From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain
Abstract
:1. Introduction
2. Results
2.1. General Description of DNA Sequences
2.2. Microbial Load, Bacterial Communities’ Composition, and Diversity
2.3. ARGs Prevalence and Relative Abundance
2.4. Association Between Microbial Communities and ARGs
3. Discussion
4. Materials and Methods
4.1. Sampling Procedure
4.2. DNA Extraction
4.3. Microbial DNA Load, 16S rRNA Gene Amplification, Sequencing, and Data Analysis
4.4. Real-Time PCR Analysis of Antimicrobial Resistance Genes (ARGs)
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. OCDE-FAO Agricultural Outlook 2023–2032; OECD/FAO: Rome, Italy, 2023; ISBN 9789264619333. [Google Scholar]
- FAO. Meat Market Review: Overview of Global Meat Market and Policy Developments in 540 2022; FAO: Rome, Italy, 2023. [Google Scholar]
- Tilli, G.; Laconi, A.; Galuppo, F.; Mughini-Gras, L.; Piccirillo, A. Assessing Biosecurity Compliance in Poultry Farms: A Survey in a Densely Populated Poultry Area in North East Italy. Animals 2022, 12, 1409. [Google Scholar] [CrossRef] [PubMed]
- Caucci, C.; Di Martino, G.; Dalla Costa, A.; Santagiuliana, M.; Lorenzetto, M.; Capello, K.; Mughini-Gras, L.; Gavazzi, L.; Bonfanti, L. Trends and Correlates of Antimicrobial Use in Broiler and Turkey Farms: A Poultry Company Registry-Based Study in Italy. J. Antimicrob. Chemother. 2019, 74, 2784–2787. [Google Scholar] [CrossRef] [PubMed]
- Hruby, C.E.; Soupir, M.L.; Moorman, T.B.; Shelley, M.; Kanwar, R.S. Effects of Tillage and Poultry Manure Application Rates on Salmonella and Fecal Indicator Bacteria Concentrations in Tiles Draining Des Moines Lobe Soils. J. Environ. Manag. 2016, 171, 60–69. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; He, Y.; Han, M.; Li, M.; Wang, S.; Chen, J.; Zhang, Q.; Yang, B. Environmental Fate of Antibiotic Resistance Genes in Livestock Farming. Arch. Microbiol. 2025, 207, 120. [Google Scholar] [CrossRef]
- Piccirillo, A.; Tolosi, R.; Mughini-Gras, L.; Kers, J.G.; Laconi, A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics 2024, 13, 808. [Google Scholar] [CrossRef]
- Augère-Granier, M.-L. The EU Poultry Meat and Egg Sector: Main Features, Challenges and Prospects. EPRS Eur. Parliam. Res. Serv. 2019, 1–22. [Google Scholar] [CrossRef]
- Duyum, S. Report Name: Poultry and Products Annual; USDA Foreign Agricultural Service: Washington, DC, USA, 2021.
- Nazzaro, C.; Marotta, G.; Stanco, M. 18. Short Food Supply Chains and Shared Value on the Multifunctional Farm: An Analysis of Determinants. In It’s a Jungle out There—The Strange Animals of Economic Organization in Agri-Food Value Chains; Wageningen Academic: Leiden, The Netherlands, 2017; pp. 337–355. ISBN 9789086868445. [Google Scholar]
- Poulsen, M.N.; Roni, A.N.; Winch, P.J. The Multifunctionality of Urban Farming: Perceived Benefits for Neighbourhood Improvement. Local Environ. 2017, 22, 1411–1427. [Google Scholar] [CrossRef]
- Torquati, B.; Paffarini, C.; Tempesta, T.; Vecchiato, D. Evaluating Consumer Perceptions of Social Farming through Choice Modelling. Sustain. Prod. Consum. 2019, 19, 238–246. [Google Scholar] [CrossRef]
- EIP-AGRI EIP Focus Group. Innovative Short Final Report Food Supply Chain Management; EIP-AGRI EIP Focus Group: Brussels, Belgium, 2015. [Google Scholar]
- Cheng, C.; Jiang, T.; Zhang, D.; Wang, H.; Fang, T.; Li, C. Attachment Characteristics and Kinetics of Biofilm Formation by Staphylococcus Aureus on Ready-to-Eat Cooked Beef Contact Surfaces. J. Food Sci. 2023, 88, 2595–2610. [Google Scholar] [CrossRef]
- Campos Calero, G.; Caballero Gómez, N.; Lavilla Lerma, L.; Benomar, N.; Knapp, C.W.; Abriouel, H. In Silico Mapping of Microbial Communities and Stress Responses in a Porcine Slaughterhouse and Pork Products through Its Production Chain, and the Efficacy of HLE Disinfectant. Food Res. Int. 2020, 136, 109486. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Ye, Z.; Wang, X.; Luo, X.; Lu, F.; Zhao, H. Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Foods 2025, 14, 1047. [Google Scholar] [CrossRef] [PubMed]
- Gaire, T.N.; Odland, C.; Zhang, B.; Slizovskiy, I.; Jorgenson, B.; Wehri, T.; Meneguzzi, M.; Wass, B.; Schuld, J.; Hanson, D.; et al. Slaughtering Processes Impact Microbial Communities and Antimicrobial Resistance Genes of Pig Carcasses. Sci. Total Environ. 2024, 946, 174394. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-campos, D.; Alonso-calleja, C.; Capita, R. Characterization and Long-Read Sequencing of Biofilms Formed by the Microbiota Present on Inert Surfaces in Poultry Slaughterhouses. Int. J. Food Microbiol. 2024, 426, 110915. [Google Scholar] [CrossRef]
- Ivbule, M.; Miklaševičs, E.; Čupane, L.; Berziņa, L.; Balinš, A.; Valdovska, A. Presence of Methicillin-Resistant Staphylococcus Aureus in Slaughterhouse Environment, Pigs, Carcasses, and Workers. J. Vet. Res. 2017, 61, 267–277. [Google Scholar] [CrossRef]
- Salerno, B.; Furlan, M.; Sabatino, R.; Di Cesare, A.; Leati, M.; Volanti, M.; Barco, L.; Orsini, M.; Losasso, C.; Cibin, V. Antibiotic Resistance Genes Load in an Antibiotic Free Organic Broiler Farm. Poult. Sci. 2022, 101, 101675. [Google Scholar] [CrossRef]
- Smoglica, C.; Farooq, M.; Ruffini, F.; Marsilio, F.; Di Francesco, C.E. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics 2023, 12, 1461. [Google Scholar] [CrossRef]
- Farooq, M.; Smoglica, C.; Ruffini, F.; Soldati, L.; Marsilio, F.; Di Francesco, C.E. Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Animals 2022, 12, 2310. [Google Scholar] [CrossRef]
- Ferri, G.; Buonavoglia, A.; Farooq, M.; Festino, A.R.; Ruffini, F.; Paludi, D.; Di Francesco, C.E.; Vergara, A.; Smoglica, C. Antibiotic Resistance in Italian Poultry Meat Production Chain: A One-Health Perspective Comparing Antibiotic Free and Conventional Systems from the Farming to the Slaughterhouse. Front. Food Sci. Technol. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, H.; Zou, L.; Yin, S.; Wang, C.; Han, X.; Xia, X.; Hu, K.; He, L.; Zhou, K.; et al. Antimicrobial Resistance and Resistance Genes in Salmonella Strains Isolated from Broiler Chickens along the Slaughtering Process in China. Int. J. Food Microbiol. 2017, 259, 43–51. [Google Scholar] [CrossRef]
- de Farias, B.O.; Saggioro, E.M.; Montenegro, K.S.; Magaldi, M.; Santos, H.S.O.; Gonçalves-Brito, A.S.; Pimenta, R.L.; Ferreira, R.G.; Spisso, B.F.; Pereira, M.U.; et al. Metagenomic Insights into Plasmid-Mediated Antimicrobial Resistance in Poultry Slaughterhouse Wastewater: Antibiotics Occurrence and Genetic Markers. Environ. Sci. Pollut. Res. 2024, 31, 60880–60894. [Google Scholar] [CrossRef]
- Musa, L.; Proietti, P.C.; Marenzoni, M.L.; Stefanetti, V.; Kika, T.S.; Blasi, F.; Magistrali, C.F.; Toppi, V.; Ranucci, D.; Branciari, R.; et al. Susceptibility of Commensal e. Coli Isolated from Conventional, Antibiotic-Free, and Organic Meat Chickens on Farms and at Slaughter toward Antimicrobials with Public Health Relevance. Antibiotics 2021, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Algarni, S.; Han, J.; Gudeta, D.D.; Khajanchi, B.K.; Ricke, S.C.; Kwon, Y.M.; Rhoads, D.D.; Foley, S.L. In Silico Analyses of Diversity and Dissemination of Antimicrobial Resistance Genes and Mobile Genetics Elements, for Plasmids of Enteric Pathogens. Front. Microbiol. 2023, 13, 1095128. [Google Scholar] [CrossRef] [PubMed]
- Moradi, J.; Fathollahi, M.; Halimi, S.; Alvandi, A.; Abiri, R.; Vaziri, S.; Rezaei, A. Characterization of the Resistome in Lactobacillus Genomic Sequences from the Human Gut. J. Glob. Antimicrob. Resist. 2022, 30, 451–458. [Google Scholar] [CrossRef]
- Rokon-Uz-Zaman, M.; Bushra, A.; Pospo, T.A.; Runa, M.A.; Tasnuva, S.; Parvin, M.S.; Islam, M.T. Detection of Antimicrobial Resistance Genes in Lactobacillus Spp. from Poultry Probiotic Products and Their Horizontal Transfer among Escherichia coli. Vet. Anim. Sci. 2023, 20, 100292. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global Spread of Carbapenemase Producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Laconi, A.; Mughini-Gras, L.; Tolosi, R.; Grilli, G.; Trocino, A.; Carraro, L.; Di Cesare, F.; Cagnardi, P.; Piccirillo, A. Microbial Community Composition and Antimicrobial Resistance in Agricultural Soils Fertilized with Livestock Manure from Conventional Farming in Northern Italy. Sci. Total Environ. 2021, 760, 143404. [Google Scholar] [CrossRef]
- Pesciaroli, M.; Magistrali, C.F.; Filippini, G.; Epifanio, E.M.; Lovito, C.; Marchi, L.; Maresca, C.; Massacci, F.R.; Orsini, S.; Scoccia, E.; et al. Antibiotic-Resistant Commensal Escherichia coli Are Less Frequently Isolated from Poultry Raised Using Non-Conventional Management Systems than from Conventional Broiler. Int. J. Food Microbiol. 2020, 314, 108391. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Cuccato, M.; Cannizzo, F.T.; Piccirillo, A. Amoxicillin and Thiamphenicol Treatments May Influence the Co-Selection of Resistance Genes in the Chicken Gut Microbiota. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Vougat Ngom, R.; Laconi, A.; Tolosi, R.; Akoussa, A.M.M.; Ziebe, S.D.; Kouyabe, V.M.; Piccirillo, A. Resistance to Medically Important Antimicrobials in Broiler and Layer Farms in Cameroon and Its Relation with Biosecurity and Antimicrobial Use. Front. Microbiol. 2024, 15, 1–15. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Mazzucato, M.; Ferrè, N.; Carraro, L.; Cardazzo, B.; Capolongo, F.; Merlanti, R.; Piccirillo, A. Beehive Products as Bioindicators of Antimicrobial Resistance Contamination in the Environment. Sci. Total Environ. 2022, 823, 151131. [Google Scholar] [CrossRef] [PubMed]
Variable | Number (n) | Percentage |
---|---|---|
Number of barns | ||
≤2 | 7 | 63.64% |
3–4 | 1 | 9.09% |
≥5 | 3 | 27.27% |
Surface (m2) | ||
<100 | 2 | 18.18% |
100–1000 | 4 | 36.36% |
>1000 | 1 | 9.09% |
Unknown | 4 | 36.36% |
Multispecies | ||
Yes | 7 | 63.64% |
No | 4 | 36.36% |
Species | ||
Chickens | 4 | 36.36% |
Quails | 1 | 9.09% |
Ducks | 1 | 9.09% |
Guinea fowls | 3 | 27.27% |
Pigeons | 2 | 18.18% |
Number of birds | ||
<300 | 4 | 36.36% |
300–1000 | 3 | 27.27% |
>1000 | 3 | 27.27% |
Unknown | 1 | 9.09% |
Number of birds slaughtered | ||
<50 | 4 | 36.36% |
50–100 | 3 | 27.27% |
>100 | 4 | 36.36% |
Water source | ||
Water main | 9 | 81.82% |
Water well | 2 | 18.18% |
Water distribution system | ||
Manual | 4 | 36.36% |
Automatic | 6 | 54.55% |
Unknown | 1 | 9.09% |
Feed source | ||
Purchased | 6 | 54.55% |
Home made | 1 | 9.09% |
Both | 4 | 36.36% |
Feed distribution system | ||
Manual | 9 | 81.82% |
Automatic | 2 | 18.18% |
Ventilation system | ||
Manual | 10 | 90.91% |
Automatic | 1 | 9.09% |
Antimicrobial treatments during cycle | ||
Yes | 1 | 9.09% |
If yes, specify; | Trimethoprim/sulfamethoxazole | |
No | 10 | 90.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laconi, A.; Tolosi, R.; Chirollo, C.; Penon, C.; Berto, G.; Galuppo, F.; Piccirillo, A. From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Antibiotics 2025, 14, 604. https://doi.org/10.3390/antibiotics14060604
Laconi A, Tolosi R, Chirollo C, Penon C, Berto G, Galuppo F, Piccirillo A. From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Antibiotics. 2025; 14(6):604. https://doi.org/10.3390/antibiotics14060604
Chicago/Turabian StyleLaconi, Andrea, Roberta Tolosi, Claudia Chirollo, Cristiana Penon, Giacomo Berto, Francesco Galuppo, and Alessandra Piccirillo. 2025. "From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain" Antibiotics 14, no. 6: 604. https://doi.org/10.3390/antibiotics14060604
APA StyleLaconi, A., Tolosi, R., Chirollo, C., Penon, C., Berto, G., Galuppo, F., & Piccirillo, A. (2025). From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Antibiotics, 14(6), 604. https://doi.org/10.3390/antibiotics14060604