 2019, 147, e232. [Google Scholar] [CrossRef]
- Zeller, H.G.; Murgue, B. Rôle Des Oiseaux Migrateurs Dans l’épidémiologie Du Virus West Nile. Med. Mal. Infect. 2001, 31, 168–174. [Google Scholar] [CrossRef]
- Engel, D.; Jöst, H.; Wink, M.; Börstler, J.; Bosch, S.; Garigliany, M.-M.; Jöst, A.; Czajka, C.; Lühken, R.; Ziegler, U.; et al. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. mBio 2016, 7, e01938-15. [Google Scholar] [CrossRef]
- Brugger, K.; Rubel, F. Simulation of Climate-Change Scenarios to Explain Usutu-Virus Dynamics in Austria. Prev. Vet. Med. 2009, 88, 24–31. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. J. Trop. Med. 1940, s1-20, 471–492. [Google Scholar] [CrossRef]
- Koch, R.T.; Erazo, D.; Folly, A.J.; Johnson, N.; Dellicour, S.; Grubaugh, N.D.; Vogels, C.B.F. Genomic Epidemiology of West Nile Virus in Europe. One Health 2024, 18, 100664. [Google Scholar] [CrossRef]
- Tolsá, M.J.; García-Peña, G.E.; Rico-Chávez, O.; Roche, B.; Suzán, G. Macroecology of Birds Potentially Susceptible to West Nile Virus. Proc. R. Soc. B Biol. Sci. 2018, 285, 20182178. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (WOAH). West Nile Fever. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/2.01.24_WEST_NILE.pdf (accessed on 14 May 2025).
- Feyer, S.; Bartenschlager, F.; Bertram, C.A.; Ziegler, U.; Fast, C.; Klopfleisch, R.; Müller, K. Clinical, Pathological and Virological Aspects of Fatal West Nile Virus Infections in Ten Free-ranging Goshawks (Accipiter gentilis) in Germany. Transbound. Emerg. Dis. 2021, 68, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Komar, N.; Langevin, S.; Hinten, S.; Nemeth, N.; Edwards, E.; Hettler, D.; Davis, B.; Bowen, R.; Bunning, M. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerg. Infect. Dis. 2003, 9, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Glávits, R.; Ferenczi, E.; Ivanics, É.; Bakonyi, T.; Mató, T.; Zarka, P.; Palya, V. Co-Occurrence of West Nile Fever and Circovirus Infection in a Goose Flock in Hungary. Avian Pathol. 2005, 34, 408–414. [Google Scholar] [CrossRef]
- Vidaña, B.; Busquets, N.; Napp, S.; Pérez-Ramírez, E.; Jiménez-Clavero, M.Á.; Johnson, N. The Role of Birds of Prey in West Nile Virus Epidemiology. Vaccines 2020, 8, 550. [Google Scholar] [CrossRef]
- Swayne, D.E.; Beck, J.R.; Smith, C.S.; Shieh, W.J.; Zaki, S.R. Fatal Encephalitis and Myocarditis in Young Domestic Geese (Anser Anser domesticus) Caused by West Nile Virus. Emerg. Infect. Dis. 2001, 7, 751–753. [Google Scholar] [CrossRef]
- Konjevoda, S.; Dzelalija, B.; Canovic, S.; Pastar, Z.; Savic, V.; Tabain, I.; Barbic, L.; Peric, L.; Sabadi, D.; Stevanovic, V.; et al. West Nile Virus Retinitis in a Patient with Neuroinvasive Disease. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190065. [Google Scholar] [CrossRef]
- Sabadi, D.; Peric, L.; Savic, V.; Rubil, I.; Baraban, V.; Tabain, I.; Barbic, L.; Duvnjak, M.; Bogdanic, M.; Stevanovic, V.; et al. Fatal Case of West Nile Encephalitis Associated with Acute Anteroseptal ST Elevation Myocardial Infarction (STEMI): A Case Report. New Microbiol. 2020, 43, 51–53. [Google Scholar]
- Natarajan, N.; Varman, M. West Nile Virus Cerebellitis in a Healthy 10-Year-Old Child. Pediatr. Infect. Dis. J. 2007, 26, 767. [Google Scholar] [CrossRef]
- Sabadi, D.; Bodulić, K.; Savić, V.; Vlahović Vlašić, N.; Bogdanić, M.; Perić, L.; Tabain, I.; Lišnjić, D.; Duvnjak, M.; Židovec-Lepej, S.; et al. Clinical Characteristics, Laboratory Parameters, and Molecular Epidemiology of Neuroinvasive Flavivirus Infections in a Hotspot Region of Eastern Croatia. Pathogens 2025, 14, 69. [Google Scholar] [CrossRef]
- Santini, M.; Zupetic, I.; Viskovic, K.; Krznaric, J.; Kutlesa, M.; Krajinovic, V.; Polak, V.L.; Savic, V.; Tabain, I.; Barbic, L.; et al. Cauda Equina Arachnoiditis—A Rare Manifestation of West Nile Virus Neuroinvasive Disease: A Case Report. World J. Clin. Cases 2020, 8, 3797–3803. [Google Scholar] [CrossRef] [PubMed]
- Radu, R.A.; Terecoasă, E.O.; Ene, A.; Băjenaru, O.A.; Tiu, C. Opsoclonus-Myoclonus Syndrome Associated With West-Nile Virus Infection: Case Report and Review of the Literature. Front. Neurol. 2018, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Santini, M.; Haberle, S.; Židovec-Lepej, S.; Savić, V.; Kusulja, M.; Papić, N.; Višković, K.; Župetić, I.; Savini, G.; Barbić, L.; et al. Severe West Nile Virus Neuroinvasive Disease: Clinical Characteristics, Short- and Long-Term Outcomes. Pathogens 2022, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.T. Japanese B Encephalitis Virus: Its Differentiation from St. Louis Encephalitis Virus and Relationship to Louping-Ill Virus. Science 1937, 86, 402–403. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Y.; Zhang, Y.; Zhou, L.; Ma, X.; Xiao, C.; Zhang, J.; Li, Z.; Liu, K.; Li, B.; et al. Shift in Dominant Genotypes of Japanese Encephalitis Virus and Its Impact on Current Vaccination Strategies. Front. Microbiol. 2023, 14, 1302101. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Japanese Encephalitis: Causes and How It Spreads. Available online: https://www.cdc.gov/japanese-encephalitis/causes-and-spread/index.html (accessed on 11 May 2025).
- Li, C.; Zhang, L.; Tang, C.; Zhang, Y.; Zhao, W. Isolation and Identification of a Duck-Derived Japanese Encephalitis Virus and Evaluation of Its Virulence in Mice. Vet. Microbiol. 2024, 290, 109976. [Google Scholar] [CrossRef]
- Auerswald, H.; Ruget, A.-S.; Ladreyt, H.; In, S.; Mao, S.; Sorn, S.; Tum, S.; Duong, V.; Dussart, P.; Cappelle, J.; et al. Serological Evidence for Japanese Encephalitis and West Nile Virus Infections in Domestic Birds in Cambodia. Front. Vet. Sci. 2020, 7, 15. [Google Scholar] [CrossRef]
- Hills, S.L.; Netravathi, M.; Solomon, T. Japanese Encephalitis among Adults: A Review. Am. J. Trop. Med. Hyg. 2023, 108, 860–864. [Google Scholar] [CrossRef]
- Webster, L.T.; Fite, G.L. A Virus Encountered in the Study of Material from Cases of Encephalitis in the St. Louis and Kansas City Epidemics of 1933. Science 1933, 78, 463–465. [Google Scholar] [CrossRef]
- Simon, L.V.; Kong, E.L.; Graham, C. St Louis Encephalitis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470426/#article-21063.s2 (accessed on 11 May 2025).
- Centers for Disease Control and Prevention (CDC). St. Louis Encephalitis Virus. Available online: https://www.cdc.gov/sle/data-maps/historic-data.html (accessed on 23 April 2025).
- Ortiz-Martínez, Y.; Vega-Useche, L.; Villamil-Gómez, W.E.; Rodriguez-Morales, A.J. Saint Louis Encephalitis Virus, Another Re-Emerging Arbovirus: A Literature Review of Worldwide Research. Infez. Med. 2017, 25, 77–79. [Google Scholar]
- French, E.L. Murray Valley Encephalitis Isolation and Characterization of the Aetiological Agent. Med. J. Aust. 1952, 1, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Floridis, J.; McGuinness, S.L.; Kurucz, N.; Burrow, J.N.; Baird, R.; Francis, J.R. Murray Valley Encephalitis Virus: An Ongoing Cause of Encephalitis in Australia’s North. Trop. Med. Infect. Dis. 2018, 3, 49. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Lindsay, M.D.A.; Smith, D.W.; Imrie, A. The Ecology and Epidemiology of Ross River and Murray Valley Encephalitis Viruses in Western Australia: Examples of One Health in Action. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 248–254. [Google Scholar] [CrossRef]
- McGuinness, S.L.; Lau, C.L.; Leder, K. Co-Circulation of Murray Valley Encephalitis Virus and Japanese Encephalitis Virus in South-Eastern Australia. J. Travel. Med. 2023, 30, taad059. [Google Scholar] [CrossRef]
- Knox, J.; Cowan, R.U.; Doyle, J.S.; Ligtermoet, M.K.; Archer, J.S.; Burrow, J.N.C.; Tong, S.Y.C.; Currie, B.J.; Mackenzie, J.S.; Smith, D.W.; et al. Murray Valley Encephalitis: A Review of Clinical Features, Diagnosis and Treatment. Med. J. Aust. 2012, 196, 322–326. [Google Scholar] [CrossRef]
- Woodall JP The Viruses Isolated from Arthropods at the East African Virus Research Institute in the 26 Years Ending December 1963. Proc. E Afr. Acad. 1964, 2, 141–146.
- Cadar, D.; Lühken, R.; van der Jeugd, H.; Garigliany, M.; Ziegler, U.; Keller, M.; Lahoreau, J.; Lachmann, L.; Becker, N.; Kik, M.; et al. Widespread Activity of Multiple Lineages of Usutu Virus, Western Europe, 2016. Eurosurveillance 2017, 22, 30452. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Petrovic, T.; Savic, V.; Barbic, L.; Tabain, I.; Stevanovic, V.; Klobucar, A.; Mrzljak, A.; Ilic, M.; Bogdanic, M.; et al. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020, 9, 699. [Google Scholar] [CrossRef]
- Schmidt, V.; Cramer, K.; Böttcher, D.; Heenemann, K.; Rückner, A.; Harzer, M.; Ziegler, U.; Vahlenkamp, T.; Sieg, M. Usutu Virus Infection in Aviary Birds during the Cold Season. Avian Pathol. 2021, 50, 427–435. [Google Scholar] [CrossRef]
- Pecorari, M.; Longo, G.; Gennari, W.; Grottola, A.; Sabbatini, A.; Tagliazucchi, S.; Savini, G.; Monaco, F.; Simone, M.; Lelli, R.; et al. First Human Case of Usutu Virus Neuroinvasive Infection, Italy, August–September 2009. Euro Surveill. 2009, 14, 19446. [Google Scholar] [CrossRef]
- Cavrini, F.; Gaibani, P.; Longo, G.; Pierro, A.M.; Rossini, G.; Bonilauri, P.; Gerunda, G.E.; Di Benedetto, F.; Pasetto, A.; Girardis, M.; et al. Usutu Virus Infection in a Patient Who Underwent Orthotropic Liver Transplantation, Italy, August–September 2009. Eurosurveillance 2009, 14, 19448. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Kaic, B.; Barbic, L.; Pem-Novosel, I.; Slavic-Vrzic, V.; Lesnikar, V.; Kurecic-Filipovic, S.; Babic-Erceg, A.; Listes, E.; Stevanovic, V.; et al. First Evidence of Simultaneous Occurrence of West Nile Virus and Usutu Virus Neuroinvasive Disease in Humans in Croatia during the 2013 Outbreak. Infection 2014, 42, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Grottola, A.; Marcacci, M.; Tagliazucchi, S.; Gennari, W.; Di Gennaro, A.; Orsini, M.; Monaco, F.; Marchegiano, P.; Marini, V.; Meacci, M.; et al. Usutu Virus Infections in Humans: A Retrospective Analysis in the Municipality of Modena, Italy. Clin. Microbiol. Infect. 2017, 23, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Mezei, E.; Nagy, O.; Bakonyi, T.; Csonka, N.; Kaposi, M.; Koroknai, A.; Szomor, K.; Rigó, Z.; Molnár, Z.; et al. Extraordinary Increase in West Nile Virus Cases and First Confirmed Human Usutu Virus Infection in Hungary, 2018. Eurosurveillance 2019, 24, 1900038. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Savic, V.; Sabadi, D.; Peric, L.; Barbic, L.; Klobucar, A.; Miklausic, B.; Tabain, I.; Santini, M.; Vucelja, M.; et al. Prevalence and Molecular Epidemiology of West Nile and Usutu Virus Infections in Croatia in the ‘One Health’ Context, 2018. Transbound. Emerg. Dis. 2019, 66, 1946–1957. [Google Scholar] [CrossRef]
- Pacenti, M.; Sinigaglia, A.; Martello, T.; De Rui, M.E.; Franchin, E.; Pagni, S.; Peta, E.; Riccetti, S.; Milani, A.; Montarsi, F.; et al. Clinical and Virological Findings in Patients with Usutu Virus Infection, Northern Italy, 2018. Eurosurveillance 2019, 24, 1900180. [Google Scholar] [CrossRef]
- Lupia, T.; Paolo Marletto, F.; Tiziana Scuvera, I.; Bosio, R.; Rizzello, B.; Fornari, V.; Maria Luisa Vivenza, D.; Ghisetti, V.; Teresa Brusa, M.; Corcione, S.; et al. First Human Usutu Virus Reported in Asti (Piedmont, Italy, August 2022) and Early Follow-Up. Trop. Med. Infect. Dis. 2022, 7, 443. [Google Scholar] [CrossRef]
- Gaibani, P.; Barp, N.; Massari, M.; Negri, E.A.; Rossini, G.; Vocale, C.; Trenti, C.; Gallerani, A.; Cantergiani, S.; Romani, F.; et al. Case Report of Usutu Virus Infection in an Immunocompromised Patient in Italy, 2022. J. Neurovirol 2023, 29, 364–366. [Google Scholar] [CrossRef]
- Simonin, Y.; Sillam, O.; Carles, M.J.; Gutierrez, S.; Gil, P.; Constant, O.; Martin, M.F.; Grard, G.; Van de Perre, P.; Salinas, S.; et al. Human Usutu Virus Infection with Atypical Neurologic Presentation, Montpellier, France, 2016. Emerg. Infect. Dis. 2018, 24, 875–878. [Google Scholar] [CrossRef]
- Aberle, S.W.; Kolodziejek, J.; Jungbauer, C.; Stiasny, K.; Aberle, J.H.; Zoufaly, A.; Hourfar, M.K.; Weidner, L.; Nowotny, N. Increase in Human West Nile and Usutu Virus Infections, Austria, 2018. Eurosurveillance 2018, 23, 1800545. [Google Scholar] [CrossRef]
- Morozińska-Gogol, J. Mosquito Borne Virus USUTU as Potential Threat to Human Health. Ann. Parasitol. 2024, 70, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Laemmert, H.W.; Hughes, T.P. The Virus of Ilhéus Encephalitis; Isolation, Serological Specificity and Transmission. J. Immunol. 1947, 55, 61–67. [Google Scholar] [CrossRef]
- Koprowski, H.; Hughes, T.P. The Virus of Ilhéus Encephalitis; Physical Properties, Pathogenicity and Cultivation. J. Immunol. 1946, 54, 371–385. [Google Scholar] [CrossRef]
- Plante, K.S.; Plante, J.A.; Azar, S.R.; Shinde, D.P.; Scharton, D.; Versiani, A.F.; Oliveira da Silva, N.I.; Strange, T.; Sacchetto, L.; Fokam, E.B.; et al. Potential of Ilhéus Virus to Emerge. Heliyon 2024, 10, e27934. [Google Scholar] [CrossRef]
- da Costa, V.G.; Saivish, M.V.; Lino, N.A.B.; Bittar, C.; de Freitas Calmon, M.; Nogueira, M.L.; Rahal, P. Clinical Landscape and Rate of Exposure to Ilheus Virus: Insights from Systematic Review and Meta-Analysis. Viruses 2022, 15, 92. [Google Scholar] [CrossRef]
- Plante, J.A.; Plante, K.S.; Popov, V.L.; Shinde, D.P.; Widen, S.G.; Buenemann, M.; Nogueira, M.L.; Vasilakis, N. Morphologic and Genetic Characterization of Ilheus Virus, a Potential Emergent Flavivirus in the Americas. Viruses 2023, 15, 195. [Google Scholar] [CrossRef]
- Milhim, B.H.G.A.; Estofolete, C.F.; da Rocha, L.C.; Liso, E.; Brienze, V.M.S.; Vasilakis, N.; Terzian, A.C.B.; Nogueira, M.L. Fatal Outcome of Ilheus Virus in the Cerebrospinal Fluid of a Patient Diagnosed with Encephalitis. Viruses 2020, 12, 957. [Google Scholar] [CrossRef]
- Lopes, O.D.S.; Coimbra, T.L.M.; Sacchetta, L.D.A.; Calisher, C.H. Emergence of a New Arbovirus Disease in Brazil. Am. J. Epidemiol. 1978, 107, 444–449. [Google Scholar] [CrossRef]
- Saivish, M.V.; da Costa, V.G.; Rodrigues, R.L.; Féres, V.C.R.; Montoya-Diaz, E.; Moreli, M.L. Detection of Rocio Virus SPH 34675 during Dengue Epidemics, Brazil, 2011–2013. Emerg. Infect. Dis. 2020, 26, 797–799. [Google Scholar] [CrossRef]
- Silva, J.R.; Romeiro, M.F.; de Souza, W.M.; Munhoz, T.D.; Borges, G.P.; Soares, O.A.B.; De Campos, C.H.C.; Machado, R.Z.; Silva, M.L.C.R.; Faria, J.L.M.; et al. A Saint Louis Encephalitis and Rocio Virus Serosurvey in Brazilian Horses. Rev. Soc. Bras. Med. Trop. 2014, 47, 414–417. [Google Scholar] [CrossRef]
- Saivish, M.V.; Menezes, G.D.L.; Costa, V.G.D.; da Silva, G.C.D.; Marques, R.E.; Nogueira, M.L.; Silva, R.A. Da Predicting Antigenic Peptides from Rocio Virus NS1 Protein for Immunodiagnostic Testing Using Immunoinformatics and Molecular Dynamics Simulation. Int. J. Mol. Sci. 2022, 23, 7681. [Google Scholar] [CrossRef] [PubMed]
- Travassos Da, A.P.A.; Pedro, R.; Vasconcelos, F.C.; Travassos Da Rosa, J.F.S. An Overview of Arbovirology in Brazil and Neighbouring Countries. Instituto Evandro Chagas: Ananindeua, Brazil, 1998. [Google Scholar]
- Saivish, M.V.; Nogueira, M.L.; Rossi, S.L.; Vasilakis, N. Beyond Borders: Investigating the Mysteries of Cacipacoré, a Lesser-Studied Arbovirus in Brazil. Viruses 2024, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, M.L.G.; Amarilla, A.A.; de Figueiredo, G.G.; Alfonso, H.L.; Lippi, V.; Maia, F.G.M.; Morais, F.A.; da Costa, C.A.; Henriques, D.A.; Durigon, E.L.; et al. Cacipacore Virus as an Emergent Mosquito-Borne Flavivirus. Rev. Soc. Bras. Med. Trop. 2017, 50, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Karabatsos, N. International Catalogue of Arboviruses: Including Certain Other Viruses of Vertebrates; American Society of Tropical Medicine and Hygiene: Arlington, VA, USA, 1985. [Google Scholar]
- Batista, W.C. Mapeamento de Arbovíroses No Estado de Rondônia. Ph.D. Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2007. [Google Scholar]
- Batista, W.C.; Tavares, G.D.S.B.; Vieira, D.S.; Honda, E.R.; Pereira, S.S.; Tada, M.S. Notification of the First Isolation of Cacipacore Virus in a Human in the State of Rondônia, Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 528–530. [Google Scholar] [CrossRef]
- Lvov, D.K.; Timopheeva, A.A.; Chervonski, V.I.; Gromashevski, V.L.; Klisenko, G.A.; Gostinshchikova, G.V.; Kostyrko, I.N. Tuleniy Virus. Am. J. Trop. Med. Hyg. 1971, 20, 456–460. [Google Scholar] [CrossRef]
- Lvov, D.K.; Chervonski, V.I.; Gostinshchikova, I.N.; Zemit, A.S.; Gromashevski, V.L.; Tsyrkin, Y.M.; Veselovskaya, O.V. Isolation of Tyuleniy Virus from Ticks Ixodes (Ceratixodes) Putus Piek.-Camb. 1878 Collected on Commodore Islands. Archly Die Gesamte Virusforsch. 1972, 138, 139–142. [Google Scholar] [CrossRef]
- Alkhovsky, S.V.; Shchetinin, A.M.; Lvov, D.K.; Shchelkanov, M.Y. Genome Sequence of Tyuleniy Virus Strain LEIV-13859Kam. Available online: https://www.ncbi.nlm.nih.gov/nuccore/KT224356 (accessed on 27 April 2025).
- Hubálek, Z. Pathogenic Microorganisms Associated with Gulls and Terns (Laridae). J. Vertebr. Biol. 2021, 70, 21009. [Google Scholar] [CrossRef]
- Clifford, C.M.; Yunker, C.E.; Thomas, L.A.; Easton, E.R.; Corwin, D. Isolation of A Group B Arbovirus from Ixodes Uriae Collected on Three Arch Rocks National Wildlife Refuge, Oregon. Am. J. Trop. Med. Hyg. 1971, 20, 461–468. [Google Scholar] [CrossRef]
- Saikku, P.; Main, A.J.; Ulmanen, I.; Brummer-Korvenkontio, M. Viruses in Ixodes Uriae (Acari: Ixodidae) from Seabird Colonies at RøSt Islands, Lofoten, Norway1. J. Med. Entomol. 1980, 17, 360–366. [Google Scholar] [CrossRef]
- Main, A.J.; Downs, W.G.; Shope, R.E.; Wallis, R.C. Avian Arboviruses of the Witless Bay Seabird Sanctuary, Newfoundland, Canada. J. Wildl. Dis. 1976, 12, 182–194. [Google Scholar] [CrossRef]
- Yunker, C.E. Tick-Borne Viruses Associated with Seabirds in North America and Related Islands. Med. Biol. 1975, 53, 302–311. [Google Scholar] [PubMed]
- Smithburn, K.C.; Haddow, A.J. Ntaya Virus. A Hitherto Unknown Agent Isolated from Mosquitoes Collected in Uganda. Exp. Biol. Med. 1951, 77, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Nyaruaba, R.; Mwaliko, C.; Mwau, M.; Mousa, S.; Wei, H. Arboviruses in the East African Community Partner States: A Review of Medically Important Mosquito-Borne Arboviruses. Pathog. Glob. Health 2019, 113, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Drăgănescu, N.; Iftimovici, R.; Iacobescu, V.; Girjabu, E.; Buşilă, A.; Cvaşniuc, D.; Tudor, G.; Lapuşneanu, C.; Mănăstireanu, M. Investigations on the Presence of Antibodies to Several Flaviviruses in Humans and Some Domestic Animals in a Biotope with a High Frequency of Migratory Birds. Virologie 1975, 26, 103–108. [Google Scholar]
- Dilcher, M.; Sall, A.A.; Hufert, F.T.; Weidmann, M. Full-Length Genome Sequence of Ntaya Virus. Virus Genes 2013, 46, 162–164. [Google Scholar] [CrossRef]
- Davidson, I. A New Look at Avian Flaviviruses. Isr. J. Vet. Med. 2015, 70, 6. [Google Scholar]
- Woodruff, A.W.; Bowen, E.T.; Platt, G.S. Viral Infections in Travellers from Tropical Africa. BMJ 1978, 1, 956–958. [Google Scholar] [CrossRef]
- Smithburn, K.C. Neutralizing Antibodies Against Arthropod-Borne Viruses in the Sera of Long-Time Residents of Malaya and Borneo. Am. J. Epidemiol. 1954, 59, 157–163. [Google Scholar] [CrossRef]
- Digoutte, J.P. Bagaza (BAG). Am. J. Trop. Med. Hyg. 1978, 27, 376–377. [Google Scholar] [CrossRef]
- Diallo, M.; Nabeth, P.; Ba, K.; Sall, A.A.; Ba, Y.; Mondo, M.; Girault, L.; Abdalahi, M.O.; Mathiot, C. Mosquito Vectors of the 1998–1999 Outbreak of Rift Valley Fever and Other Arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med. Vet. Entomol. 2005, 19, 119–126. [Google Scholar] [CrossRef]
- Guggemos, H.D.; Fendt, M.; Hieke, C.; Heyde, V.; Mfune, J.K.E.; Borgemeister, C.; Junglen, S. Simultaneous Circulation of Two West Nile Virus Lineage 2 Clades and Bagaza Virus in the Zambezi Region, Namibia. PLOS Negl. Trop. Dis. 2021, 15, e0009311. [Google Scholar] [CrossRef] [PubMed]
- Traore-Lamizana, M.; Zeller, H.G.; Mondo, M.; Hervy, J.-P.; Adam, F.; Digoutte, J.-P. Isolations of West Nile and Bagaza Viruses from Mosquitoes (Diptera: Culicidae) in Central Senegal (Ferlo). J. Med. Entomol. 1994, 31, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.W.; Tammariello, R.F.; Linthicum, K.J.; Dohm, D.J.; Digoutte, J.P.; Calvo-Wilson, M.A. Arbovirus Isolations from Mosquitoes Collected During 1988 in the Senegal River Basin. Am. J. Trop. Med. Hyg. 1992, 47, 742–748. [Google Scholar] [CrossRef]
- Faye, M.; Faye, O.; Diagne, M.; Fall, G.; Weidmann, M.; Sembene, M.; Sall, A.; Faye, O. Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018, 10, 193. [Google Scholar] [CrossRef]
- Sekee, T.R.; Bubuluma, R.; van Jaarsveldt, D.; Bester, P.A.; Burt, F.J. Multiplex PCR Method for MinION Sequencing of Bagaza Virus Isolated from Wild Caught Mosquitoes in South Africa. J. Virol. Methods 2024, 327, 114917. [Google Scholar] [CrossRef]
- Camp, J.V.; Karuvantevida, N.; Chouhna, H.; Safi, E.; Shah, J.N.; Nowotny, N. Mosquito Biodiversity and Mosquito-Borne Viruses in the United Arab Emirates. Parasit. Vectors 2019, 12, 153. [Google Scholar] [CrossRef]
- Aguero, M. Bagaza Virus in Partridges and Pheasants, Spain, 2010. Emerg. Infect. Dis. 2011, 17, 1498–1501. [Google Scholar] [CrossRef]
- Loureiro, F.; Mesquita, J.R.; Cardoso, L.; Matos, A.C.; Matos, M.; Coelho, A.C. Detection of Bagaza Virus in Europe: A Scoping Review. Vet. Sci. 2025, 12, 113. [Google Scholar] [CrossRef]
- Steyn, J.; Botha, E.M.; Lourens, C.; Coetzer, J.A.W.; Venter, M. Bagaza Virus in Himalayan Monal Pheasants, South Africa, 2016-2017. Emerg. Infect. Dis. 2019, 25, 2299–2302. [Google Scholar] [CrossRef]
- Llorente, F.; Pérez-Ramírez, E.; Fernández-Pinero, J.; Elizalde, M.; Figuerola, J.; Soriguer, R.C.; Jiménez-Clavero, M.Á. Bagaza Virus Is Pathogenic and Transmitted by Direct Contact in Experimentally Infected Partridges, but Is Not Infectious in House Sparrows and Adult Mice. Vet. Res. 2015, 46, 93. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host Range and Emerging and Reemerging Pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Bondre, V.P.; Sapkal, G.N.; Yergolkar, P.N.; Fulmali, P.V.; Sankararaman, V.; Ayachit, V.M.; Mishra, A.C.; Gore, M.M. Genetic Characterization of Bagaza Virus (BAGV) Isolated in India and Evidence of Anti-BAGV Antibodies in Sera Collected from Encephalitis Patients. J. Gen. Virol. 2009, 90, 2644–2649. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pinero, J.; Davidson, I.; Elizalde, M.; Perk, S.; Khinich, Y.; Jiménez-Clavero, M.A. Bagaza Virus and Israel Turkey Meningoencephalomyelitis Virus Are a Single Virus Species. J. Gen. Virol. 2014, 95, 883–887. [Google Scholar] [CrossRef]
- Komarov, A.; Kalmar, E. A Hitherto Undescribed Disease—Turkey Meningo-Encephalitis. Vet. Rec. 1960, 72, 257–261. [Google Scholar]
- Barnard, B.J.; Buys, S.B.; Du Preez, J.H.; Greyling, S.P.; Venter, H.J. Turkey Meningo-Encephalitis in South Africa. Onderstepoort J. Vet. Res. 1980, 47, 89–94. [Google Scholar]
- Ianconescu, M. Turkey Meningo-Encephalitis: A General Review. Avian Dis. 1976, 20, 135–138. [Google Scholar] [CrossRef]
- Platt, G.S.; Way, H.J.; Bowen, E.T.W.; Simpson, D.I.H.; Hill, M.N.; Kamath, S.; Bendell, P.J.E.; Heathcote, O.H.U. Arbovirus Infections in Sarawak, October 1968—February 1970 Tembusu and Sindbis Virus Isolations from Mosquitoes. Ann. Trop. Med. Parasitol. 1975, 69, 65–71. [Google Scholar] [CrossRef]
- Hamel, R.; Phanitchat, T.; Wichit, S.; Morales Vargas, R.E.; Jaroenpool, J.; Diagne, C.T.; Pompon, J.; Missé, D. New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021, 10, 1010. [Google Scholar] [CrossRef]
- Su, J.; Li, S.; Hu, X.; Yu, X.; Wang, Y.; Liu, P.; Lu, X.; Zhang, G.; Hu, X.; Liu, D.; et al. Duck Egg-Drop Syndrome Caused by BYD Virus, a New Tembusu-Related Flavivirus. PLOS ONE 2011, 6, e18106. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, X.; Diao, Y.; Feng, Q.; Chen, H.; Liu, X.; Ge, P.; Yu, C. Tembusu Virus in Human, China. Transbound. Emerg. Dis. 2013, 60, 193–196. [Google Scholar] [CrossRef]
- Pulmanausahakul, R.; Ketsuwan, K.; Jaimipuk, T.; Smith, D.R.; Auewarakul, P.; Songserm, T. Detection of Antibodies to Duck Tembusu Virus in Human Population with or without the History of Contact with Ducks. Transbound. Emerg. Dis. 2022, 69, 870–873. [Google Scholar] [CrossRef] [PubMed]
- St George, T.D.; Doherty, R.L.; Carley, J.G.; Filippich, C.; Brescia, A.; Casals, J.; Kemp, D.H.; Brothers, N. The Isolation of Arboviruses Including a New Flavivirus and a New Bunyavirus from Ixodes (Ceratixodes) Uriae (Ixodoidea: Ixodidae) Collected at Macquarie Island, Australia, 1975–1979*. Am. J. Trop. Med. Hyg. 1985, 34, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Major, L.; Linn, M.L.; Slade, R.W.; Schroder, W.A.; Hyatt, A.D.; Gardner, J.; Cowley, J.; Suhrbier, A. Ticks Associated with Macquarie Island Penguins Carry Arboviruses from Four Genera. PLOS ONE 2009, 4, e4375. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, J.H.-O.; Ellström, P.; Ling, J.; Nilsson, I.; Bergström, S.; González-Acuña, D.; Olsen, B.; Holmes, E.C. Circumpolar Diversification of the Ixodes Uriae Tick Virome. PLOS Pathog. 2020, 16, e1008759. [Google Scholar] [CrossRef]
- Humphery-Smith, I.; Cybinski, D.H.; Byrnes, K.A.; St George, T.D. Seroepidemiology of Arboviruses among Seabirds and Island Residents of the Great Barrier Reef and Coral Sea. Epidemiol. Infect. 1991, 107, 435–440. [Google Scholar] [CrossRef]
- Nelson, A.N.; Ploss, A. Emerging Mosquito-Borne Flaviviruses. mBio 2024, 15, e0294624. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Kokernot, R.H.; Weinbren, M.P.; De Meillon, B. Studies on Arthropod-Borne Viruses of Tongaland. IX. Isolation of Wesselsbron Virus from a Naturally Infected Human Being and from Aedes (Banksinella) Circumluteolus Theo. S. Afr. J. Med. Sci. 1957, 22, 113–120. [Google Scholar]
- Weiss, K.; Haig, D.; Alexander, R. Wesselsbron Virus—A Virus Not Previously Described, Associated with Abortion in Domestic Animals. Onderstepoort J. Vet. Res. 1956, 27, 183–195. [Google Scholar]
- Zimoch, M.; Grau-Roma, L.; Liniger, M.; Donzé, N.; Godel, A.; Escribano, D.; Trüeb, B.S.; Pramateftaki, P.; Torres-Puig, S.; Cerón, J.J.; et al. Mosquito-Independent Milk-Associated Transmission of Zoonotic Wesselsbron Virus in Sheep. PLOS Pathog. 2024, 20, e1012751. [Google Scholar] [CrossRef]
- Spickler, A.R. Wesselsbron Disease. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/wesselsbron.pdf (accessed on 25 April 2025).
- Faye, M.; Di Paola, N.; Dia, M.; Sall, A.A.; Faye, O. Molecular Epidemiology and Pathogenicity of Wesselsbron Virus Circulating in Africa. Virus Res. 2024, 350, 199499. [Google Scholar] [CrossRef]
- Allwright, D.; Geyer, A.; Burger, W.; Williams, R.; Gerdes, G.; Barnard, B. Isolation of Wesselsbron Virus from Ostriches. Vet. Rec. 1995, 136, 99. [Google Scholar] [CrossRef] [PubMed]
- Diagne, M.M.; Faye, M.; Faye, O.; Sow, A.; Balique, F.; Sembène, M.; Granjon, L.; Handschumacher, P.; Faye, O.; Diallo, M.; et al. Emergence of Wesselsbron Virus among Black Rat and Humans in Eastern Senegal in 2013. One Health 2017, 3, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Weinbren, M.P. Some Clinical Observations on a Human Case of Infection with Wesselsbron Virus. East. Afr. Virus Res. Inst. Rep. 1959, 9, 22–23. [Google Scholar]
- McLean, D.M.; Donohue, W.L. Powassan Virus: Isolation of Virus from a Fatal Case of Encephalitis. Can. Med. Assoc. J. 1959, 80, 708–711. [Google Scholar]
- Hassett, E.M.; Thangamani, S. Ecology of Powassan Virus in the United States. Microorganisms 2021, 9, 2317. [Google Scholar] [CrossRef]
- Kakoullis, L.; Vaz, V.R.; Kaur, D.; Kakoulli, S.; Panos, G.; Chen, L.H.; Behlau, I. Powassan Virus Infections: A Systematic Review of Published Cases. Trop. Med. Infect. Dis. 2023, 8, 508. [Google Scholar] [CrossRef]
- Thomm, A.M.; Schotthoefer, A.M.; Dupuis, A.P.; Kramer, L.D.; Frost, H.M.; Fritsche, T.R.; Harrington, Y.A.; Knox, K.K.; Kehl, S.C. Development and Validation of a Serologic Test Panel for Detection of Powassan Virus Infection in U.S. Patients Residing in Regions Where Lyme Disease Is Endemic. mSphere 2018, 3, e00467-17. [Google Scholar] [CrossRef]
- Hermance, M.E.; Thangamani, S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector-Borne Zoonotic Dis. 2017, 17, 453–462. [Google Scholar] [CrossRef]
- Piantadosi, A.; Solomon, I.H. Powassan Virus Encephalitis. Infect. Dis. Clin. N. Am. 2022, 36, 671–688. [Google Scholar] [CrossRef]
- Dupuis II, A.P.; Peters, R.J.; Prusinski, M.A.; Falco, R.C.; Ostfeld, R.S.; Kramer, L.D. Isolation of Deer Tick Virus (Powassan Virus, Lineage II) from Ixodes Scapularis and Detection of Antibody in Vertebrate Hosts Sampled in the Hudson Valley, New York State. Parasit. Vectors 2013, 6, 185. [Google Scholar] [CrossRef]
- Belloncik, S.; Aubin, A.; Maire, A.; Boisvert, J.; Gagnon, R.; Th’ng, C.; Trudel, C.; Artsob, H. Arbovirus Studies in the Trois-Rivieres Area, Province of Quebec, Canada. Mosq. News 1983, 43, 426–431. [Google Scholar]
- Hoogstraal, H. Changing Patterns of Tickborne Diseases in Modern Society. Annu. Rev. Entomol. 1981, 26, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Odend’hal, S. Powassan Virus. The Geographical Distribution of Animal Viral Diseases; Elsevier: Amsterdam, The Netherlands, 1983; pp. 333–336. [Google Scholar]
- Greig, J.; Brownlee, A.; Wilson, D.; Gordon, W. The Nature of Louping Ill. Vet. Rec. 1931, 11, 325–333. [Google Scholar]
- Leonova, G.N.; Kondratov, I.G.; Maystrovskaya, O.S.; Takashima, I.; Belikov, S.I. Louping Ill Virus (LIV) in the Far East. Arch. Virol. 2015, 160, 663–673. [Google Scholar] [CrossRef]
- Ytrehus, B.; Rocchi, M.; Brandsegg, H.; Turnbull, D.; Miller, A.; Pedersen, H.C.; Kålås, J.A.; Nilsen, E.B. Louping-Ill Virus Serosurvey of Willow Ptarmigan (Lagopus lagopus lagopus) in Norway. J. Wildl. Dis. 2021, 57, 282–291. [Google Scholar] [CrossRef]
- Harrison, A.; Newey, S.; Gilbert, L.; Haydon, D.T.; Thirgood, S. Culling Wildlife Hosts to Control Disease: Mountain Hares, Red Grouse and Louping Ill Virus. J. Appl. Ecol. 2010, 47, 926–930. [Google Scholar] [CrossRef]
- Rivers, T.; Schwentker, F. Louping Ill in Man. J. Exp. Med. 1934, 59, 669–685. [Google Scholar] [CrossRef]
- Reid, H.W.; Gibbs, C.A.; Burrells, C.; Doherty, P.C. Laboratory Infections with Louping-ill Virus. Lancet 1972, 299, 592–593. [Google Scholar] [CrossRef]
- Williams, H.; Thorburn, H. Serum Antibodies to Louping-Ill Virus. Scott. Med. J. 1962, 7, 353–355. [Google Scholar] [CrossRef]
- Zlobin, V.I.; Pogodina, V.V.; Kahl, O. A Brief. History of the Discovery of Tick-Borne Encephalitis Virus in the Late 1930s (Based on Reminiscences of Members of the Expeditions, Their Colleagues, and Relatives). Ticks Tick Borne Dis. 2017, 8, 813–820. [Google Scholar] [CrossRef]
- Deviatkin, A.A.; Karganova, G.G.; Vakulenko, Y.A.; Lukashev, A.N. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Callaby, H.; Beard, K.R.; Wakerley, D.; Lake, M.A.; Osborne, J.; Brown, K.; Wand, N.; Warner, J.; Holding, M.; Davies, N.W.; et al. Tick-Borne Encephalitis: From Tick Surveillance to the First Confirmed Human Cases, the United Kingdom, 2015 to 2023. Eurosurveillance 2025, 30, 2400404. [Google Scholar] [CrossRef] [PubMed]
- Kwasnik, M.; Rola, J.; Rozek, W. Tick-Borne Encephalitis—Review of the Current Status. J. Clin. Med. 2023, 12, 6603. [Google Scholar] [CrossRef]
- Ilic, M.; Barbic, L.; Bogdanic, M.; Tabain, I.; Savic, V.; Kosanovic Licina, M.L.; Kaic, B.; Jungic, A.; Vucelja, M.; Angelov, V.; et al. Tick-Borne Encephalitis Outbreak Following Raw Goat Milk Consumption in a New Micro-Location, Croatia, June 2019. Ticks Tick Borne Dis. 2020, 11, 101513. [Google Scholar] [CrossRef]
- Peňazziová, K.; Korytár, Ľ.; Cingeľová Maruščáková, I.; Schusterová, P.; Loziak, A.; Pivka, S.; Ondrejková, A.; Pistl, J.; Csank, T. Serologic Investigation on Tick-Borne Encephalitis Virus, Kemerovo Virus and Tribeč Virus Infections in Wild Birds. Microorganisms 2022, 10, 2397. [Google Scholar] [CrossRef]
- Csank, T.; Bhide, K.; Bencúrová, E.; Dolinská, S.; Drzewnioková, P.; Major, P.; Korytár, Ľ.; Bocková, E.; Bhide, M.; Pistl, J. Detection of West Nile Virus and Tick-Borne Encephalitis Virus in Birds in Slovakia, Using a Universal Primer Set. Arch. Virol. 2016, 161, 1679–1683. [Google Scholar] [CrossRef]
- Michel, F.; Ziegler, U.; Fast, C.; Eiden, M.; Klaus, C.; Dobler, G.; Stiasny, K.; Groschup, M.H. Role of Ducks in the Transmission Cycle of Tick-borne Encephalitis Virus? Transbound. Emerg. Dis. 2021, 68, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Jaenson, T.G.T.; Olsen, B.; Waldenström, J.; Lindgren, P.-E. Migratory Birds as Disseminators of Ticks and the Tick-Borne Pathogens Borrelia Bacteria and Tick-Borne Encephalitis (TBE) Virus: A Seasonal Study at Ottenby Bird Observatory in South-Eastern Sweden. Parasit. Vectors 2020, 13, 607. [Google Scholar] [CrossRef]
- Magouras, I.; Schoster, A.; Fouché, N.; Gerber, V.; Groschup, M.H.; Ziegler, U.; Fricker, R.; Griot, C.; Vögtlin, A. Neurological Disease Suspected to Be Caused by Tick-borne Encephalitis Virus Infection in 6 Horses in Switzerland. J. Vet. Intern. Med. 2022, 36, 2254–2262. [Google Scholar] [CrossRef]
- Kleeb, C.; Golini, L.; Beckmann, K.; Torgerson, P.; Steffen, F. Canine Tick-Borne Encephalitis: Clinical Features, Survival Rate and Neurological Sequelae: A Retrospective Study of 54 Cases (1999–2016). Front. Vet. Sci. 2021, 8, 782044. [Google Scholar] [CrossRef]
- Böhm, B.; Schade, B.; Bauer, B.; Hoffmann, B.; Hoffmann, D.; Ziegler, U.; Beer, M.; Klaus, C.; Weissenböck, H.; Böttcher, J. Tick-Borne Encephalitis in a Naturally Infected Sheep. BMC Vet. Res. 2017, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Balogh, Z.; Egyed, L.; Ferenczi, E.; Bán, E.; Szomor, K.N.; Takács, M.; Berencsi, G. Experimental Infection of Goats with Tick-Borne Encephalitis Virus and the Possibilities to Prevent Virus Transmission by Raw Goat Milk. Intervirology 2012, 55, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Martello, E.; Gillingham, E.L.; Phalkey, R.; Vardavas, C.; Nikitara, K.; Bakonyi, T.; Gossner, C.M.; Leonardi-Bee, J. Systematic Review on the Non-Vectorial Transmission of Tick-Borne Encephalitis Virus (TBEV). Ticks Tick Borne Dis. 2022, 13, 102028. [Google Scholar] [CrossRef] [PubMed]
- Vilibić-Čavlek, T.; Savić, V.; Židovec-Lepej, S.; Bogdanić, M.; Stevanović, V.; Barbić, L. Emerging and Neglected Viral Zoonoses in Europe. In Current Topics in Zoonoses; IntechOpen: London, UK, 2024. [Google Scholar]
- Kimura, R.; Hotta, S. Experimental Inoculation of Dengue Virus into Mice. Nippon. Igaku 1943, 3344, 1378–1379. [Google Scholar]
- Bonilla-Aldana, D.K.; Rodas-Fuenmayor, M.M.; Ruiz-Aristizabal, L.M.; Ulloque-Badaracco, J.R.; Alarcón-Braga, E.A.; Hernandez-Bustamante, E.A.; Cabrera-Guzman, J.C.; Ulloque-Badaracco, R.R.; Benites-Zapata, V.A.; Rodriguez-Morales, A.J. Serological and Molecular Detection of Dengue Virus in Animals: A Systematic Review and Meta-Analysis. Infez. Med. 2024, 32, 183–201. [Google Scholar] [CrossRef]
- Pang, V.J.; Gwee, S. Dengue in Animals: A Systematic Review. Int. J. Infect. Dis. 2020, 101, 258–259. [Google Scholar] [CrossRef]
- Gwee, S.X.W.; St John, A.L.; Gray, G.C.; Pang, J. Animals as Potential Reservoirs for Dengue Transmission: A Systematic Review. One Health 2021, 12, 100216. [Google Scholar] [CrossRef]
- Theiler, M.; Sellards, A. The Immunological Relationship of Yellow Fever as It Occurs in West Africa and in South America. Ann. Trop. Med. Parasitol. 1928, 22, 449–460. [Google Scholar] [CrossRef]
- Islam, M.D.R.; Dhar, P.S.; Rahman, M.D.M. The Emergence of Yellow Fever: Outbreak, Symptoms, Transmission, Prevention, Treatment, and Possible Consequences. Int. J. Surg. 2023, 109, 3213–3214. [Google Scholar] [CrossRef]
- Kuno, G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024, 16, 84. [Google Scholar] [CrossRef]
- Findlay, G.M.; Cockburn, T.A. Possible Role of Birds in the Maintenance of Yellow Fever in West Africa. Nature 1943, 152, 245. [Google Scholar] [CrossRef]
- WHO Yellow Fever. Available online: https://www.who.int/news-room/fact-sheets/detail/yellow-fever (accessed on 23 April 2025).
- Nwaiwu, A.U.; Musekiwa, A.; Tamuzi, J.L.; Sambala, E.Z.; Nyasulu, P.S. The Incidence and Mortality of Yellow Fever in Africa: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2021, 21, 1089. [Google Scholar] [CrossRef] [PubMed]
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and Serological Specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Tajik, S.; Farahani, A.V.; Ardekani, O.S.; Seyedi, S.; Tayebi, Z.; Kami, M.; Aghaei, F.; Hosseini, T.M.; Nia, M.M.K.; Soheili, R.; et al. Zika Virus Tropism and Pathogenesis: Understanding Clinical Impacts and Transmission Dynamics. Virol. J. 2024, 21, 271. [Google Scholar] [CrossRef]
- Johnson, B.K.; Chanas, A.C.; Shockley, P.; Squires, E.J.; Gardner, P.; Wallace, C.; Simpson, D.I.H.; Bowen, E.T.W.; Platt, G.S.; Way, H.; et al. Arbovirus Isolations from, and Serological Studies on, Wild and Domestic Vertebrates from Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 1977, 71, 512–517. [Google Scholar] [CrossRef]
- Olson, J.G.; Ksiazek, T.G.; Gubler, D.J.; Lubis, S.I.; Simanjuntak, G.; Lee, V.H.; Nalim, S.; Juslis, K.; See, R. A Survey for Arboviral Antibodies in Sera of Humans and Animals in Lombok, Republic of Indonesia. Ann. Trop. Med. Parasitol. 1983, 77, 131–137. [Google Scholar] [CrossRef]
- Eckerle, I.; Briciu, V.T.; Ergönül, Ö.; Lupşe, M.; Papa, A.; Radulescu, A.; Tsiodras, S.; Tsitou, C.; Drosten, C.; Nussenblatt, V.R.; et al. Emerging Souvenirs—Clinical Presentation of the Returning Traveller with Imported Arbovirus Infections in Europe. Clin. Microbiol. Infect. 2018, 24, 240–245. [Google Scholar] [CrossRef]
- Cody, S.G.; Adam, A.; Siniavin, A.; Kang, S.S.; Wang, T. Flaviviruses—Induced Neurological Sequelae. Pathogens 2024, 14, 22. [Google Scholar] [CrossRef]
Virus | Main Vector | Principal Host | Human Disease | Animal Disease |
---|---|---|---|---|
WNV | Mosquitoes Culex spp. | Birds | Asymptomatic infections (80%), WNV fever (20%), neuroinvasive disease (<1%; immunocompromised, elderly). | Neurological disease in certain bird species, particularly Corvids, which succumb to fatal systemic disease. Horses may develop neurological disease. |
JEV | Mosquitoes Culex spp. | Birds, pigs | Asymptomatic infections, encephalitis (<1%, mainly in children). | Only a few bird species develop clinical signs. |
SLEV | Mosquitoes Culex spp. | Birds | Non-specific febrile disease (febrile headache), meningitis, encephalitis (older adults). | No data reported. |
MVEV | Mosquitoes Culex spp. | Birds, family Ardeidae | Asymptomatic infections, encephalitis, seizures (in children). | No data reported. |
USUV | Mosquitoes Culex spp. | Birds | Asymptomatic infections, USUV fever, neuroinvasive disease (immunocompromised, elderly). | Fatal infections in blackbirds and grey owls. |
ILHV | Mosquitoes multiple species | Birds, mostly Passeriformes | Sporadic infections, including fever, headache, myalgia, and encephalitis, with one fatal outcome in an elderly patient. | No data reported, multiple mammalian species were found seropositive. |
CPCV | Mosquitoes mainly Culex spp., also Aedes and Anopheles | Migratory birds | Asymptomatic infections, single case (hemorrhage, fever, respiratory symptoms, renal insufficiency, and death). | No data reported. |
TYUV | Seabird ticks Ixodes uriae | Seabirds | Three cases in the 1970s: TYUV fever with lymphadenopathy, arthralgia, laryngitis, and skin petechiae. | No data reported in free-living birds. Experimental infection of gulls resulted in neurological disease and death. |
NTAV | Mosquitoes Culex spp. | Birds | Fever, headache, myalgia, weakness of arms and legs. | Splenomegaly, brain and lung hemorrhages in birds. |
BAGV | Mosquitoes Culex spp. | Birds | Unknown or uncertain; report on 15% seropositive encephalitis patients in India. | Partridges and pheasants are highly sensitive, neurological disease with up to 30% mortality rates in partridges. |
TMUV | Mosquitoes Culex spp. | Birds, including ducks, geese, and chickens | Unknown; reports on high seroprevalence and RT-PCR positive swabs in China. | Neurological disorders and encephalitis in birds. |
GGYV | Seabird ticks Ixodes uriae | Penguins, possibly other seabirds | Unknown; report on 4% seropositive residents on Heron Island, Queensland. | No data reported. |
WSLV | Mosquitoes Aedes spp. | Sheep, goats, cattle, birds | Flu-like disease, neurological symptoms in exposed laboratory workers. | Fatal infections in ostrich chicks (mortality 90%). |
POWV | Tick Ixodes scapularis | Small mammals | Neuroinvasive disease. | No data reported. |
LIV | Ticks Ixodes ricinus | Sheep, hares, red grouse | Asymptomatic infections, non-specific febrile disease, neuroinvasive disease (rarely). | Clinical signs only in red grouse, with mortality rates up to 80%. |
TBEV | Ticks Ixodes spp. | Small mammals | Asymptomatic infections, neuroinvasive disease (meningitis, encephalitis). | Horses may develop neurological disease. |
DENV | Mosquitoes Aedes aegypti Aedes albopictus | Monkeys (silvatic cycle); humans (urban cycle) | Asymptomatic infections, dengue fever, dengue hemorrhagic fever, dengue shock syndrome. | No data reported. |
YFV | Mosquitoes Aedes aegypti Aedes albopictus | Monkeys (silvatic cycle); humans (urban cycle) | Asymptomatic infections, hemorrhagic fever. | No data reported. |
ZIKV | Mosquitoes Aedes aegypti Aedes albopictus | Monkeys (silvatic cycle); humans (urban cycle) | Asymptomatic infections, febrile disease with rash, congenital infections. | No data reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savić, V.; Barbić, L.; Bogdanić, M.; Rončević, I.; Klobučar, A.; Medić, A.; Vilibić-Čavlek, T. Zoonotic Orthoflaviviruses Related to Birds: A Literature Review. Microorganisms 2025, 13, 1590. https://doi.org/10.3390/microorganisms13071590
Savić V, Barbić L, Bogdanić M, Rončević I, Klobučar A, Medić A, Vilibić-Čavlek T. Zoonotic Orthoflaviviruses Related to Birds: A Literature Review. Microorganisms. 2025; 13(7):1590. https://doi.org/10.3390/microorganisms13071590
Chicago/Turabian StyleSavić, Vladimir, Ljubo Barbić, Maja Bogdanić, Ivana Rončević, Ana Klobučar, Alan Medić, and Tatjana Vilibić-Čavlek. 2025. "Zoonotic Orthoflaviviruses Related to Birds: A Literature Review" Microorganisms 13, no. 7: 1590. https://doi.org/10.3390/microorganisms13071590
APA StyleSavić, V., Barbić, L., Bogdanić, M., Rončević, I., Klobučar, A., Medić, A., & Vilibić-Čavlek, T. (2025). Zoonotic Orthoflaviviruses Related to Birds: A Literature Review. Microorganisms, 13(7), 1590. https://doi.org/10.3390/microorganisms13071590