Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = biorefinery lignin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1472 KiB  
Article
Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks
by Amer Rouabhia, Carlos José Álvarez-Gallego and Luis Alberto Fernández-Güelfo
Appl. Sci. 2025, 15(15), 8736; https://doi.org/10.3390/app15158736 - 7 Aug 2025
Viewed by 274
Abstract
This study examines the impact of hydrothermal pretreatment operation time (10, 20, and 30 min) on the following four lignocellulosic feedstocks with different lignin content: sugar beet pulp (SBP), brewers spent grain (BSG), orange peel (OP), and rice husk (RH). The objective of [...] Read more.
This study examines the impact of hydrothermal pretreatment operation time (10, 20, and 30 min) on the following four lignocellulosic feedstocks with different lignin content: sugar beet pulp (SBP), brewers spent grain (BSG), orange peel (OP), and rice husk (RH). The objective of pretreatment is twofold, as follows: (1) to enhance the organic matter solubilization and the release of value-added bioproducts, such as total reducing sugars (TRS), total proteins (PR), and volatile fatty acids (VFAs); and (2) to improve VFA and hydrogen production during a subsequent stage of acidogenic anaerobic digestion (Dark Fermentation, DF). In this context, OP reported the highest overall yields across all pretreatment durations. Specifically, at 30 min, it achieved a maximum solubilization of 57.3 gO2/L in terms of soluble chemical oxygen demand (sCOD), 19.1 gTRS/L and 20.6 gPR/L. Regarding VFA and hydrogen production via dark fermentation, the best results were obtained with SBP pretreated for 20 and 30 min, yielding 15.1 g H-Ac/L and 97.5 mL H2 (n.c.)/g (d.m.), respectively. BSG displayed an intermediate performance, whereas RH consistently showed the lowest yields across all evaluated parameters, primarily due to its high lignin content. These findings highlight the pivotal role of pretreatment duration in the valorization of lignocellulosic biomasses, primarily aimed at the recovery of high-value-added biochemicals and biofuels, such as hydrogen, thereby supporting the development of integrated biorefinery systems. Full article
Show Figures

Figure 1

14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 479
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 445
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 374
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

20 pages, 5341 KiB  
Article
Characterization of Processes Aimed at Maximizing the Reuse of Brewery’s Spent Grain: Novel Biocomposite Materials, High-Added-Value Molecule Extraction, Codigestion and Composting
by Jessica Di Mario, Agnese Bertoldi, Dario Priolo, Eleonora Calzoni, Alberto Maria Gambelli, Franco Dominici, Marco Rallini, Daniele Del Buono, Debora Puglia, Carla Emiliani and Giovanni Gigliotti
Recycling 2025, 10(4), 124; https://doi.org/10.3390/recycling10040124 - 21 Jun 2025
Cited by 1 | Viewed by 856
Abstract
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present [...] Read more.
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present study experimentally investigated several methodologies to enhance the reuse of BSG and proposed a scheme of biorefinery focused on it. According to it, BSGs were firstly tested to produce high-added-value byproducts, such as protein hydrolysates and for the extraction of lignin via ionic liquids-based methods. The residuals were then used for biogas/biomethane production via anaerobic codigestion. The different matrices were rearranged in varying mixtures, aiming at ensuring high availability of nutrients for methanogens, thus achieving higher energy production than what achievable with untreated BSG. For the scope, further agro-industrial wastes were considered. The resulted digestate was finally composted. Untreated BSGs were also directly tested as fillers for bio-composite material production (in a mixture with PHB). Different concentrations were tested and the mechanical properties of each sample were compared with those of pure PHB. Disintegration tests were finally carried out to measure the improved biodegradability of the produced bio-composite material. Full article
Show Figures

Figure 1

31 pages, 4369 KiB  
Article
Medicago Sativa Stems—A Multi-Output Integrated Biorefinery Approach
by Adrian Cătălin Puițel, George Bârjoveanu, Cătălin Dumitrel Balan and Mircea Teodor Nechita
Polymers 2025, 17(12), 1709; https://doi.org/10.3390/polym17121709 - 19 Jun 2025
Viewed by 379
Abstract
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the [...] Read more.
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the latter’s suitability in papermaking. To this end, three pretreatment strategies (water, alkaline buffer, and NaOH solution) were applied, followed by soda pulping under varying severity conditions. Both solid and liquid fractions were collected and chemically characterized using FTIR, HPLC, and standardized chemical methods. Water-based pretreatment was most effective for protein extraction, achieving over 40% protein content in precipitated fractions. The harshest pulping conditions (20% NaOH, 160 °C, 60 min) yielded cellulose-rich pulp with high glucan content, while also facilitating lignin and hemicellulose recovery from black liquor. Furthermore, the pulps derived from alfalfa stems were tested for papermaking. When blended with old corrugated cardboard (OCC), the fibers enhanced tensile and burst strength by 35% and 70%, respectively, compared to OCC alone. These findings support the valorization of unexploited alfalfa deposits and suggest a feasible biorefinery approach for protein, fiber, and polymer recovery, aligned with circular economy principles. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

20 pages, 2407 KiB  
Article
Tailored Lignin Fractions via Ionic Liquid Pretreatment for Sustainable Polymer Systems
by Sharib Khan, Daniel Rauber, Udayakumar Veerabagu, Ruijie Wu, Christopher W. M. Kay, Chunlin Xu, Sabarathinam Shanmugam and Timo Kikas
Molecules 2025, 30(12), 2630; https://doi.org/10.3390/molecules30122630 - 17 Jun 2025
Viewed by 384
Abstract
The valorization of advanced biorefinery lignins remains a significant challenge, owing to the presence of residual carbohydrates. These lignin-associated carbohydrates hinder lignin purification, reduce its homogeneity, and complicate chemical modifications, ultimately limiting the efficient conversion of lignin into high-value products such as chemicals [...] Read more.
The valorization of advanced biorefinery lignins remains a significant challenge, owing to the presence of residual carbohydrates. These lignin-associated carbohydrates hinder lignin purification, reduce its homogeneity, and complicate chemical modifications, ultimately limiting the efficient conversion of lignin into high-value products such as chemicals and materials. This study presents a protic ionic liquid-based lignin fractionation process developed using softwood biomass. Triethylammonium methane sulfonate ([N222H][OMS]) was used to fractionate Pinus sylvestris, yielding two distinct fractions: a low-molecular-weight lignin fraction (LF) and a high-molecular-weight lignin fraction (HF). The extracted fractions were comprehensively characterized using nuclear magnetic resonance (NMR) to quantify changes in interunit linkages (β-O-4, β-5, and β-β) and hydroxyl group distribution, whereas methanolysis gas chromatography/mass spectrometry (GC/MS) was used to quantify residual carbohydrates. The fractionation process achieved LF and HF yields of approximately 70.32% and 17.58%, respectively. Further analysis revealed that the HF contained 59.92 ± 2.12 mg/g carbohydrates, whereas the LF contained only 27.37 ± 1.13 mg/g. These findings underscore the effectiveness of the protic ionic liquid fractionation process in reducing carbohydrate impurities and enhancing lignin purity, paving the way for the more efficient utilization of lignin in value-added applications. Full article
Show Figures

Figure 1

36 pages, 1432 KiB  
Review
Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass
by Rafael Icaro Matos Vieira, Alencar da Silva Peixoto, Antonielle Vieira Monclaro, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho, Robert Neil Gerard Miller and Taísa Godoy Gomes
J. Fungi 2025, 11(6), 458; https://doi.org/10.3390/jof11060458 - 17 Jun 2025
Viewed by 862
Abstract
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized [...] Read more.
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized mechanisms for efficient lignocellulosic biomass degradation, employing extracellular enzymes and synergistic fungal consortia. Fungal coculture, defined as the controlled, axenic cultivation of multiple fungal species or strains in a single culture medium, is a promising strategy for industrial processes. This approach to biomass conversion offers potential for enhancing production of enzymes, biofuels, and other high-value bioproducts, while enabling investigation of ecological dynamics and metabolic pathways relevant to biorefinery operations. Lignocellulosic biomass conversion into fuels, energy, and biochemicals is central to the bioeconomy, integrating advanced biotechnology with sustainable resource use. Recent advancements in -omics technologies, including genomics, transcriptomics, and proteomics, have facilitated detailed analysis of fungal metabolism, uncovering novel secondary metabolites and enzymatic pathways activated under specific growth conditions. This review highlights the potential of fungal coculture systems to advance sustainable biomass conversion in alignment with circular bioeconomy goals. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

21 pages, 4436 KiB  
Article
Alkaline Extraction and Ethanol Precipitation of High-Molecular-Weight Xylan Compounds from Eucalyptus Residues
by María Noel Cabrera, Antonella Rossi, Juan Ignacio Guarino, Fernando Esteban Felissia and María Cristina Area
Polymers 2025, 17(12), 1589; https://doi.org/10.3390/polym17121589 - 6 Jun 2025
Viewed by 697
Abstract
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent [...] Read more.
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent addition has received little attention in the literature. This study explores the use of eucalyptus industrial residue as feedstock, utilizing a statistical design to determine the optimal extraction conditions for hemicelluloses while minimizing the lignin content in the recovered liquor. The process uses alkali loads that are compatible with those in conventional Kraft pulp mills. Optimal extraction conditions involve a temperature of 105 °C, 16.7% NaOH charge, and 45 min at maximum temperature. The resulting liquor was subjected to ethanol precipitation under varying pH conditions (initial pH, 9, 7, 5, and 2) and different ethanol-to-liquor ratios (1:1 to 4:1). The acidification was performed using hydrochloric, sulfuric, and acetic acids. Ethanol served as the main antisolvent, while isopropyl alcohol and dioxane were tested for comparison. Results show that 2.3 ± 0.2% of xylans (based on oven-dry biomass) could be extracted, minimizing lignin content in the liquor. This value corresponds to the extraction of 15.6% of the xylans present in the raw material. The highest xylan precipitation yield (78%) was obtained at pH 7, using hydrochloric acid for pH adjustment and an ethanol-to-liquor ratio of 1:1. These findings provide valuable insight into optimizing hemicellulose recovery through antisolvent precipitation, contributing to more efficient biomass valorization strategies within lignocellulosic biorefineries. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin
by Galia Shulga, Brigita Neiberte, Valerija Kudrjavceva, Anrijs Verovkins, Arturs Viksna, Sanita Vitolina, Julija Brovkina and Talrits Betkers
Polymers 2025, 17(11), 1455; https://doi.org/10.3390/polym17111455 - 23 May 2025
Viewed by 529
Abstract
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has [...] Read more.
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has advantages such as enhanced yield in biorefined products and reducing chemicals and energy consumption. This study examined the effect of an alkaline hydrolysis of birch sawdust on the chemical composition, aggregation ability, and surface activity of soda lignin obtained by soda pulping. The alkaline hydrolysis of birch sawdust led to a remarkable removal of hemicellulose and reduced its mechanical strength. The resorption of lignin fragments on the lignocellulosic matrix during the hydrolysis was observed. The soda pulping of the original and the treated sawdust was carried out under laboratory conditions at 165 °C for 90 min, using 4.5% sodium hydroxide. A higher yield of soda lignin and pulp was obtained from the treated sawdust. The reduced content of acidic and methoxyl groups in the chemical composition of the soda lignin from the hydrolyzed sawdust was explained by the predominance of polycondensation reactions in forming its primary structure. The changes in size and zeta potential values of the formed lignin particles, as well as in the modality of the size distribution with decreasing pH, were studied. The early-proposed suggestion about the existence of structural complementarity in the formation of the ordered lignin supermolecular structures has been testified. The higher surface activity at the air–water interface for the soda lignin extracted from the hydrolyzed sawdust, compared to the lignin from the original residue, was mainly attributed to a lower content of the acidic groups in its chemical composition, shifting the hydrophilic–hydrophobic balance of its structure toward hydrophobicity. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

14 pages, 1379 KiB  
Article
Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment
by Xiuying Hu, Qianqian Gao and Yucai He
Processes 2025, 13(5), 1615; https://doi.org/10.3390/pr13051615 - 21 May 2025
Viewed by 424
Abstract
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through [...] Read more.
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through FeCl3-assisted p-toluene sulfonic acid (PTSA) pretreatment. The effects of reaction conditions (PTSA content, FeCl3 loading, pretreatment duration, and temperature) on lignin and xylan elimination and enzymolysis were analyzed. The results manifested that the enzymolysis of WS substantially elevated from 22.0% to 79.3% through the treatment with FeCl3-PTSA/water (120 °C, 60 min). The xylan removal and delignification were 79.7% and 66.6%, respectively. XOSs (4.0 g/L) were acquired in the pretreatment liquor. The linear fitting about LogR0 with enzymolysis, delignification, xylan elimination and XOSs content was investigated to explain the reasons for the elevated enzymolysis and to clarify the comprehensive understanding of WS enzymolysis through the FeCl3-PTSA/water treatment. In addition, the recycling test of FeCl3-PTSA/water manifested a good recycling ability for WS treatment, which would reduce the pretreatment cost and enhance the economic benefit. To sum up, FeCl3-assisted PTSA treatment of biomass for co-production of reducing sugars and XOSs is an alternative method of waste biomass valorization. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

39 pages, 3887 KiB  
Review
A Comprehensive Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenolics to Aromatics
by Sitong Dong and Gang Feng
Molecules 2025, 30(10), 2225; https://doi.org/10.3390/molecules30102225 - 20 May 2025
Cited by 1 | Viewed by 895
Abstract
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual [...] Read more.
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual challenges of resource depletion and environmental sustainability. The catalytic hydrodeoxygenation (HDO) of lignin-derived phenolic substrates emerges as a technologically viable pathway for sustainable aromatic hydrocarbon synthesis, offering critical opportunities for lignin valorization and biorefinery advancement. This article reviews the relevant research on the conversion of lignin-derived phenolic compounds’ HDO to benzene and aromatic hydrocarbons, systematically categorizing and summarizing the different types of catalysts and their reaction mechanisms. Furthermore, we propose a strategic framework addressing current technical bottlenecks, highlighting the necessity for the synergistic development of robust heterogeneous catalysts with tailored active sites and energy-efficient process engineering to achieve scalable biomass conversion systems. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

34 pages, 763 KiB  
Review
Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights
by Piumi Jayalath, Kalyani Ananthakrishnan, Soyeon Jeong, Reshma Panackal Shibu, Mairui Zhang, Deepak Kumar, Chang Geun Yoo, Julia L. Shamshina and Obste Therasme
Processes 2025, 13(5), 1591; https://doi.org/10.3390/pr13051591 - 20 May 2025
Cited by 2 | Viewed by 1997
Abstract
Polyurethane (PU) is widely used due to its attractive properties, but the shift to a low-carbon economy necessitates alternative, renewable feedstocks for its production. This review examines the synthesis, properties, and sustainability of bio-based PU materials, focusing on renewable resources such as lignin, [...] Read more.
Polyurethane (PU) is widely used due to its attractive properties, but the shift to a low-carbon economy necessitates alternative, renewable feedstocks for its production. This review examines the synthesis, properties, and sustainability of bio-based PU materials, focusing on renewable resources such as lignin, vegetable oils, and polysaccharides. It discusses recent advances in bio-based polyols, their incorporation into PU formulations, and the use of bio-fillers like chitin and nanocellulose to improve mechanical, thermal, and biocompatibility properties. Despite promising material performance, challenges related to large-scale production, economic feasibility, and recycling technologies are highlighted. The paper also reviews life cycle assessment (LCA) studies, revealing the complex and context-dependent environmental benefits of bio-based PU materials. These studies indicate that while bio-based PU materials generally reduce greenhouse gas emissions and non-renewable energy use, their environmental performance varies depending on feedstock and formulation. The paper identifies key areas for future research, including improving biorefinery processes, optimizing crosslinker performance, and advancing recycling methods to unlock the full environmental and economic potential of bio-based PU in commercial applications. Full article
Show Figures

Figure 1

14 pages, 1557 KiB  
Article
Lignin Extracted from Green Coconut Waste Impregnated with Sodium Octanoate for Removal of Cu2+ in Aqueous Solution
by Jéssyca E. S. Pereira, Eduardo L. Barros Neto, Lindemberg J. N. Duarte, Ruan L. S. Ferreira, Ricardo P. F. Melo and Paula F. P. Nascimento
Processes 2025, 13(5), 1590; https://doi.org/10.3390/pr13051590 - 20 May 2025
Viewed by 715
Abstract
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly [...] Read more.
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly environmental ones. Its structure and composition make lignin compatible with the concept of sustainability, since it can be used to produce new chemical products with high added value. As such, this study aims to extract lignin from green coconut fiber (LIG), with the subsequent impregnation of a sodium-octanoate-based surfactant (LIG-SUR), and determine its applicability as an adsorbent for removing copper ions from synthetic waste. To this end, the green coconut fiber lignocellulosic biomass was initially subjected to alkaline pre-treatment with 2% (w/v) sodium hydroxide in an autoclave. Next, the surface of the lignin was modified by impregnating it with sodium octanoate, synthesized from the reaction of octanoic acid and NaOH. The physical and chemical traits of the lignin were studied before and after surfactant impregnation, as well as after copper ion adsorption. The lignin was analyzed by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The adsorption tests were carried out using lignin pre-treated with surfactant in a batch system, where the effects of pH and adsorbent concentration were investigated. XRF and SEM analyses confirmed surfactant impregnation, with Na2O partially replaced by CuO after Cu2+ adsorption. FTIR analysis revealed shifts in O–H, C–H, C=O, and C=C bands, indicating electrostatic interactions with lignin. Adsorption kinetics followed the pseudo-second-order model, suggesting chemisorption, with equilibrium reached in approximately 10 and 60 min for LIG-SUR and LIG, respectively. The Langmuir model best described the isotherm data, indicating monolayer adsorption. LIG-SUR removed 91.57% of Cu2+ and reached a maximum capacity of 30.7 mg·g−1 at 25 °C and a pH of 6. The results of this research showed that pre-treatment with NaOH, followed by impregnation with surfactant, significantly increased the adsorption capacity of copper ions in solution. This technique is a viable and sustainable alternative to the traditional adsorbents used to treat liquid waste. In addition, by using green coconut fiber lignin more efficiently, the research contributes to adding value to this material and strengthening practices in line with the circular economy and environmental preservation. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

31 pages, 5141 KiB  
Article
Acidic Oxidative Depolymerization Towards Functionalized Low-Molecular-Weight Lignin and High-Value-Added Aliphatic Monomers: Operating Conditions, Scale-Up, and Crosslinking
by Marta C. Lourenço, Talita Nascimento, Pedro José Sanches Filho, Ana C. Marques and Marta Ramos-Andrés
Int. J. Mol. Sci. 2025, 26(10), 4872; https://doi.org/10.3390/ijms26104872 - 19 May 2025
Viewed by 619
Abstract
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic [...] Read more.
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic conditions at 50–70 °C. The process aimed to produce functionalized low-molecular-weight oligomers, retaining aromaticity, and aliphatic dicarboxylic acids, rather than complete monomerization. The depolymerized LB was rich in aromatic dimers-trimers (68.6 wt.%) with high functionalization (2.75 mmol/g OHphen, 3.58 mmol/g OHcarb, 19.5 wt.% of H in -CH=CH-), and aliphatic dicarboxylic acids (53.4 wt.% of monomers). Acidic conditions provided higher depolymerization and functionalization than alkaline, alongside simplified product recovery. The process was also successfully applied to Kraft lignin, demonstrating versatility and robustness even with higher polymeric content feedstocks. The optimized conditions were scaled up (×25), improving efficiency and yielding Mw 464 g/mol and Đ 1.3. As proof of concept, the scaled-up product underwent radical crosslinking, resulting in a new biopolymer with higher thermal stability than LB (54.2 wt.% residual mass at 600 °C versus 36.1 wt.%). This green, scalable process enhances lignin valorization by producing functionalized low-molecular-weight lignin oligomers and dicarboxylic acids that can be used independently or together to form crosslinked networks. Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Graphical abstract

Back to TopTop