Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock
Abstract
1. Introduction
2. Materials and Methods
2.1. MP Collection and Sample Preparation
2.2. Physico-Chemical Characterization
2.2.1. Proximate Analysis
2.2.2. Ultimate Analysis
2.2.3. Fibre Analysis
2.2.4. Higher Heating Value (HHV)
2.3. Structural and Elemental Characterization
2.3.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.2. X-Ray Diffraction (XRD) Analysis
2.3.3. X-Ray Fluorescence (XRF) Analysis
2.3.4. Scanning Electron Microscopy (SEM)
2.4. Thermogravimetric Analysis (TGA)
2.5. Kinetic and Thermodynamic Modelling
2.5.1. Kinetic Analysis
2.5.2. Thermodynamic Parameters
3. Results and Discussion
3.1. Fundamental Properties of MP
Proximate, Ultimate, and Fibre Analysis: Implications for Combustion Efficiency
3.2. Structural, Elemental, and Morphological Insights
3.2.1. FTIR Spectroscopy: Functional Group Identification
3.2.2. XRD Analysis: Crystallinity and Mineral Phases
3.2.3. X-Ray Fluorescence (XRF) of Ash
3.2.4. SEM Analysis: Surface Morphology and Porosity
3.2.5. Combustion Characteristics via TGATG-DTG Profiles: Decomposition Stages and Influence of Heating Rate
3.3. Kinetic Modelling of MP Combustion
3.3.1. Activation Energies from Model-Free Methods
3.3.2. Reaction Mechanism and Kinetic Parameters from Coats–Redfern Method
3.4. Thermodynamic Assessment of Combustion
3.5. Integrated Analysis and Implications for Biofuel Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, G.; Pourjamal, Y.; Breyer, C. Paving the Way towards a Sustainable Future or Lagging behind? An Ex-Post Analysis of the International Energy Agency’s World Energy Outlook. Renew. Sustain. Energy Rev. 2025, 212, 115371. [Google Scholar] [CrossRef]
- Mousa, S.; Dubdub, I.; Alfaiad, M.A.; Younes, M.Y.; Ismail, M.A. Characterization and Kinetic Study of Agricultural Biomass Orange Peel Waste Combustion Using TGA Data. Polymers 2025, 17, 1113. [Google Scholar] [CrossRef]
- Mohammed, I.; Abakr, Y.; Kazi, F.; Yusup, S.; Alshareef, I.; Chin, S. Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion. Energies 2015, 8, 3403–3417. [Google Scholar] [CrossRef]
- Barzegar, R.; Yozgatligil, A.; Olgun, H.; Atimtay, A.T. TGA and Kinetic Study of Different Torrefaction Conditions of Wood Biomass under Air and Oxy-Fuel Combustion Atmospheres. J. Energy Inst. 2020, 93, 889–898. [Google Scholar] [CrossRef]
- Arenas, C.N.; Navarro, M.V.; Martínez, J.D. Pyrolysis Kinetics of Biomass Wastes Using Isoconversional Methods and the Distributed Activation Energy Model. Bioresour. Technol. 2019, 288, 121485. [Google Scholar] [CrossRef] [PubMed]
- Mango Production by Country 2025. Available online: https://worldpopulationreview.com/country-rankings/mango-production-by-country (accessed on 24 May 2025).
- Da Guarda Souza, M.O.; Rebouças, L.M.; De Castro, L.M.F. Characterization and Thermal Decomposition Study of Mango Residue Biomass (Mangifera indica L.). J. Therm. Anal. Calorim. 2020, 139, 1811–1816. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Lv, D.; Wang, K.; Wang, Y. Thermal and Kinetic Analyzing of Pyrolysis and Combustion of Self-Heating Biomass Particles. Process Saf. Environ. Prot. 2021, 151, 39–50. [Google Scholar] [CrossRef]
- Poletto, M.; Dettenborn, J.; Pistor, V.; Zeni, M.; Zattera, A.J. Materials Produced from Plant Biomass: Part I: Evaluation of Thermal Stability and Pyrolysis of Wood. Mat. Res. 2010, 13, 375–379. [Google Scholar] [CrossRef]
- Nath, B.; Chen, G.; Bowtell, L.; Graham, E. Kinetic Mechanism of Wheat Straw Pellets Combustion Process with a Thermogravimetric Analyser. Heliyon 2023, 9, e20602. [Google Scholar] [CrossRef]
- Okoroigwe, E. Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. Int. J. Renew. Energy Res. 2015, 5, 1024–1033. [Google Scholar] [CrossRef]
- Okoroigwe, E.C.; Enibe, S.O.; Onyegegbu, S.O. Determination of Oxidation Characteristics and Decomposition Kinetics of Some Nigerian Biomass. J. Energy South. Afr. 2016, 27, 39. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Mostafa, M.E. Thermal Pyrolysis and Kinetic Parameter Determination of Mango Leaves Using Common and New Proposed Parallel Kinetic Models. RSC Adv. 2020, 10, 18160–18179. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.H.; Irfan, R.M.; Cheng, X.; Ahmad, M.S.; Jamil, M.; Shah, T.-U.-H.; Karim, A.; Ashraf, R.; Haroon, M. Mango Peel as Source of Bioenergy, Bio-Based Chemicals via Pyrolysis, Thermodynamics and Evolved Gas Analyses. J. Anal. Appl. Pyrolysis 2021, 155, 105066. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Abdelnaby, M.A. Pyrolysis and Gasification Kinetic Behavior of Mango Seed Shells Using TG-FTIR-GC–MS System under N2 and CO2 Atmospheres. Renew. Energy 2021, 173, 733–749. [Google Scholar] [CrossRef]
- Alves, J.L.F.; Da Silva, J.C.G.; Mumbach, G.D.; Alves, R.F.; Di Domenico, M.; Marangoni, C. Physicochemical Properties, Pyrolysis Kinetics, Thermodynamic Parameters of Activation, and Evolved Volatiles of Mango Seed Waste as a Bioenergy Feedstock: A Potential Exploration. Thermochim. Acta 2023, 725, 179519. [Google Scholar] [CrossRef]
- D05 Committee ASTM International. Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; American Society for Testing and Materials: West Conshohocken, PA, USA, 2004. [Google Scholar] [CrossRef]
- Alhulaybi, Z.A.; Dubdub, I. Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers 2024, 16, 629. [Google Scholar] [CrossRef]
- Ou, C.; Chen, S.; Liu, Y.; Shao, J.; Li, S.; Fu, T.; Fan, W.; Zheng, H.; Lu, Q.; Bi, X. Study on the Thermal Degradation Kinetics and Pyrolysis Characteristics of Chitosan-Zn Complex. J. Anal. Appl. Pyrolysis 2016, 122, 268–276. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Galwey, A.K. Eradicating Erroneous Arrhenius Arithmetic. Thermochim. Acta 2003, 399, 1–29. [Google Scholar] [CrossRef]
- Tariq, R.; Mohd Zaifullizan, Y.; Salema, A.A.; Abdulatif, A.; Ken, L.S. Co-Pyrolysis and Co-Combustion of Orange Peel and Biomass Blends: Kinetics, Thermodynamic, and ANN Application. Renew. Energy 2022, 198, 399–414. [Google Scholar] [CrossRef]
- Yao, Z.; Romano, P.; Fan, W.; Gautam, S.; Tippayawong, N.; Jaroenkhasemmeesuk, C.; Liu, J.; Wang, X.; Qi, W. Probing Pyrolysis Conversion of Separator from Spent Lithium-Ion Batteries: Thermal Behavior, Kinetics, Evolved Gas Analysis and Aspen plus Modeling. Case Stud. Therm. Eng. 2024, 63, 105342. [Google Scholar] [CrossRef]
- Tong, W.; Cai, Z.; Liu, Q.; Ren, S.; Kong, M. Effect of Pyrolysis Temperature on Bamboo Char Combustion: Reactivity, Kinetics and Thermodynamics. Energy 2020, 211, 118736. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; He, Y.; Sun, S.; Chen, J.; Sun, J.; Chang, K.; Kuo, J.; Ning, X. Thermodynamics and Kinetics Parameters of Co-Combustion between Sewage Sludge and Water Hyacinth in CO2/O2 Atmosphere as Biomass to Solid Biofuel. Bioresour. Technol. 2016, 218, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C.; Zhang, J.; Zhao, W.; Fan, M. Pyrolysis Kinetics and Thermodynamics of Typical Plastic Waste. Energy Fuels 2020, 34, 2385–2390. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K.; Aljafari, B.; Chinnasamy, S.; Kareri, T.; Rahman, S. Thermo-Kinetic Behaviour of Green Synthesized Nanomaterial Enhanced Organic Phase Change Material: Model Fitting Approach. J. Environ. Manag. 2023, 348, 119439. [Google Scholar] [CrossRef]
Material and Property | Values (wt%) |
---|---|
Proximate Analysis (wt%) | |
Moisture Content | 6.0 ± 0.02 |
Ash | 7.55 ± 0.03 |
Volatile Matter | 71.91 ± 0.11 |
Fixed Carbon | 20.53 ± 0.10 |
Ultimate Analysis (wt%) | |
Carbon (C) | 44.15 ± 0.16 |
Hydrogen (H) | 6.28 ± 0.03 |
Oxygen (O) | 39.26 ± 0.18 |
Nitrogen (N) | 2.45 ± 0.10 |
Sulphur (S) | 0.33 ± 0.04 |
Heating Value (MJ kg−1) | 21.9 ± 0.05 |
Fiber Fraction (wt%) | |
Hemicellulose | 12.02 ± 0.04 |
Cellulose | 17.02 ± 0.12 |
Lignin | 10.0 ± 0.05 |
Metallic Elements (wt% of ash) | |
Potassium (K) | 34.1 ± 0.10 |
Calcium (Ca) | 16.7 ± 0.08 |
Silicon (Si) | 5.2 ± 0.05 |
Iron (Fe) | 1.3 ± 0.01 |
Component | Oxide (wt%) | Elemental (wt%) |
---|---|---|
K2O | 40.9 | K: 34.1 |
CaO | 23.3 | Ca: 16.7 |
SiO2 | 11.1 | Si: 5.2 |
P2O5 | 6.4 | P: 2.6 |
SO3 | 6.4 | S: 2.6 |
Al2O3 | 5.8 | Al: 3.1 |
FeO/Fe2O3 | 1.7–1.9 | Fe: 1.19–1.33 |
Heating Rate (K min−1) | 1st Reaction | 2nd Reaction | 3rd Reaction | ||||||
---|---|---|---|---|---|---|---|---|---|
T Range, T Peak (K) | Weight Loss % | Process | T Range, T Peak (K) | Weight Loss % | Process | T Range, T Peak (K) | Weight Loss % | Process | |
20 | 340–420, 388 | 6 | dehydration | 420–538, 495 | 26 | Hemicellulose and cellulose degradation | 538–680, 603 | 35 | Cellulose and lignin degradation |
40 | 344–442, 410 | 5 | dehydration | 442–560, 518 | 29 | Hemicellulose and cellulose degradation | 560–700, 605 | 35 | Cellulose and lignin degradation |
60 | 348–460, 415 | 3 | dehydration | 460–580, 520 | 22 | Hemicellulose and cellulose degradation | 580–703, 638 | 47 | Cellulose and lignin degradation |
80 | 352–464, 430 | 4 | dehydration | 464–590, 550 | 35 | Hemicellulose and cellulose degradation | 590–705, 642 | 33 | Cellulose and lignin degradation |
Conversion | FR | FWO | KAS | STK | K | VY | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | Ea (kJ mol−1) | R2 | |
0.1 | 59 | 0.995 | 54 | 0.9997 | 49 | 0.9996 | 49 | 0.9996 | 57 | 0.9997 | 42 | 52 | 59 | 0.99872 |
0.2 | 79 | 0.998 | 64 | 0.9985 | 59 | 0.9978 | 60 | 0.9978 | 68 | 0.9985 | 47 | 63 | 79 | 0.99812 |
0.3 | 138 | 0.9856 | 94 | 0.9937 | 89 | 0.9922 | 90 | 0.9923 | 98 | 0.9937 | 50 | 93 | 138 | 0.9915 |
0.4 | 148 | 0.9698 | 143 | 0.9725 | 141 | 0.9687 | 141 | 0.9689 | 151 | 0.9723 | 52 | 129 | 148 | 0.97044 |
0.5 | 135 | 0.9871 | 140 | 0.9811 | 137 | 0.9783 | 137 | 0.9784 | 147 | 0.9811 | 103 | 133 | 135 | 0.9812 |
0.6 | 290 | 0.6441 | 190 | 0.8468 | 189 | 0.832 | 190 | 0.8327 | 200 | 0.8468 | 125 | 197 | 290 | 0.8005 |
Average | 142 | 0.9299 | 114 | 0.9654 | 111 | 0.9614 | 111 | 0.9616 | 120 | 0.9654 | 70 | 111 | 111 | 0.9567 |
α | FR | FWO | ||||||||
R2 | Ao, min−1 | ΔH kJ mol−1 | ΔG kJ mol−1 | ΔS kJ mol−1 | R2 | Ao, min−1 | ΔH kJ mol−1 | ΔG kJ mol−1 | ΔS kJ mol−1 | |
0.1 | 0.9950 | 3.66 × 103 | 55.63 | 131.59 | −0.18785 | 0.9997 | 1.74 × 109 | 50.63 | 82.59 | −0.07889 |
0.2 | 0.9980 | 8.84 × 105 | 74.64 | 150.29 | −0.14402 | 0.9985 | 3.84 × 1010 | 59.64 | 88.67 | −0.0553 |
0.3 | 0.9856 | 1.78 × 1011 | 133.64 | 155.98 | −0.04249 | 0.9937 | 2.53 × 1013 | 89.64 | 90.34 | −0.00135 |
0.4 | 0.9698 | 2.83 × 1011 | 143.64 | 163.95 | −0.03861 | 0.9725 | 3.63 × 1017 | 138.64 | 97.56 | 0.07823 |
0.5 | 0.9871 | 1.10 × 1010 | 129.80 | 171.76 | −0.06706 | 0.9811 | 6.80 × 1016 | 134.80 | 95.52 | 0.06285 |
0.6 | 0.6441 | 1.37 × 1022 | 284.80 | 182.06 | 0.16445 | 0.8468 | 4.77 × 1020 | 184.80 | 99.50 | 0.13649 |
α | KAS | STK | ||||||||
R2 | Ao, min−1 | ΔH kJ mol−1 | ΔG kJ mol−1 | ΔS kJ mol−1 | R2 | Ao, min−1 | ΔH kJ mol−1 | ΔG kJ mol−1 | ΔS kJ mol−1 | |
0.1 | 0.9996 | 1.08 × 103 | 45.63 | 125.70 | −0.1977 | 0.9996 | 1.92 × 103 | 45.63 | 123.77 | −0.19292 |
0.2 | 0.9978 | 2.10 × 104 | 54.64 | 146.61 | −0.17519 | 0.9978 | 3.69 × 104 | 55.64 | 145.15 | −0.17051 |
0.3 | 0.9922 | 1.22 × 107 | 84.64 | 148.84 | −0.12229 | 0.9923 | 2.16 × 107 | 85.64 | 147.34 | −0.11753 |
0.4 | 0.9687 | 1.47 × 1011 | 136.64 | 159.82 | −0.04417 | 0.9689 | 2.65 × 1011 | 136.64 | 157.25 | −0.03926 |
0.5 | 0.9783 | 2.51 × 1010 | 131.80 | 169.49 | −0.06029 | 0.9784 | 4.54 × 1010 | 131.80 | 166.41 | −0.05536 |
0.6 | 0.8320 | 1.58 × 1014 | 183.80 | 176.02 | 0.01245 | 0.8327 | 2.86 × 1014 | 184.80 | 173.94 | 0.01737 |
α | K | |||||||||
R2 | Ao, min−1 | ΔH kJ mol−1 | ΔG kJ mol−1 | ΔS kJ mol−1 | ||||||
0.1 | 0.9997 | 5.44 × 103 | 53.63 | 128.26 | −0.18426 | |||||
0.2 | 0.9985 | 1.20 × 105 | 63.64 | 148.02 | −0.16072 | |||||
0.3 | 0.9937 | 8.02 × 107 | 93.64 | 149.61 | −0.10662 | |||||
0.4 | 0.9723 | 1.14 × 1012 | 146.64 | 160.89 | −0.02714 | |||||
0.5 | 0.9811 | 1.63 × 1011 | 141.80 | 169.76 | −0.04473 | |||||
0.6 | 0.8468 | 1.14 × 1015 | 194.80 | 176.75 | 0.02888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, M.A.; Dubdub, I.; Mousa, S.; Albin Zaid, Z.A.A.; Alfaiad, M.A. Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock. Polymers 2025, 17, 1799. https://doi.org/10.3390/polym17131799
Ismail MA, Dubdub I, Mousa S, Albin Zaid ZAA, Alfaiad MA. Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock. Polymers. 2025; 17(13):1799. https://doi.org/10.3390/polym17131799
Chicago/Turabian StyleIsmail, Mohamed Anwar, Ibrahim Dubdub, Suleiman Mousa, Zaid Abdulhamid Alhulaybi Albin Zaid, and Majdi Ameen Alfaiad. 2025. "Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock" Polymers 17, no. 13: 1799. https://doi.org/10.3390/polym17131799
APA StyleIsmail, M. A., Dubdub, I., Mousa, S., Albin Zaid, Z. A. A., & Alfaiad, M. A. (2025). Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock. Polymers, 17(13), 1799. https://doi.org/10.3390/polym17131799