Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = biomass boiler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3574 KiB  
Article
Optimizing Sunflower Husk Pellet Combustion for B2B Bioenergy Commercialization
by Penka Zlateva, Nevena Mileva, Mariana Murzova, Kalin Krumov and Angel Terziev
Energies 2025, 18(15), 4189; https://doi.org/10.3390/en18154189 (registering DOI) - 7 Aug 2025
Abstract
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet [...] Read more.
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet underutilized, energy potential. This study employs a combination of experimental data and numerical modelling aided by ANSYS 2024 R1 to analyse the combustion of sunflower husk pellets in a hot water boiler. The importance of balanced air distribution for achieving optimal combustion, reduced emissions, and enhanced thermal efficiency is emphasized by the results of a comparison of two air supply regimes. It was found that a secondary air-dominated air supply regime results in a more uniform temperature field and a higher degree of oxidation of combustible components. These findings not only confirm the technical feasibility of sunflower husk pellets but also highlight their commercial potential as a sustainable, low-cost energy solution for agricultural enterprises and rural heating providers. The research indicates that there are business-to-business (B2B) market opportunities for biomass producers, boiler manufacturers, and energy distributors who wish to align themselves with EU green energy policies and the growing demand for solutions that support the circular economy. Full article
Show Figures

Figure 1

19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 186
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

17 pages, 11097 KiB  
Article
Experimental Study on Single-Particle Combustion Characteristics of Large-Sized Wheat Straw in a Drop Tube Furnace
by Haoteng Zhang, Lihui Yu, Cuina Qin, Shuo Jiang and Chunjiang Yu
Energies 2025, 18(15), 3968; https://doi.org/10.3390/en18153968 - 24 Jul 2025
Viewed by 200
Abstract
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat [...] Read more.
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat straw particles. Employing a two-mode experimental setup in a drop tube furnace (DTF) system simulating pulverized coal boiler conditions, we systematically investigated the combustion behavior and alkali metal release characteristics of this large-sized straw biomass, with combustion processes summarized for diverse particle types. The findings reveal asynchronous combustion progression across particle surfaces due to heterogeneous mass transfer and gas diffusion; unique behaviors distinct from denser woody biomass, including bending deformation, fiber branching, and fragmentation, occur; significant and morphology-specific deformations occur during devolatilization; fragmentation universally produces particles of varied shapes (needle-like, flaky, blocky, semi-tubular) during char combustion; and potassium release exceeds 35% after complete devolatilization and surpasses 50% at a burnout degree exceeding 80%. This work provides essential experimental data on the fundamental combustion characteristics and alkali metal release of large-sized wheat straw particles under pulverized coal boiler combustion conditions, offering engineering application guidance for the direct co-firing of large-sized flexible straw biomass in pulverized coal boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

21 pages, 5207 KiB  
Article
Experimental Study on Co-Firing of Coal and Biomass in Industrial-Scale Circulating Fluidized Bed Boilers
by Haoteng Zhang and Chunjiang Yu
Energies 2025, 18(14), 3832; https://doi.org/10.3390/en18143832 - 18 Jul 2025
Viewed by 336
Abstract
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% [...] Read more.
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% (weight percent) operation. By analyzing boiler parameters and post-shutdown samples, the comprehensive impact of biomass co-firing on the boiler system was assessed. The results indicate that biomass pellets were blended with coal at the last conveyor belt section before the furnace, successfully ensuring operational continuity during co-firing. Further, co-firing biomass up rates of to 20 wt% do not significantly impact the fuel combustion efficiency (gaseous and solid phases) or boiler thermal efficiency and also have positive effects in reducing the bottom ash and SOx and NOx emissions and lowering the risk of low-temperature corrosion. The biomass co-firing slightly increases the combustion share in the dense phase zone and raises the bed temperature. The strong ash adhesion characteristics of the biomass were observed, which were overcome by increasing the ash blowing frequency. Under 20 wt% co-firing, the annual CO2 emissions reductions can reach 130,000 tons. This study provides technical references and practical experience for the engineering application of direct biomass co-firing in industrial-scale CFB boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 389
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 448
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

17 pages, 1784 KiB  
Article
Comprehensive Evaluation of Combustion Performance and Emissions from Commercial Pellets in Small-Scale Boilers
by Rui Pinho and Amadeu D. S. Borges
Energies 2025, 18(13), 3545; https://doi.org/10.3390/en18133545 - 4 Jul 2025
Viewed by 248
Abstract
The combustion of fossil fuels is a major source of greenhouse gas emissions, drives climate change, and has intensified the search for cleaner energy alternatives such as biomass. Biomass derived from renewable organic materials, is considered a sustainable and carbon-neutral energy source. While [...] Read more.
The combustion of fossil fuels is a major source of greenhouse gas emissions, drives climate change, and has intensified the search for cleaner energy alternatives such as biomass. Biomass derived from renewable organic materials, is considered a sustainable and carbon-neutral energy source. While biomass represents a renewable and clean energy source, its combustion, especially in pellet form, can produce various pollutants such as CO2, SO2, NO2, CO, and PM. This study focuses on analyzing the combustion of six different pellet brands and the emissions they produce. A dedicated experimental procedure was designed and implemented to evaluate the combustion performance. The temperature shows a gradual increase in ambient temperature around 2.5 °C across all tests, with a similar behavior, the temperature of flue gas shows a similar behavior between tests with temperatures peaking around 300 °C and 340 °C. In the tests conducted, all pellets complied with the legal emission limits defined by legislation. The efficiency calculated using the direct method was lower by around 55%, primarily due to the use of an older boiler (manufactured in 2004) and short duration of the test. The indirect method shows better efficiency, around 70%, influenced by lower moisture content of the pellets. The results indicate that B pellets had a superior performance compared to the others evaluated. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock
by Mohamed Anwar Ismail, Ibrahim Dubdub, Suleiman Mousa, Zaid Abdulhamid Alhulaybi Albin Zaid and Majdi Ameen Alfaiad
Polymers 2025, 17(13), 1799; https://doi.org/10.3390/polym17131799 - 27 Jun 2025
Viewed by 349
Abstract
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted [...] Read more.
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted at heating rates of 20–80 K min−1, displayed three distinct stages. These stages correspond to dehydration (330–460 K), hemicellulose/cellulose oxidation (420–590 K), and cellulose/lignin oxidation (540–710 K). Kinetic analysis using six model-free methods (Friedman (FR), Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY)) yielded activation energies (Ea) of 52–197 kJ mol−1, increasing with conversion (mean Ea ≈ 111 kJ mol−1). Coats–Redfern (CR) fitting confirmed a three-dimensional diffusion mechanism (D3, R2 > 0.99). Thermodynamic analysis revealed that the formation of the activated complex is endothermic, with activation enthalpy (ΔH) values of 45–285 kJ mol−1. The process was found to be non-spontaneous under the studied conditions, with Gibbs free energy (ΔG) values ranging from 83 to 182 kJ mol−1. With a high heating value (HHV) of 21.9 MJ kg−1 and favourable combustion kinetics, MP is a promising supplementary fuel for industrial biomass boilers. However, its high potassium oxide (K2O) content requires dedicated ash management strategies to mitigate slagging risks, a key consideration for its practical, large-scale application. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 276
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

17 pages, 3372 KiB  
Article
Combustion Air Humidifier for a Biomass Boiler with Flue Gas Condensation
by Jan Havlík and Tomáš Dlouhý
ChemEngineering 2025, 9(4), 68; https://doi.org/10.3390/chemengineering9040068 - 25 Jun 2025
Viewed by 304
Abstract
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in [...] Read more.
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in the flue gas condenser and increasing the amount of heat supplied to the thermal system. The air humidification process in a counter current spray humidifier was experimentally analysed under conditions corresponding to the use before a biomass boiler with a flue gas condenser. For air heating and humidification, temperature factor values of up to 0.90 can be obtained; this value is mainly influenced by the ratio of the spray water and humidified air flow rates. The volumetric heat transfer coefficient is significantly affected by the humidified air velocity, although this velocity is negligible compared to the counter current spray water velocity. The volumetric heat transfer coefficient reaches higher values at higher spray water temperatures and therefore higher air heating. The whole process is also affected by the saturation of the incoming air, where the dew point temperature of the air drawn in from the surroundings is lower than its temperature. These results can be used as basic information for the design of combustion air humidifiers, for the selection of their operating parameters, and for a basic balancing of the energy contribution of the combustion air humidifier before a more detailed design of the whole system. Full article
Show Figures

Figure 1

13 pages, 3970 KiB  
Article
Study on the Ash Deposition Characteristics for Co-Combustion of Zhundong Coal with Cotton Stalk
by Tianyou Li, Ning Liu, Kunpeng Liu, Bo Wei, Jianjiang Wang, Feng Wang, Yanjie Qi and Ning Chen
Appl. Sci. 2025, 15(13), 6963; https://doi.org/10.3390/app15136963 - 20 Jun 2025
Viewed by 245
Abstract
With the rapid development of renewable energy, the co-combustion of Zhundong coal and biomass has attracted more and more attention. However, the high content of alkali metals in Zhundong coal and biomass leads to serious slagging and fouling in the co-combustion process. In [...] Read more.
With the rapid development of renewable energy, the co-combustion of Zhundong coal and biomass has attracted more and more attention. However, the high content of alkali metals in Zhundong coal and biomass leads to serious slagging and fouling in the co-combustion process. In this study, cotton straw was selected for co-combustion with Zhundong coal. The ash deposition model was established according to the melting ration calculated by Factsage, and the ash deposition characteristics during the co-combustion of Zhundong coal and cotton stalks in the actual boiler were explored by Fluent. The results showed that the K2O content in ash increased from 0.31% to 9.31% with the increase in the blending ratio, while the contents of other components had no significant changes. In addition, with the increase in the blending ratio, the ash deposition rate increased from 0.00327 kg/(m2·s) to 0.00581 kg/(m2·s), an increase of 77.6%. The reduction in the tangential circle diameter obviously alleviated the ash deposition on the wall. When the tangential circle diameter was reduced to 400 mm, the ash deposition rate was 0.00207 kg/(m2·s), which was 37.6% lower than the original condition. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

22 pages, 9593 KiB  
Article
Study on Characteristics of Ash Accumulation During Co-Combustion of Salix Biomass and Coal
by Yan Zhang, Chengzhe Shen, Dongxv Wang, Jinbao Zhang, Kai Yang, Haisong Yang, Hailong Liu, Xintong Wen, Yong Zhang, Yunhao Shao, Ruyu Yan, Ningzhu Ye and Lei Deng
Energies 2025, 18(11), 2713; https://doi.org/10.3390/en18112713 - 23 May 2025
Viewed by 398
Abstract
Co-combustion of coal and biomass for power generation technology could not only realize the effective utilization of biomass energy, but also reduce the emission of greenhouse gases. In this study, a system of a settling furnace with high temperature is applied to study [...] Read more.
Co-combustion of coal and biomass for power generation technology could not only realize the effective utilization of biomass energy, but also reduce the emission of greenhouse gases. In this study, a system of a settling furnace with high temperature is applied to study the ash deposition of the co-combustion of coal and salix. The effects of salix blending ratio, flue gas temperature, and wall temperature on ash deposition are studied. The micro-morphology, elemental content, and compound composition of the ash samples are characterized by scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) and X-Ray Diffraction (XRD), respectively. The results show that with the biomass blending ratio increasing from 5% to 30%, the content of Ca in ash increases from 8.92% to 20.59%. In particular, when the salix blending ratio exceeds 20%, plenty of the low-melting-point compounds of Ca aggravate the melting adhesion of ash particles, causing serious ash accumulation. Therefore, the salix blending radio is recommended to be limited to no more than 20%. With the increase in flue gas temperature, ash particles melt and stick, forming ash accumulation. Under the condition of flue gas temperature ≥ 1200 °C, a serious ash particle melting flow occurs, and CaO covers the surface of the ash particles, making the ash particles adhere to each other, which makes them difficult to remove. Therefore, controlling the flue gas temperature below 1200 °C is necessary. When the temperature crosses the threshold range of 500–600 °C, the Ca and K contents increase by 35.6% and 41.9%, respectively, while the Si content decreases by 9.7%. The increase in K and Ca content leads to the thickening of the initial layer of the ash deposit, which facilitates the formation of the sintered layer of the deposited ash. Meanwhile, the reduction in Si content leads to the particles’ adhesion, which markedly increases the degree of ash slagging. Once the wall temperature exceeds 600 °C, severe ash slagging becomes a threat to the safe operation of the boiler. Therefore, the wall temperature should not exceed 600 °C. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

20 pages, 3898 KiB  
Article
Research on the Combustion of Mixed Biomass Pellets in a Domestic Boiler
by Penka Zlateva, Angel Terziev, Kalin Krumov, Mariana Murzova and Nevena Mileva
Fuels 2025, 6(2), 40; https://doi.org/10.3390/fuels6020040 - 21 May 2025
Viewed by 843
Abstract
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the [...] Read more.
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the impact of the ratio between primary and secondary air on the combustion process, emission characteristics, and thermal balance. The results show that an air distribution ratio of 60/40 (primary/secondary) leads to more complete combustion, reducing emissions of carbon monoxide (CO) and nitrogen oxides (NOx), while also improving the efficiency of the boiler. The analysis of the numerical modeling results shows that CO emissions decrease by 12% and NOx emissions by 27%. The calculated model is validated using experimental data on flue gas temperature, oxygen (O2) and carbon dioxide (CO2) concentrations, and combustion efficiency, and a high degree of correspondence between theoretical and actual measurements is established. The simulations reveal the dynamics of the temperature field, the movement of flue gases, and the role of turbulence in the combustion chamber. Optimization of the air distribution is proven to improve the combustion process and reduce the harmful emissions generated. The obtained results highlight the potential of mixed biomass pellets as a sustainable alternative to conventional fuels, provided that combustion parameters are precisely regulated. They can serve as a foundation for the enhancement of biomass-based heating systems in order to achieve higher efficiency and environmental sustainability. A market research study is also conducted, revealing that mixed pellets are preferred due to their high calorific value, low cost, and low ash content. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

22 pages, 2119 KiB  
Article
The Co-Firing of Pine Biomass and Waste Coal in 100 and 600 MW Power Plants: A Sustainable Approach to Reduce GHG Emissions
by Prakashbhai R. Bhoi and Surja Sarkar
Sustainability 2025, 17(10), 4473; https://doi.org/10.3390/su17104473 - 14 May 2025
Cited by 1 | Viewed by 553
Abstract
Climate change is a global issue that has gained much attention recently. Co-firing biomass with coal/waste coal reduces the electricity sector’s GHG emissions sustainably. This study uses commercial software to model waste coal and biomass co-firing in 100 MW and 600 MW power [...] Read more.
Climate change is a global issue that has gained much attention recently. Co-firing biomass with coal/waste coal reduces the electricity sector’s GHG emissions sustainably. This study uses commercial software to model waste coal and biomass co-firing in 100 MW and 600 MW power plants. The objective is to assess the effects of fluid types (subcritical and supercritical), plant capacities (100 MW and 600 MW), boiler types (pulverized coal and circulating fluidized bed boilers), biomass and waste coal co-firing ratios (0:100, 20:80, 40:60, 60:40, 80:20, and 100:0), and carbon capture and storage efficiencies (0%, 90%, 95%, and 97%) on performance parameters such as net plant efficiency, heat rate, net plant CO2 and SO2, and particulate matter emissions. The feedstocks selected for this investigation include anthracite waste coal and loblolly pine biomass. As the biomass fraction increases from 0% to 100%, co-fired power plants net efficiency increases by 3–8%. Supercritical plants had a 6% higher net plant efficiency than the subcritical plants. The study found that the biomass’s high heating value decreased the fuel flow rate and reduced plant CO2 emissions by 10–16%. With 100% biomass power plant feed and 90% carbon capture and storage efficiency, CO2 emissions drop by 83% and SO2 and PM emissions drop to zero. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 2330 KiB  
Article
Refuse-Derived Fuel with the Addition of Peanut Shells: An Evaluation Using a Decision-Making Support Algorithm
by Natália Dadario, Mário Mollo Neto, Felipe André dos Santos, Luís Roberto Almeida Gabriel Filho and Camila Pires Cremasco
Energies 2025, 18(10), 2429; https://doi.org/10.3390/en18102429 - 9 May 2025
Cited by 1 | Viewed by 391
Abstract
Brazil has made progress in Municipal Solid Waste (MSW) management through national legislation focused on integrated waste handling. However, challenges persist, particularly regarding MSW overproduction. A sustainable alternative is Refuse-Derived Fuel (RDF), generated from MSW with or without biomass addition. To be viable [...] Read more.
Brazil has made progress in Municipal Solid Waste (MSW) management through national legislation focused on integrated waste handling. However, challenges persist, particularly regarding MSW overproduction. A sustainable alternative is Refuse-Derived Fuel (RDF), generated from MSW with or without biomass addition. To be viable for combustion, RDF must meet established energy and environmental quality standards. In this context, a mathematical model based on fuzzy logic was developed to classify RDF quality and support decision-making. Five RDF samples were tested, evaluating their Lower Heating Value (LHV), chlorine, and mercury contents using calorimetry, atomic absorption, and X-ray fluorescence. Results indicate that RDF produced solely from MSW tends to have inadequate LHV, necessitating drying pretreatment. Even with the addition of peanut shells, the highest classification achieved was “Regular”, suggesting limited suitability for combustion in furnaces or boilers without pretreatment. Since the general composition of MSW in Brazil is consistent with the characteristics analyzed, RDF may remain unviable for energy recovery under similar conditions. Economic feasibility studies on drying are recommended, especially in urban centers with limited landfill space. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

Back to TopTop