Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Characterization
2.2. Hydrothermal Pretreatment (HTP)
2.3. Dark Fermentation (DF)
2.4. Analytical Methods
3. Results and Discussion
3.1. Hydrothermal Pretreatment (HTP): Organic Matter Solubilization
3.2. Total Reducing Sugars (TRS) After Pretreatment
3.3. Total Protein After Pretreatment
3.4. Total Volatile Fatty Acids (VFA) Production After Pretreatment and Dark Fermentation
3.5. Hydrogen Production via Dark Fermentation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BSG | Brewers spent grain |
DF | Dark fermentation |
d.m. | Dry matter |
DOC | Dissolved organic carbon |
ESBP | exhausted sugar beet pulp |
HMF | Hydroxymethylfurfural |
HRT | Hydraulic retention time |
HTP | Hydrothermal pretreatment. |
LHW | Liquid hot water |
n.c. | At normal conditions of pressure and temperature |
OP | Orange peel |
PR | Total proteins |
RH | Rice husk |
SBP | Sugar beet pulp |
sCOD | Soluble chemical oxygen demand |
TP | Total phenols |
TS | Total solids |
TRS | Total reducing sugar |
VFA | Volatile fatty acids |
VS | Volatile solids |
References
- Goswami, L.; Kayalvizhi, R.; Dikshit, P.K.; Sherpa, K.C.; Roy, S.; Kushwaha, A.; Kim, B.S.; Banerjee, R.; Jacob, S.; Rajak, R.C. A critical review on prospects of bio-refinery products from second and third generation biomasses. Chem. Eng. J. 2022, 448, 137677. [Google Scholar] [CrossRef]
- Priya, A.K.; Alagumalai, A.; Balaji, D.; Song, H. Bio-based agricultural products: A sustainable alternative to agrochemicals for promoting a circular economy. RSC Sustain. 2023, 1, 746–762. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Yue, P.; Hu, Y.; Tian, R.; Bian, J.; Peng, F. Hydrothermal pretreatment for the production of oligosaccharides: A review. Bioresour. Technol. 2022, 343, 126075. [Google Scholar] [CrossRef] [PubMed]
- Poddar, B.J.; Nakhate, S.P.; Gupta, R.K.; Chavan, A.R.; Singh, A.K.; Khardenavis, A.A.; Purohit, H.J. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int. J. Environ. Sci. Technol. 2022, 19, 3429–3456. [Google Scholar] [CrossRef]
- Ilanidis, D.; Wu, G.; Stagge, S.; Martín, C.; Jönsson, L.J. Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions. Bioresour. Technol. 2021, 319, 124211. [Google Scholar] [CrossRef]
- Hamdy, A.; Sara, A.E.; Hamad, H.; Ali, R. The Interplay of Autoclaving with Oxalate as Pretreatment Technique in the View of Bioethanol Production Based on Corn Stover. Polymers 2021, 13, 3762. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Kulbeik, T.; Scherzinger, M.; Isabel, H. Autoclave pre-treatment of foliage e Effects of temperature, residence time and water content on solid biofuel properties. Renew. Energy 2021, 171, 275–286. [Google Scholar]
- Naibaho, J. Brewers’ spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J. Food Sci. 2021, 86, 1532–1551. [Google Scholar] [CrossRef]
- Mishra, K.; Rathore, M.; Tickoo, J.; Singh, A.K. Materials Today: Proceedings Production of bioethanol from fruit waste. Mater. Today Proc. 2022, 68, 1167–1171. [Google Scholar] [CrossRef]
- Wüst, D.; Correa, C.R.; Jung, D.; Zimmermann, M.; Kruse, A.; Fiori, L. Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. Biomass Convers. Biorefin. 2020, 10, 1357–1380. [Google Scholar] [CrossRef]
- Connolly, A.; Cermeño, M.; Crowley, D.; Callaghan, Y.O.; Brien, N.M.O.; Fitzgerald, R.J. Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers’ spent grain protein hydrolysates. Food Res. Int. 2019, 121, 524–532. [Google Scholar] [CrossRef]
- Kazemi, R.; Mirmohamadsadeghi, S.; Amiri, H. Sequential dark fermentation of municipal solid waste using Starch-Derived volatile fatty acids for lignocellulose pretreatment and biohydrogen production. Fuel 2024, 364, 131092. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.; Guo, X.; Xiao, B. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- Mokhtarani, B.; Zanganeh, J.; Moghtaderi, B. A Review on Biohydrogen Production Through Dark Fermentation, Process Parameters and Simulation. Energies 2025, 18, 1092. [Google Scholar] [CrossRef]
- Slezak, R.; Grzelak, J.; Krzystek, L.; Ledakowicz, S. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation. Waste Manag. 2017, 68, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Das, D.; Kim, S.C.; Cho, B.K.; Kalia, V.C.; Lee, J.K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Valdez-vazquez, I.; Ríos-leal, E.; Esparza-garcía, F.; Cecchi, F.; Poggi-varaldo, H.M. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int. J. Hydrogen Energy 2005, 30, 1383–1391. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Kutty, P.; Pachapur, P.; Brar, S.K.; Le Bihan, Y.; Galvez-cloutier, R.; Buelna, G. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies 2019, 12, 530. [Google Scholar] [CrossRef]
- Soares, J.F.; Mayer, F.D.; Mazutti, M.A. ScienceDirect Hydrogen production from Brewer’ s spent grain hydrolysate by dark fermentation. Int. J. Hydrogen Energy 2023, 52, 352–363. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Dongare, P.P.; Pawar, H.S. Biohydrogen Production from Dark Fermentation of Lignocellulosic Biomass; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–242. [Google Scholar]
- Dagnino, E.P.; Chamorro, E.R.; Romano, S.D.; Felissia, F.E.; Area, M.C. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind. Crop. Prod. 2013, 42, 363–368. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Wang, J. Recent advance in inhibition of dark fermentative hydrogen production. Int. J. Hydrogen Energy 2021, 46, 5053–5073. [Google Scholar] [CrossRef]
- Sun, C.; Liao, Q.; Xia, A.; Fu, Q.; Huang, Y.; Zhu, X. Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation. Renew. Sustain. Energy Rev. 2020, 131, 109983. [Google Scholar] [CrossRef]
- Spanish Agriculture, Fishing and Food Ministry. Statistical Report for Agricultural Productions. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas (accessed on 1 June 2025).
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017, 219, 23–32. [Google Scholar] [CrossRef]
- Gonalves, C.; Rodriguez-Jasso, R.M.; Gomes, N.; Teixeira, J.A.; Belo, I. Adaptation of dinitrosalicylic acid method to microtiter plates. Anal. Methods 2010, 2, 2046–2048. [Google Scholar] [CrossRef]
- Lucarini, A.C.; Kilikian, B.V. Comparative study of Lowry and Bradford methods: Interfering substances. Biotechnol. Tech. 1999, 13, 149–154. [Google Scholar] [CrossRef]
- Soest, P.J.V.A.N.; Robertson, J.B.; LEWIS, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; de la Lama-Calvente, D.; Jiménez-Rodríguez, A.; Pino-Mejías, R.; Borja, R.; Rincón, B. Impact of soft hydrothermal pre-treatments on the olive mill solid waste characteristics and its subsequent anaerobic digestion. Biomass Convers. Biorefin. 2022, 12, 2107–2120. [Google Scholar] [CrossRef]
- Ziemiński, K.; Romanowska, I.; Kowalska-Wentel, M.; Cyran, M. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour. Technol. 2014, 166, 187–193. [Google Scholar] [CrossRef]
- Johnravindar, D.; Zhao, J.; Manu, M.K.; Wong, J.W.C. Hydrothermal pretreatment of food waste enhances performance of anaerobic co-digestion with sludge. Environ. Sci. Pollut. Res. 2025, 32, 5259–5275. [Google Scholar] [CrossRef]
- Cabrera, G.; Jáimez, J.M.; Sánchez-Oneto, J.; Bolivar, J.; Valle, A. Revalorisation of brewer’s spent grain for biotechnological production of hydrogen with Escherichia coli. Front. Bioeng. Biotechnol. 2024, 12, 1473704. [Google Scholar] [CrossRef]
- Mathias, D.J.; Kumar, S. Rangarajan, An investigation on citrus peel as the lignocellulosic feedstock for optimal reducing sugar synthesis with an additional scope for the production of hydrolytic enzymes from the aqueous extract waste. Biocatal. Agric. Biotechnol. 2019, 20, 101259. [Google Scholar] [CrossRef]
- Vázquez, B.C.; Roa-morales, G.; Natividad, R.; Balderas-hernández, P.; Saucedo-luna, J. Thermal Hydrolysis of Orange Peel and its Fermentation with Alginate Beads to Produce Ethanol. BioResources 2017, 12, 2955–2964. [Google Scholar] [CrossRef]
- Teoh, R.H.; Mahajan, A.S.; Moharir, S.R.; Manaf, N.A.; Shi, S.; Thangalazhy-Gopakumar, S. A review on hydrothermal treatments for solid, liquid and gaseous fuel production from biomass. Energy Nexus 2024, 14, 100301. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Thomsen, M.H.; Trajano, H.L. Hydrothermal Processing in Biorefineries. In Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Powell, T.; Bowra, S.; Cooper, H.J. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion? Anal. Chem. 2016, 88, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, K.; Yang, Y.; Shen, D.; Wang, M.; Mo, H. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresour. Technol. 2014, 171, 323–329. [Google Scholar] [CrossRef]
- Qin, F.; Johansen, A.Z.; Mussatto, S.I. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind. Crops Prod. 2018, 125, 443–453. [Google Scholar] [CrossRef]
- Liu, J.; Yin, J.; He, X.; Chen, T.; Shen, D. Optimizing food waste hydrothermal parameters to reduce Maillard reaction and increase volatile fatty acid production. J. Environ. Sci. 2021, 103, 43–49. [Google Scholar] [CrossRef]
- Kakar, F.L.; Razavi, A.S.; Koupaie, E.H.; Hafez, H.; Elbeshbishy, E. Effect of hydrothermal pretreatment on volatile fatty acids and methane production from thickened waste activated sludge. In Proceedings of the 93rd Water Environment Federation Technical Exhibition and Conference, WEFTEC, Online, 5–9 October 2020; Volume 2020, pp. 1082–1087. [Google Scholar]
- Ding, L.; Cheng, J.; Qiao, D.; Yue, L.; Li, Y.Y.; Zhou, J.; Cen, K. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresour. Technol. 2017, 241, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Jariyaboon, R.; Hayeeyunu, S.; Usmanbaha, N.; Ismail, S.B.; O-Thong, S.; Mamimin, C.; Kongjan, P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation 2023, 9, 636. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, L.; Xia, A.; Lin, R.; Li, Y.; Zhou, J.; Cen, K. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresour. Technol. 2015, 179, 13–19. [Google Scholar] [CrossRef] [PubMed]
Parameter | SBP | BSG | RH | OP |
---|---|---|---|---|
VS (g/kg) | 739.03 ± 0.2 | 261.06 ± 0.2 | 772.04 ± 0.1 | 195.06 ± 0.1 |
TS (g/kg) | 833.05 ± 0.5 | 280.01 ± 0.4 | 915.00 ± 0.0 | 206.02 ± 0.8 |
sCOD (g/kg) | 10.60 ± 0.20 | 21.90 ± 0.70 | 1.29 ± 0.00 | 41.10 ± 0.40 |
DOC (g C/kg) | 4.09 ± 0.10 | 7.93 ± 0.10 | 0.52 ± 0.10 | 10.10 ± 0.00 |
TVFA (g H-Ac/kg) | 0.87 ± 0.00 | 1.39 ± 0.00 | 0.03 ± 0.00 | 0.43 ± 0.00 |
Total protein (g/kg) | 1.40 ± 0.00 | 1.30 ± 0.00 | 0.30 ± 0.00 | 1.40 ± 0.00 |
Total polyphenols (gGalic Acid/kg) | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.05 ± 0.00 | 1.03 ± 0.00 |
pH (pH units) | 4.37 ± 0.10 | 5.44 ± 0.20 | 5.54 ± 0.50 | 4.17 ± 0.30 |
NDF-Soluble fibers * (%) | 42.20 ± 1.40 | 38.00 ± 1.10 | 16.50 ± 1.20 | 66.80 ± 1.20 |
Cellulose (%) | 21.10 ± 1.40 | 16.30 ± 0.40 | 32.85 ± 0.40 | 15.70 ± 2.20 |
Hemicellulose (%) | 22.50 ± 0.40 | 33.70 ± 0.50 | 22.20 ± 0.60 | 9.11 ± 0.80 |
Lignin (%) | 3.50 ± 0.00 | 7.01 ± 0.90 | 14.0 ± 1.00 | 1.26 ± 0.10 |
Rest (%) | 10.70 ± 1.40 | 4.99 ± 1.10 | 14.5 ± 0.30 | 7.13 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouabhia, A.; Álvarez-Gallego, C.J.; Fernández-Güelfo, L.A. Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks. Appl. Sci. 2025, 15, 8736. https://doi.org/10.3390/app15158736
Rouabhia A, Álvarez-Gallego CJ, Fernández-Güelfo LA. Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks. Applied Sciences. 2025; 15(15):8736. https://doi.org/10.3390/app15158736
Chicago/Turabian StyleRouabhia, Amer, Carlos José Álvarez-Gallego, and Luis Alberto Fernández-Güelfo. 2025. "Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks" Applied Sciences 15, no. 15: 8736. https://doi.org/10.3390/app15158736
APA StyleRouabhia, A., Álvarez-Gallego, C. J., & Fernández-Güelfo, L. A. (2025). Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks. Applied Sciences, 15(15), 8736. https://doi.org/10.3390/app15158736