Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = biopolymer extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2805 KiB  
Review
Cascade Processing of Agricultural, Forest, and Marine Waste Biomass for Sustainable Production of Food, Feed, Biopolymers, and Bioenergy
by Swarnima Agnihotri, Ellinor B. Heggset, Juliana Aristéia de Lima, Ilona Sárvári Horváth and Mihaela Tanase-Opedal
Energies 2025, 18(15), 4093; https://doi.org/10.3390/en18154093 - 1 Aug 2025
Viewed by 274
Abstract
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both [...] Read more.
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both human and feed grade proteins, as well as for biopolymers and bioenergy. As such, agricultural, forest, and marine waste biomass represent a valuable feedstock for production of food and feed ingredients, biopolymers, and bioenergy. However, the lack of integrated and efficient valorization strategies for these diverse biomass sources remains a major challenge. This literature review aims to give a systematic approach on the recent research status of agricultural, forest, and marine waste biomass valorization, focusing on cascade processing (a sequential combination of processes such as pretreatment, extraction, and conversion methods). Potential products will be identified that create the most economic value over multiple lifetimes, to maximize resource efficiency. It highlights the challenges associated with cascade processing of waste biomass and proposes technological synergies for waste biomass valorization. Moreover, this review will provide a comprehensive understanding of the potential of waste biomass valorization in the context of sustainable and circular bioeconomy. Full article
(This article belongs to the Special Issue Emerging Technologies for Waste Biomass to Green Energy and Materials)
Show Figures

Figure 1

14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 - 31 Jul 2025
Viewed by 161
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

18 pages, 4971 KiB  
Article
Sustainable Production of Bacterial Cellulose in a Rotary Disk Bioreactor: Grape Pomace as a Replacement for the Carbon Source
by Rodrigo Cáceres, Patricio Oyarzún, Juan Pablo Vargas, Francisca Cuevas, Kelly Torres, Elizabeth Elgueta, Irene Martínez and Dariela Núñez
Fermentation 2025, 11(8), 441; https://doi.org/10.3390/fermentation11080441 - 31 Jul 2025
Viewed by 221
Abstract
Bacterial nanocellulose (BNC) is a highly pure biopolymer with promising applications in the biomedical, food, and textile industries. However, the high production costs and low yields obtained in static conditions limit its scalability and industrial applications. This study addresses the sustainable production of [...] Read more.
Bacterial nanocellulose (BNC) is a highly pure biopolymer with promising applications in the biomedical, food, and textile industries. However, the high production costs and low yields obtained in static conditions limit its scalability and industrial applications. This study addresses the sustainable production of BNC using a rotary disk bioreactor (RDB) and explores the use of grape pomace extract as an alternative carbon source for BNC production. Parameters such as the BNC production and biomass yield were evaluated using Komagataeibacter xylinus ATCC 53524 under different operational conditions (disk surface, rotation speed, and number of disks). The results showed that cellulose production increased using silicone-coated disks at 7–9 rpm (up to 2.72 g L−1), while higher yields (5.23 g L−1) were achieved when using grape pomace extract as the culture medium in comparison with conventional HS medium. FTIR and TGA characterizations confirmed that BNC obtained with grape pomace extract presents the same thermal and chemical characteristics than BNC produced with HS medium. This work provides insight into the feasibility of upscaling BNC production using a bioprocessing strategy, combining production in the RDB system and the use of an agro-industrial waste as a sustainable and cost-effective alternative. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

33 pages, 1821 KiB  
Review
The “Colors” of Moringa: Biotechnological Approaches
by Edgar Yebran Villegas-Vazquez, Juan Ramón Padilla-Mendoza, Mayra Susana Carrillo-Pérez, Rocío Gómez-Cansino, Liliana Altamirano-Garcia, Rocío Cruz Muñoz, Alvaro Diaz-Badillo, Israel López-Reyes and Laura Itzel Quintas-Granados
Plants 2025, 14(15), 2338; https://doi.org/10.3390/plants14152338 - 29 Jul 2025
Viewed by 399
Abstract
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although [...] Read more.
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although MO’s resilience offers promise for climate-smart agriculture and public health, challenges remain in standardizing cultivation and verifying therapeutic claims. This work underscores MO’s translational potential and the need for integrative, interdisciplinary research. MO is used in advanced materials, like electrospun fibers and biopolymers, showing filtration, antibacterial, anti-inflammatory, and antioxidant properties—important for the biomedical industry and environmental remediation. In textiles, it serves as an eco-friendly alternative for wastewater treatment and yarn sizing. Biotechnological advancements, such as genome sequencing and in vitro culture, enhance traits and metabolite production. MO supports green biotechnology through sustainable agriculture, nanomaterials, and biocomposites. MO shows potential for disease management, immune support, metabolic health, and dental care, but requires further clinical trials for validation. Its resilience is suitable for land restoration and food security in arid areas. AI and deep learning enhance Moringa breeding, allowing for faster, cost-effective development of improved varieties. MO’s diverse applications establish it as a key element for sustainable development in arid regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

26 pages, 1943 KiB  
Review
Alternative Solvents for Pectin Extraction: Effects of Extraction Agents on Pectin Structural Characteristics and Functional Properties
by Alisa Pattarapisitporn and Seiji Noma
Foods 2025, 14(15), 2644; https://doi.org/10.3390/foods14152644 - 28 Jul 2025
Viewed by 203
Abstract
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, [...] Read more.
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, and alter its physicochemical and functional properties. Although novel methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE) are recognized as environmentally friendly alternatives, they frequently use acids or alkalis as solvents. This review focuses on pectin extraction methods that do not involve acidic or alkaline solvents such as chelating agents, super/subcritical water, and deep eutectic solvents (DESs) composed of neutral components. This review also discusses how these alternative extraction methods can preserve or modify the key structural features of pectin, thereby influencing its monosaccharide composition, molecular conformation, and interactions with other biopolymers. Furthermore, the influence of these structural variations on the rheological properties, gelling behaviors, and potential applications of pectin in the food, pharmaceutical, and biomedical fields are discussed. This review provides insights into alternative strategies for obtaining structurally intact and functionally diverse pectin by examining the relationship between the extraction conditions and pectin functionality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 2025 KiB  
Article
Retainment of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties from Oil-Fermented Cupriavidus necator Using Additional Ethanol-Based Defatting Process
by Tae-Rim Choi, Gaeun Lim, Yebin Han, Jong-Min Jeon, Shashi Kant Bhatia, Hyun June Park, Jeong Chan Joo, Hee Taek Kim, Jeong-Jun Yoon and Yung-Hun Yang
Polymers 2025, 17(15), 2058; https://doi.org/10.3390/polym17152058 - 28 Jul 2025
Viewed by 282
Abstract
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the [...] Read more.
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the recovery process, particularly in removing residual oil and minimizing degradation of the polymer structure during extraction steps. This study investigated the effects of ethanol-based defatting on the recovery and polymeric properties of P(3HB-co-3HH). The proposed method involves the addition of ethanol to the cell broth to effectively remove residual oil. Ethanol improved the separation of microbial cells from the broth, thereby streamlining the downstream recovery process. Using ethanol in the washing step increased the recovery yield and purity to 95.7% and 83.4%, respectively (compared to 87.4% and 76.2% for distilled water washing), representing improvements of 8.3% and 7.2%. Ethanol washing also resulted in a 19% higher molecular weight compared to water washing, indicating reduced polymer degradation. In terms of physical properties, the elongation at break showed a significant difference: 241.9 ± 27.0% with ethanol washing compared to water (177.7 ± 10.3%), indicating ethanol washing retains flexibility. Overall, an ethanol washing step for defatting could simplify the recovery steps, increase yield and purity, and retain mechanical properties, especially for P(3HB-co-3HH) from oils. Full article
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 305
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Effect of Ultrasound and Chemical Cross-Linking on the Structural and Physicochemical Properties of Malanga (Colocasia esculenta) Starch
by Ana Sofía Martínez-Cigarroa, Guadalupe del Carmen Rodríguez-Jimenes, Alejandro Aparicio-Saguilán, Violeta Carpintero-Tepole, Miguel Ángel García-Alvarado, Ceferino Carrera, Gerardo Fernández Barbero, Mercedes Vázquez-Espinosa and Lucio Abel Vázquez-León
Foods 2025, 14(15), 2609; https://doi.org/10.3390/foods14152609 - 25 Jul 2025
Viewed by 333
Abstract
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes [...] Read more.
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications. Full article
Show Figures

Graphical abstract

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 277
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 516
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 1428 KiB  
Article
Extraction of Chitin, Chitosan, and Calcium Acetate from Mussel Shells for Sustainable Waste Management
by Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Pesak Rungrojchaipon, Wimonmat Boonmee, Sirichet Punthipayanon and Montree Thongkam
Int. J. Mol. Sci. 2025, 26(15), 7107; https://doi.org/10.3390/ijms26157107 - 23 Jul 2025
Viewed by 474
Abstract
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions [...] Read more.
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions and calcium solution. The solid was further purified to produce chitin by deproteinization and decolorization processes, and then the deacetylation process was used to obtain chitosan. The calcium solution was evaporated to produce calcium acetate powder. The yields of extracted chitin, chitosan, and calcium acetate from 100 g of mussel shells were 2.98, 2.70, and 165.23 g, respectively. The prepared chitin, chitosan, and calcium acetate were analyzed by Fourier transform infrared (FTIR) spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to confirm the chemical and physical properties. The analysis results of chitin and chitosan revealed the similarity to chitosan derived from crustaceans and insects in terms of functional group, structure and morphologies. The prepared calcium acetate shows FTIR and XRD data corresponding to calcium acetate monohydrate (Ca(CH3COO)2·H2O) similar to synthesized calcium acetate in previous research. In addition, the mineral contents of calcium acetate identified by X-ray fluorescence (XRF) analysis exhibit 97.8% CaO with non-toxic impurities. This work demonstrated the potential of the production process of chitin, chitosan, and calcium acetate for the development of a sustainable industrial process with competitive functional performance against the commercial chitin and chitosan production process using crustacean shells and supported the implementation of a circular economy. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 6746 KiB  
Article
Harnessing Wild Jackfruit Extract for Chitosan Production by Aspergillus versicolor AD07: Application in Antibacterial Biodegradable Sheets
by Adhithya Sankar Santhosh and Mridul Umesh
Appl. Microbiol. 2025, 5(3), 71; https://doi.org/10.3390/applmicrobiol5030071 - 20 Jul 2025
Viewed by 393
Abstract
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan [...] Read more.
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan production. Among the various media formulations, the highest chitosan yield (178.40 ± 1.76 mg/L) was obtained from the jackfruit extract medium with added peptone and dextrose. The extracted chitosan was characterized through FTIR, XRD (reported a crystallinity index of 55%), TGA/DTG, and DSC analysis, confirming the presence of key functional groups and high thermal resistance. The extracted chitosan was fabricated into a sheet incorporated with 1% lemongrass oil; the sheet exhibited strong antibacterial activity against Escherichia coli (30 mm) and Bacillus megaterium (48 mm). The biodegradation studies reported a weight loss of 38.93 ± 0.51% after 50 days of soil burial. Further, the chitosan film was tested as a packaging material for paneer, demonstrating better preservation by maintaining nutritional quality and reducing microbial load over a 14-day storage period. These findings highlight the potential of A. versicolor AD07-derived chitosan, cultivated on a waste substrate medium, as a sustainable biopolymer for food packaging applications. Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 368
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
by Mokgaetji Johanna Mokale, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(14), 2492; https://doi.org/10.3390/foods14142492 - 16 Jul 2025
Viewed by 314
Abstract
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic [...] Read more.
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid using freeze-drying method. The microbeads were characterised and assessed for their effectiveness on the release, bioaccessibility, of anthocyanin components and antioxidant activities during in vitro digestion. Alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid matrix showed the highest encapsulation efficiency of 91.60% while the lowest encapsulation efficiency was observed in alginate + pea protein isolate + psyllium mucilage + okra (69.94%). Scanning electron microscope images revealed spherical shapes and varying surface morphologies for different encapsulation matrices. Despite the differences observed in Fourier transform infrared spectra, microbeads showed similar thermal degradation patterns. X-ray diffractograms showed amorphous structures for different encapsulation matrices. Comparatively, alginate+ pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid microbeads exhibited the highest bioaccessibility for total phenols (93.14%), cyanidin-3-O-sophoroside (54.61%), and cyanidin-3-O-glucoside (55.30%). The encapsulation matrices of different biopolymer combinations (alginate+ pea protein isolate+ psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid) enhanced anthocyanin stability and protected it against in vitro degradation of bioactive compounds. Full article
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 543
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

Back to TopTop