Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (918)

Search Parameters:
Keywords = biological plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3891 KiB  
Review
Navigating Brain Organoid Maturation: From Benchmarking Frameworks to Multimodal Bioengineering Strategies
by Jingxiu Huang, Yingli Zhu, Jiong Tang, Yang Liu, Ming Lu, Rongxin Zhang and Alfred Xuyang Sun
Biomolecules 2025, 15(8), 1118; https://doi.org/10.3390/biom15081118 - 4 Aug 2025
Viewed by 266
Abstract
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial [...] Read more.
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial glia and neuromelanin—that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis. Yet prolonged conventional 3D culture exacerbates metabolic stress, hypoxia-induced necrosis, and microenvironmental instability, leading to asynchronous tissue maturation—electrophysiologically active superficial layers juxtaposed with degenerating cores. This immaturity/heterogeneity severely limits their utility in modeling adult-onset disorders (e.g., Alzheimer’s disease) and high-fidelity drug screening, as organoids fail to recapitulate postnatal transcriptional signatures or neurovascular interactions without bioengineering interventions. We summarize emerging strategies to decouple maturation milestones from rigid temporal frameworks, emphasizing the synergistic integration of chronological optimization (e.g., vascularized co-cultures) and active bioengineering accelerators (e.g., electrical stimulation and microfluidics). By bridging biological timelines with scalable engineering, this review charts a roadmap to generate translationally relevant, functionally mature brain organoids. Full article
Show Figures

Figure 1

18 pages, 2044 KiB  
Review
Histopathological and Molecular Insights into Chronic Nasopharyngeal and Otic Disorders in Children: Structural and Immune Mechanisms Underlying Disease Chronicity
by Diana Szekely, Flavia Zara, Raul Patrascu, Cristina Stefania Dumitru, Dorin Novacescu, Alexia Manole, Carmen Aurelia Mogoanta, Dan Iovanescu and Gheorghe Iovanescu
Life 2025, 15(8), 1228; https://doi.org/10.3390/life15081228 - 3 Aug 2025
Viewed by 333
Abstract
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular [...] Read more.
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular alterations that sustain inflammation, impair mucosal function, and promote recurrence. This narrative review synthesizes the current knowledge on the normal histology of the nasopharynx, Eustachian tube, and middle ear, and explores key pathophysiological mechanisms, including epithelial remodeling, immune cell infiltration, cytokine imbalance, and tissue fibrosis. Special emphasis is placed on the role of immunohistochemistry in defining inflammatory phenotypes, barrier dysfunction, and remodeling pathways. The presence of biofilm, epithelial plasticity, and dysregulated cytokine signaling are also discussed as contributors to disease chronicity. These findings have direct implications for diagnosis, therapeutic stratification, and postoperative monitoring. By integrating histological, immunological, and molecular data, clinicians can better characterize disease subtypes, anticipate treatment outcomes, and move toward a more personalized and biologically informed model of pediatric ENT care. Full article
(This article belongs to the Special Issue New Trends in Otorhinolaryngology)
Show Figures

Figure 1

15 pages, 1194 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 - 1 Aug 2025
Viewed by 145
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

48 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 114
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 657
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

32 pages, 1740 KiB  
Review
Cancer-Associated Fibroblasts: Immunosuppressive Crosstalk with Tumor-Infiltrating Immune Cells and Implications for Therapeutic Resistance
by Jogendra Singh Pawar, Md. Abdus Salam, Md. Shalman Uddin Dipto, Md. Yusuf Al-Amin, Moushumi Tabassoom Salam, Sagnik Sengupta, Smita Kumari, Lohitha Gujjari and Ganesh Yadagiri
Cancers 2025, 17(15), 2484; https://doi.org/10.3390/cancers17152484 - 28 Jul 2025
Viewed by 521
Abstract
Cancer is no longer considered as an isolated event. Rather, it occurs because of a complex biological drive orchestrating different cell types, growth factors, cytokines, and signaling pathways within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most populous stromal cells within [...] Read more.
Cancer is no longer considered as an isolated event. Rather, it occurs because of a complex biological drive orchestrating different cell types, growth factors, cytokines, and signaling pathways within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most populous stromal cells within the complex ecosystem of TME, with significant heterogeneity and plasticity in origin and functional phenotypes. Very enigmatic cells, CAFs determine the progress and outcomes of tumors through extensive reciprocal signaling with different tumors infiltrating immune cells in the TME. In their biological drive, CAFs release numerous chemical mediators and utilize various signaling pathways to recruit and modulate tumor-infiltrating immune cells. The CAF-induced secretome and exosomes render immune cells ineffective for their antitumor activities. Moreover, by upregulating immune inhibitory checkpoints, CAFs create an immunosuppressive TME that impedes the susceptibility of tumor cells to tumor-infiltrating lymphocytes (TILs). Further, by depositing and remodeling extracellular matrix (ECM), CAFs reshape the TME, which enhances tumor growth, invasion, metastasis, and chemoresistance. Understanding of CAF biology and its crosstalk with tumor-infiltrating immune cells is crucial not only to gain insight in tumorigenesis but to optimize the potential of novel targeted immunotherapies for cancers. The complex relationships between CAFs and tumor-infiltrating immune cells remain unclear and need further study. Herein, in this narrative review we have focused on updates of CAF biology and its interactions with tumor-infiltrating immune cells in generating immunosuppressive TME and resistance to cell death. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

23 pages, 1080 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 405
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 591
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

24 pages, 4278 KiB  
Article
Nanoplastic Disrupts Intestinal Homeostasis in Immature Rats by Altering the Metabolite Profile and Gene Expression
by Justyna Augustyniak, Beata Toczylowska, Beata Dąbrowska-Bouta, Kamil Adamiak, Grzegorz Sulkowski, Elzbieta Zieminska and Lidia Struzynska
Int. J. Mol. Sci. 2025, 26(15), 7207; https://doi.org/10.3390/ijms26157207 - 25 Jul 2025
Viewed by 153
Abstract
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because [...] Read more.
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because they are able to freely cross biological barriers, posing health risks, particularly to developing organisms. Therefore, the aim of the current study was to investigate the toxic potential of polystyrene nanoparticles (PS-NPs) on the jejunum of immature rats. Two-week-old animals were orally exposed to environmentally relevant dose of small PS-NPs (1 mg/kg b.w.; 25 nm) for 3 weeks. We detected a significant accumulation of PS-NPs in the epithelium and subepithelial layer of the intestine, which resulted in significant changes in the expression of genes related to gut barrier integrity, nutrient absorption, and endocrine function. Moreover, increased expression of proinflammatory cytokines was observed together with decreased antioxidant capacity and increased markers of oxidative damage to proteins. Additionally, in the jejunal extracts of exposed rats, we also noted changes in the metabolite profile, mainly amino acids involved in molecular pathways related to cellular energy, inflammation, the intestinal barrier, and protein synthesis, which were consistent with the observed molecular markers of inflammation and oxidative stress. Taken together, the results of the metabolomic, molecular, and biochemical analyses indicate that prolonged exposure to PS-NPs may disrupt the proper function of the intestine of developing organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 513 KiB  
Review
Molecular Determinants of Bone Plasticity Regeneration After Trauma: Forensic Consequences
by Sorin Hostiuc, Ionut Negoi, Mihnea Costescu and Costel Siserman
Int. J. Mol. Sci. 2025, 26(15), 7184; https://doi.org/10.3390/ijms26157184 - 25 Jul 2025
Viewed by 161
Abstract
Bone tissue is one of the most remarkable examples of biological plasticity within the human body, with a high regenerative capacity and adaptation following traumatic injuries. This process is conducted through a series of complex and interlinked molecular mechanisms, which will be summarized [...] Read more.
Bone tissue is one of the most remarkable examples of biological plasticity within the human body, with a high regenerative capacity and adaptation following traumatic injuries. This process is conducted through a series of complex and interlinked molecular mechanisms, which will be summarized in this study. The temporal progression of bone healing follows relatively predictable phases, characterized by variation in the concentration and/or activity of biomolecules such as BMP, VEGF, MMPs. The molecular understanding of bone plasticity and regeneration has potentially significant implications in forensic sciences. They were not extensively studied and implemented in practical, forensic environments, mainly due to their high costs and limited availability. However, they have potential uses in areas, such as the interpretation of skeletal trauma, the estimation of the post-traumatic intervals, the postmortem interval, or the differentiation between ante-, peri-, and postmortem injuries to the bone. Full article
(This article belongs to the Special Issue Advances in Bone Regeneration Biology)
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 342
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

13 pages, 1873 KiB  
Article
Effect of Thickness Swelling and Termite Attack Resistance in Wood–Plastic Composites Produced with Pine Wood and Recycled Thermoplastics
by Emilly Silva, Yonny Lopez, Juarez Paes, Fernanda Maffioletti, Gabrielly Souza and Fabricio Gonçalves
Biomass 2025, 5(3), 43; https://doi.org/10.3390/biomass5030043 - 21 Jul 2025
Viewed by 462
Abstract
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% [...] Read more.
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% pine sawdust and 50% recycled plastics (polyethylene terephthalate-PET, high-density polyethylene-HDPE, and polypropylene-PP). The thickness swelling test was carried out by immersing of the WPC samples in water at room temperature (25–30 °C) and evaluating the total change in WPC thickness after 1500 h (≈9 weeks or two months). In addition, the coefficient of initial swelling was evaluated to verify the variability of the swelling. For the biological resistance evaluation of the WPCs, tests were carried out with soil or arboreal termites (Nasutitermes corniger) and drywood termites (Cryptotermes brevis). The WPC loss of mass and termite mortality were evaluated. The use of PP promoted the best response to thickness swelling. The simple mathematical model adopted offers real predictions to evaluate the thickness of the swelling of the compounds in a given time. For some variables there were no statistical differences. It was shown that treatment 3 (T3) presented visual damage values between 0.4 for drywood termites and 9.4 for soil termites, in addition to 26% termite mortality, represented by the lowest survival time of 12 days. The developed treatments have resistance to termite attacks; these properties can be an important starting point for its use on a larger scale by the panel industries. Full article
Show Figures

Figure 1

61 pages, 2268 KiB  
Review
Biodegradable Polymers: Properties, Applications, and Environmental Impact
by Rashid Dallaev, Nikola Papež, Mohammad M. Allaham and Vladimír Holcman
Polymers 2025, 17(14), 1981; https://doi.org/10.3390/polym17141981 - 18 Jul 2025
Viewed by 650
Abstract
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such [...] Read more.
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such as packaging, agriculture, and biomedicine. However, despite significant advancements, the field remains fragmented due to the diversity of raw materials, synthesis methods, degradation mechanisms, and application requirements. This review aims to provide a comprehensive synthesis of the current state of biodegradable polymer development, including their classifications, sources (natural, synthetic, and microbially derived), degradation pathways, material properties, and commercial applications. It highlights critical scientific and technological challenges—such as optimizing degradation rates, ensuring mechanical performance, and scaling up production from renewable feedstocks. By consolidating recent research findings and regulatory considerations, this review serves as a crucial reference point for researchers, material scientists, and policymakers. It strives to bridge knowledge gaps in order to accelerate the deployment of biodegradable polymers as integral components of a circular and low-impact material economy. Full article
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 442
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Epoxy Resin/Ionic Liquid Composite as a New Promising Coating Material with Improved Toughness and Antibiofilm Activity
by Sergiy Rogalsky, Olena Moshynets, Oleg Dzhuzha, Yevheniia Lobko, Anastasiia Hubina, Alina Madalina Darabut, Yaroslav Romanenko, Oksana Tarasyuk and Geert Potters
Coatings 2025, 15(7), 821; https://doi.org/10.3390/coatings15070821 - 14 Jul 2025
Viewed by 1125
Abstract
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and [...] Read more.
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and 30 wt% of this IL was prepared by dissolution of C12C1IM-DBS in commercial DER 331 epoxy resin, followed by a curing phase with diethylenetriamine. Infrared analysis revealed physicochemical interactions between the hydroxyl groups of the resin and the IL. Spectrophotometric studies showed no release of C12C1IM-DBS after 30 days of exposure of the modified coatings to water. The plasticizing effect of the IL on the epoxy resin was established by differential scanning calorimetry analysis. The introduction of 10 and 20% C12C1IM-DBS into DER 331 reduced its glass transition temperature from 122.8 °C to 109.3 and 91.5 °C, respectively. The hardness of epoxy resin decreased by approximately 26% after the introduction of the IL. Moreover, DER 331/C12C1IM-DBS coatings on steel substrates showed significantly improved impact resistance compared to neat resin. The antibiofilm efficiency of DER 331/C12C1IM-DBS coatings was evaluated by assessing the capability of two biofilm-forming model strains, Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface. The IL effectively inhibited S. aureus surface-associated biofilm development even at the lowest content of 10%. On the contrary, an approximately 50% inhibition of biofilm metabolic activity was detected for DER 331/C12C1IM-DBS coatings containing 20% and 30% of the IL. Overall, the results of this study indicate that the hydrophobic IL C12C1IM-DBS is an efficient modifying additive for epoxy resins, which can significantly improve their operational properties for various industrial applications. Full article
Show Figures

Figure 1

Back to TopTop