Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Hydrolysis
2.1.2. Pulping
2.2. Methods
2.2.1. Elemental and Functional Analysis
2.2.2. Fourier Transform Infrared Spectroscopy
2.2.3. UV/Visible Spectroscopy
2.2.4. Potentiometric Titration
2.2.5. Size and Zeta Potential
2.2.6. Surface Tension
2.2.7. Milling
3. Results
3.1. Hydrolysis of Birch Sawdust
3.2. Chemical Characteristics of Lignin Samples
3.3. Aggregation of Lignin Samples
3.4. Surface Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Teixeira, J.A. Lignocellulose as raw material in fermentation processes. In Current Research, Technology and Education Topics in Microbiology and Microbial Biotechnology; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010; pp. 897–907. [Google Scholar]
- Vachalova, R.; Maresova, I.; Kolar, L.; Vachal, J.; Triska, J. Lignocellulosic biorefinery for waste-free manufacturing of phytoestrogens belonging to lignans, sugars for production of ethanol and growing medium. Wood Res. 2014, 59, 593–604. [Google Scholar]
- Karmanov, A.P.; Kocheva, L.; Borisenkov, M.; Belyi, V. Macromolecular hydrodynamics and fractal structures of the lignins of fir wood and oat husks. Polymers 2023, 15, 3624. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Chen, F.; Yasuda, S.; Fukushima, K. Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta 1999, 207, 597–603. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef]
- Nitsos, C.K.; Stoklosa, R.; Karnaouri, A.; Voros, D.; Lange, H.; Hodge, D.; Cristini, C.; Rova, U.; Christakopoulos, P. Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass. ACS Sustain. Chem. Eng. 2016, 4, 5181–5193. [Google Scholar] [CrossRef]
- Hasan, M.S.; Sardar, M.R.I.; Shafin, A.A.; Rahman, M.S.; Mahmud, M.; Hossen, M.M. A brief review on applications of lignin. J. Chem. Rev. 2023, 5, 56–82. [Google Scholar] [CrossRef]
- Erfani Jazi, M.; Narayanan, G.; Aghabozorgi, F.; Farajidizaji, B.; Aghaei, A.; Kamyabi, M.A.; Navarathna, C.M.; Mlsna, T.E. Structure, chemistry and physicochemistry of lignin for material functionalization. SN Appl. Sci. 2019, 1, 1094. [Google Scholar] [CrossRef]
- Pakkanen, H.; Alén, R. Molecular mass distribution of lignin from the alkaline pulping of hardwood, softwood, and wheat straw. J. Wood Chem. Technol. 2012, 32, 279–293. [Google Scholar] [CrossRef]
- Zhang, L.; Larsson, A.; Moldin, A.; Edlund, U. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Ind. Crops Prod. 2022, 187, 115432. [Google Scholar] [CrossRef]
- Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 2014, 85, 78–96. [Google Scholar] [CrossRef]
- Bergamasco, S.; Zikeli, F.; Vinciguerra, V.; Sobolev, A.P.; Scarnati, L.; Tofani, G.; Scarascia Mugnozza, G.; Romagnoli, M. Extraction and Characterization of Acidolysis Lignin from Turkey Oak (Quercus cerris L.) and Eucalypt (Eucalyptus camaldulensis Dehnh.) Wood from Population Stands in Italy. Polymers 2023, 15, 3591. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bai, J.; Innocent, M.T.; Wang, Q.; Xiang, H.; Tang, J.; Zhu, M. Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy Environ. 2022, 7, 578–605. [Google Scholar] [CrossRef]
- Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev. 2015, 115, 13114–13156. [Google Scholar] [CrossRef]
- Faruk, O.; Sain, M. Lignin in Polymer Composites; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Moreno, A.; Sipponen, M.H. Lignin-based smart materials: A roadmap to processing and synthesis for current and future applications. Mater. Horiz. 2020, 7, 2237–2257. [Google Scholar] [CrossRef]
- Abbadessa, A.; Dogaris, I.; Farahani, S.K.; Reid, M.S.; Rautkoski, H.; Holopainen-Mantila, U.; Oinonen, P.; Henriksson, G. Layer-by-layer assembly of sustainable lignin-based coatings for food packaging applications. Prog. Org. Coat. 2023, 182, 107676. [Google Scholar] [CrossRef]
- Shorey, R.; Salaghi, A.; Fatehi, P.; Mekonnen, T.H. Valorization of lignin for advanced material applications: A review. RSC Sustain. 2024, 2, 804–831. [Google Scholar] [CrossRef]
- Dhara, S.; Samanta, N.S.; Uppaluri, R.; Purkait, M.K. High-purity alkaline lignin extraction from Saccharum ravannae and optimization of lignin recovery through response surface methodology. Int. J. Biol. Macromol. 2023, 234, 123594. [Google Scholar] [CrossRef]
- Parot, M.; Rodrigue, D.; Stevanovic, T. High purity softwood lignin obtained by an eco-friendly organosolv process. Bioresour. Technol. Rep. 2022, 17, 100771. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Othman, J.; Abd Rahman, N.; Mohd Ali, J.; Kamarudin, S.K. Production of high purity lignin from OPEFB: An overview. Prog. Petrochem. Sci. 2024, 6, PPS.000635.2024. [Google Scholar] [CrossRef]
- Tanis, M.H.; Wallberg, O.; Galbe, M.; Al-Rudainy, B. Lignin extraction by using two-step fractionation: A review. Molecules 2024, 29, 98. [Google Scholar] [CrossRef]
- Das, P.; Stoffel, R.B.; Area, M.C.; Ragauskas, A.J. Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass Bioenergy 2019, 120, 350–358. [Google Scholar] [CrossRef]
- Cheng, H.; Zhan, H.; Fu, S.; Lucia, L.A. Alkali extraction of hemicellulose from depithed corn stover and effects on soda-AQ pulping. BioResources 2010, 6, 196–206. [Google Scholar] [CrossRef]
- Bernal-Lugo, I.; Jacinto-Hernandez, C.; Gimeno, M.; Montiel, C.C.; Rivero-Cruz, F.; Velasco, O. Highly efficient single-step pretreatment to remove lignin and hemicellulose from softwood. BioResources 2019, 14, 3567–3577. [Google Scholar] [CrossRef]
- Yu, O.; Kim, K. Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Appl. Sci. 2020, 10, 4626. [Google Scholar] [CrossRef]
- Zevallos Torres, L.A.; Woiciechowski, A.L.; Tanobe, V.O.A.; Karp, S.G.; Lorenci, L.C.G.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Lehto, J.T.; Alén, R.J. Chemical pretreatments of wood chips prior to alkaline pulping—A review of pretreatment alternatives, chemical aspects of the resulting liquors, and pulping outcomes. BioResources 2015, 10, 8604–8656. [Google Scholar] [CrossRef]
- Xu, K.; Sun, R.C. Recent advances in alkaline pretreatment of lignocellulosic biomass. In Biomass Fractionation Technology for a Lignocellulosic Feedstock-Based Biorefinery; Springer: Cham, Switzerland, 2016; pp. 431–459. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Akpakpan, A.E.; Inam, E.J.; Itoro, E.U. Preparation, characterization and application of soda lignin and its ester derivatives as adsorbents in the adsorption of Pb2+ and Cd2+ from wastewater. J. Mater. Environ. Sci. 2023, 14, 82–96. [Google Scholar]
- Shulga, G.; Neiberte, B.; Jaunslavietis, J.; Verovkins, A.; Vitolina, S.; Livcha, S. Lignin-containing adhesion enhancer for wood-plastic composites. BioResources 2021, 16, 2804–2823. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, J.; Wu, L.; Fang, G.; Guo, Z. Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer 2017, 114, 113–121. [Google Scholar] [CrossRef]
- Yang, W.; Owczarek, J.S.; Fortunati, E.; Kozanecki, M.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Torre, L.; Puglia, D. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind. Crops Prod. 2016, 94, 800–811. [Google Scholar] [CrossRef]
- Yu, J.; Vaidya, M.; Su, G.; Adhikari, S.; Korolev, E.; Shekhovtsova, S. Experimental study of soda lignin powder as an asphalt modifier for a sustainable pavement material. Constr. Build. Mater. 2021, 298, 123884. [Google Scholar] [CrossRef]
- Maksimova, N.; Stenius, P.; Salmi, J. Lignin uptake by cellulose fibers from aqueous solutions. Nord. Pulp Pap. Res. J. 2004, 19, 135–145. [Google Scholar] [CrossRef]
- Sarkanen, S.; Teller, D.C.; Stevens, C.R.; McCarthy, J.L. Lignin. 20. Associative interactions between kraft lignin components. Macromolecules 1984, 17, 2588–2597. [Google Scholar] [CrossRef]
- Trovagunta, R.; Marquez, R.; Tolosa, L.; Barrios, N.; Zambrano, F.; Suarez, A.; Pal, L.; Gonzalez, R.; Hubbe, M.A. Lignin Self-Assembly Phenomena and Valorization Strategies for Pulping, Biorefining, and Materials Development: Part 1. The Physical Chemistry of Lignin Self-Assembly. Adv. Colloid Interface Sci. 2024, 332, 103247. [Google Scholar] [CrossRef]
- Mičič, M.; Jeremič, M.; Radotič, K.; Mavers, M.; Leblanc, R.M. Visualization of artificial lignin supramolecular structures. Scanning 2000, 22, 288–294. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, X.; Zhou, M.; Qian, Y.; Yu, H.; Qiu, X. Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules 2011, 12, 1116–1125. [Google Scholar] [CrossRef]
- Zhao, W.; Simmons, B.; Singh, S.; Ragauskas, A.J.; Cheng, G. From lignin association to nano-/micro-particle preparation: Extracting higher value of lignin. Green Chem. 2016, 18, 5693–5700. [Google Scholar] [CrossRef]
- Ratnaweera, D.R.; Saha, D.; Pingali, S.V.; Labbé, N.; Naskar, A.K.; Dadmun, M. The impact of lignin source on its self-assembly in solution. RSC Adv. 2015, 5, 67258–67266. [Google Scholar] [CrossRef]
- De Assis, C.A.; Greca, L.G.; Ago, M.; Balakshin, M.Y.; Jameel, H.; Gonzalez, R.; Rojas, O.J. Techno-economic assessment, scalability, and applications of aerosol lignin micro- and nanoparticles. ACS Sustain. Chem. Eng. 2018, 6, 11853–11868. [Google Scholar] [CrossRef] [PubMed]
- Zwilling, J.D.; Jiang, X.; Zambrano, F.; Venditti, R.; Jameel, H.; Velev, O.D.; Rojas, O.J.; Gonzalez, R. Understanding lignin micro- and nanoparticle nucleation and growth in aqueous suspensions by solvent fractionation. Green Chem. 2021, 23, 1001–1012. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Wang, X.; Jang, X.; Li, H.; Xin, H.; Sun, D.; Zhou, J. Self-assembled/composited lignin colloids utilizing for therapy, cosmetics and emulsification. Front. Chem. Sect. Supramol. Chem. 2022, 10, 1107643. [Google Scholar] [CrossRef]
- Zou, T.; Nonappa, N.; Khavani, M.; Vuorte, M.; Penttilä, P.; Zitting, A.; Valle-Delgado, J.J.; Elert, A.M.; Silbernagl, D.; Balakshin, M.; et al. Experimental and simulation study of the solvent effects on the intrinsic properties of spherical lignin nanoparticles. J. Phys. Chem. B 2021, 125, 12315–12328. [Google Scholar] [CrossRef]
- Pajer, N.; Cestari, C.; Argyropoulos, D.S.; Crestini, C. From lignin self-assembly to nanoparticles nucleation and growth: A critical perspective. NPJ Mater. Sustain. 2024, 2, 31. [Google Scholar] [CrossRef]
- Shulga, G.; Priede, V.; Shakels, V.; Bikova, T.; Treimanis, A. Behavior of oxidized kraft lignin as a “core-shell” polymer in aqueous solutions. In Abstracts of the 39th IUPAC Congress “Chemistry at the Interfaces” and the 86th Conference of the Canadian Society for Chemistry; Section “Supramolecular Chemistry and Self-Assembly”; IUPAC: Ottawa, ON, Canada, 2003; p. 271. [Google Scholar]
- Alwadani, N.; Fatehi, P. Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resour. Convers. 2018, 1, 126–138. [Google Scholar] [CrossRef]
- Shulga, G.; Skudra, S.; Shakels, S. Modified lignin as an environmentally friendly surfactant. In Proceedings of the 8th International Scientific and Practical Conference “Environment. Technology. Resources”, Rezekne, Latvia, 20–22 June 2011; Volume 1, pp. 276–281. [Google Scholar] [CrossRef]
- Xu, C.; Ferdosian, F. Utilization of lignosulfonate as dispersants or surfactants. In Conversion of Lignin into Bio-Based Chemicals and Materials; Xu, C., Ferdosian, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 81–90. [Google Scholar] [CrossRef]
- Rojas, O.J.; Bullón, J.; Ysambertt, F.; Forgiarini, A.; Salager, J.-L.; Argyropoulos, D.S. Materials, Chemicals, and Energy from Forest Biomass; American Chemical Society: Washington, DC, USA, 2007; Volume 12, pp. 182–199. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Handiso, B.; Dalheim, M.Ø.; Solberg, A.; Simon, S.; Syverud, K. Interfacial adsorption of oil-soluble kraft lignin and stabilization of water-in-oil emulsions. Langmuir 2024, 40, 5409–5419. [Google Scholar] [CrossRef]
- Ruwoldt, J. A critical review of the physicochemical properties of lignosulfonates: Chemical structure and behavior in aqueous solution, at surfaces and interfaces. Surfaces 2020, 3, 622–648. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2015, 199, 42–48. [Google Scholar] [CrossRef]
- Latibari, A. The effect of chip size and alkaline pre-hydrolysis conditions on following soda pulping of hornbeam wood. Drv. Ind. 2019, 70, 329–336. [Google Scholar] [CrossRef]
- Gendron, J.; Stambouli, I.; Bruel, C.; Boumghar, Y.; Montplaisir, D. Characterization of different types of lignin and their potential use in green adhesives. Ind. Crops Prod. 2022, 182, 114893. [Google Scholar] [CrossRef]
- Gupta, R.; Lee, Y.Y. Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol. Prog. 2010, 26, 1180–1186. [Google Scholar] [CrossRef]
- Sun, Q.; Pu, Y.; Meng, X.; Wells, T.; Ragauskas, A. Structural Transformation of Isolated Poplar and Switchgrass Lignins during Dilute Acid Treatment. ACS Sustain. Chem. Eng. 2015, 3, 2203–2210. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, X.; Yao, L.; Xie, Y. Structural changes of lignin in the soda-AQ pulping process studied using the carbon-13 tracer method. BioResources 2014, 9, 176–190. [Google Scholar] [CrossRef]
- TAPPI T222 om-02; Acid-Insoluble Lignin in Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 2002.
- TAPPI T203 cm-99; Alpha-, Beta- And Gamma-Cellulose in Pulp. TAPPI Press: Atlanta, GA, USA, 1999.
- TAPPI T264 om-97; Preparation of Wood for Chemical Analysis. TAPPI Press: Atlanta, GA, USA, 1997.
- Zakis, G. Functional Analyses of Lignin and Their Derivatives; TAPPI Press: Atlanta, GA, USA, 1994. [Google Scholar]
- Brovkina, J.; Shulga, G.; Ozolins, J.; Neiberte, B.; Verovkins, A.; Lakevics, V. The advanced application of the wood-originated wastewater sludge. Agron. Res. 2020, 18, 729–741. [Google Scholar] [CrossRef]
- Maximova, N.; Österberg, M.; Koljonen, K.; Stenius, P. Lignin adsorption on cellulose fibre surfaces: Effect on surface chemistry, surface morphology and paper strength. Cellulose 2001, 8, 113–125. [Google Scholar] [CrossRef]
- Koljonen, K.; Österberg, M.; Kleen, M.; Fuhrmann, A.; Stenius, P. Precipitation of lignin and extractives on kraft pulp: Effect on surface chemistry, surface morphology and paper strength. Cellulose 2004, 11, 209–224. [Google Scholar] [CrossRef]
- Walberg, L.; Annergren, G. Physicochemical characterization of papermaking fibres. In The Fundamentals of Papermaking Materials; Baker, C.F., Ed.; Pira International: Leatherhead, UK, 1997; pp. 1–82. [Google Scholar] [CrossRef]
- Lin, S. Ultraviolet spectrophotometry. In Methods in Lignin Chemistry; Dence, C.W., Lin, S.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 217–232. [Google Scholar] [CrossRef]
- Shevchenko, S.M.; Apushkinsky, A.G.; Zarubin, M.Y. On regioselectivity of the reaction of p-quinone methides with p-hydroxybenzyl alcohols. Wood Sci. Technol. 1992, 26, 383–392. [Google Scholar] [CrossRef]
- Luner, P.; Kempf, U. Properties of lignin monolayers at the air-water interface. Tappi 1970, 53, 2069–2076. [Google Scholar]
Sawdust | Pulp | Soda Lignin | Yield, % from Wood | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Yield, % | Lignin Content in Pulp, % | Yield, % | OCH3, % | Acid (OH) Groups, % | Klason Lignin, % | PULP + LIGNIN | Water-Soluble Destruction Products | |||
OHall | OHfen | OHCOOH | ||||||||
Origin | 51.7 | 3.2 | 19.6 | 15.9 | 6.2 | 2.7 | 3.5 | 91.9 | 71.3 | 28.7 |
Hydrolysed | 54.5 | 2.5 | 22.5 | 13.4 | 4.1 | 1.7 | 2.4 | 92.8 | 77.0 | 23.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulga, G.; Neiberte, B.; Kudrjavceva, V.; Verovkins, A.; Viksna, A.; Vitolina, S.; Brovkina, J.; Betkers, T. Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin. Polymers 2025, 17, 1455. https://doi.org/10.3390/polym17111455
Shulga G, Neiberte B, Kudrjavceva V, Verovkins A, Viksna A, Vitolina S, Brovkina J, Betkers T. Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin. Polymers. 2025; 17(11):1455. https://doi.org/10.3390/polym17111455
Chicago/Turabian StyleShulga, Galia, Brigita Neiberte, Valerija Kudrjavceva, Anrijs Verovkins, Arturs Viksna, Sanita Vitolina, Julija Brovkina, and Talrits Betkers. 2025. "Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin" Polymers 17, no. 11: 1455. https://doi.org/10.3390/polym17111455
APA StyleShulga, G., Neiberte, B., Kudrjavceva, V., Verovkins, A., Viksna, A., Vitolina, S., Brovkina, J., & Betkers, T. (2025). Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin. Polymers, 17(11), 1455. https://doi.org/10.3390/polym17111455