Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (724)

Search Parameters:
Keywords = biological pesticide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

26 pages, 3619 KiB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 360
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 233
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Effect of Preharvest Aluminum-Coated Paper Bagging on Postharvest Quality, Storability, and Browning Behavior of ‘Afrata Volou’ Quince
by Triantafyllia Georgoudaki, Persefoni Maletsika and George D. Nanos
Horticulturae 2025, 11(8), 881; https://doi.org/10.3390/horticulturae11080881 - 30 Jul 2025
Viewed by 301
Abstract
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest [...] Read more.
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest bagging using paper bags with inner aluminum coating on the physicochemical traits, storability, and browning susceptibility after cutting or bruising of ‘Afrata Volou’ quince (Cydonia oblonga Mill.) fruit grown in central Greece. Fruits were either bagged or left unbagged approximately 60 days before harvest, and evaluations were conducted at harvest and after three months of cold storage, plus two days of shelf-life. Fruit bagging reduced the quince’s flesh temperature on the tree crown. Bagging had minor effects on fruit and nutritional quality, except for more yellow skin and higher titratable acidity (TA). Also, at harvest, bagging did not significantly affect fruit flesh browning after cutting or bruising. After three months of storage, unbagged and bagged quince fruit developed more yellow skin color, without significant alterations in most quality characteristics and nutritional value, but increased total tannin content (TTC). After three months of storage, the quince flesh color determined immediately after cutting or bruising was brighter and more yellowish compared to that at harvest, due to continuation of fruit ripening, but it darkened faster with time after cutting or skin removal. Therefore, fruit bagging appears to be a sustainable practice for improving the aesthetic and some chemical quality characteristics of quince, particularly after storage, without negative impacts on other characteristics such as texture and phenolic content. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 332
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 185
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

17 pages, 985 KiB  
Review
Advances in Forensic Entomotoxicology for Decomposed Corpses: A Review
by Sen Hou, Zengjia Liu, Jiali Su, Zeyu Yang, Zhongjiang Wang, Xinyi Yao, Zhou Lyu, Yang Xia, Shuguang Zhang, Wen Cui, Yequan Wang and Lipin Ren
Insects 2025, 16(7), 744; https://doi.org/10.3390/insects16070744 - 21 Jul 2025
Viewed by 462
Abstract
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting [...] Read more.
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting the accuracy of postmortem interval (PMI) estimation. This review systematically summarizes the effects of various xenobiotics, including pesticides, illicit drugs, sedatives, heavy metals, and antibiotics on larval growth, physiological traits, and gut microbial composition in forensically relevant flies. However, most studies to date have relied primarily on phenotypic observations, with limited insight into underlying molecular mechanisms. Significant interspecies and dose-dependent variability also exists in the absorption, metabolism, and physiological responses to xenobiotics. We highlight recent advances in multi-omics technologies that facilitate the identification of molecular biomarkers associated with xenobiotic exposure, particularly within the insect detoxification system. Key components such as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and ATP-binding cassette (ABC) transporters play essential roles in xenobiotic metabolism and insecticide resistance. Additionally, the insect fat body serves as a central hub for detoxification, hormonal regulation, and energy metabolism. It integrates signals related to xenobiotic exposure and modulates larval development, making it a promising model for future mechanistic studies in insect toxicology. Altogether, this review offers a comprehensive and reliable framework for understanding the complex interactions between toxic substance exposure, insect ecology, and decomposition in forensic investigations. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

58 pages, 6017 KiB  
Review
Electrochemical (Bio)Sensors for Toxins, Foodborne Pathogens, Pesticides, and Antibiotics Detection: Recent Advances and Challenges in Food Analysis
by Marta Feroci, Gerardo Grasso, Roberto Dragone and Antonella Curulli
Biosensors 2025, 15(7), 468; https://doi.org/10.3390/bios15070468 - 21 Jul 2025
Viewed by 463
Abstract
Food safety plays an important and fundamental role, primarily for human health and certainly for the food industry. In this context, developing efficient, highly sensitive, safe, inexpensive, and fast analytical methods for determining chemical and biological contaminants, such as electrochemical (bio)sensors, is crucial. [...] Read more.
Food safety plays an important and fundamental role, primarily for human health and certainly for the food industry. In this context, developing efficient, highly sensitive, safe, inexpensive, and fast analytical methods for determining chemical and biological contaminants, such as electrochemical (bio)sensors, is crucial. The development of innovative and high-performance electrochemical (bio)sensors can significantly support food chain monitoring. In this review, we have surveyed and analyzed the latest examples of electrochemical (bio)sensors for the analysis of some common biological contaminants, such as toxins and pathogenic bacteria and chemical contaminants, such as pesticides, and antibiotics. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Graphical abstract

44 pages, 3979 KiB  
Review
Sesame Diseases and Pests: Assessment of Threats to the Establishment of an Australian Industry
by Dante L. Adorada, Lachlan C. Jones, Jian Liu and Geoff M. Gurr
Crops 2025, 5(4), 44; https://doi.org/10.3390/crops5040044 - 14 Jul 2025
Viewed by 594
Abstract
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a [...] Read more.
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a viable Australian sesame industry. Drawing on the international literature, we also consider the management approaches most likely to be viable and identify key research gaps necessary for effective and sustainable crop protection. More than sixty-seven plant pathogens have been identified worldwide that cause diseases in sesame, with some being observed to be major in Australia. Part of this review aims to provide an extensive overview of previous research on sesame and its diseases, shedding light on the evolving knowledge within sesame research, emerging trends, and the current state of understanding on the topic as it applies to Australia. Among the hundreds of pests reported to attack sesame internationally, this review identifies fifty-six pest taxa that are established in, or native to, Australia. We rank those most likely to be serious based on overseas damage levels and observations from recent trial plantings in Northern Australia. Chemical control methods have demonstrated efficacy overseas but are associated with concerns over resistance and environmental impact. Extremely limited numbers of pesticides are currently registered for pest or disease control in sesame by the Australian Pesticides and Veterinary Medicines Authority so non-chemical methods will be important. These include botanical, biological, cultural, and physical control approaches. This review underscores the need for continued research and tailored plant protection strategies to optimize sesame. Full article
Show Figures

Figure 1

23 pages, 1343 KiB  
Review
Nano-Enabled Insecticides for Efficient Pest Management: Definition, Classification, Synergistic Mechanism, and Safety Assessment
by Ying Wei, Jingyi Chen, Min Dong, Meizhen Yin, Jie Shen, Le Gao and Shuo Yan
Nanomaterials 2025, 15(13), 1050; https://doi.org/10.3390/nano15131050 - 6 Jul 2025
Viewed by 455
Abstract
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient [...] Read more.
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient to meet the demands for sustainable modern agriculture. Recent advances in nanotechnology offer innovative strategies for improving pesticide delivery, bioavailability, and selectivity. This review systematically summarizes the current progress in nano-insecticides, including their definitions, classification, preparation techniques, synergistic mechanisms, insecticidal performance, and safety evaluation. In addition, emerging strategies, such as multi-stimuli responsive systems, co-delivery with multiple agents or genetic materials, and integration with biological control, are discussed. Finally, future perspectives are proposed to guide the design/development of intelligent, efficient, and eco-friendly nano-insecticides for sustainable pest management in modern agriculture. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

34 pages, 2621 KiB  
Article
Priestia megaterium KW16: A Novel Plant Growth-Promoting and Biocontrol Agent Against Rhizoctonia solani in Oilseed Rape (Brassica napus L.)—Functional and Genomic Insights
by Bożena Nowak, Daria Chlebek and Katarzyna Hupert-Kocurek
Agriculture 2025, 15(13), 1435; https://doi.org/10.3390/agriculture15131435 - 3 Jul 2025
Viewed by 337
Abstract
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In [...] Read more.
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In this context, a novel endophytic Priestia megaterium strain, KW16, originated from the bluegrass (Poa pratensis L.), demonstrated distinct biocontrol potential against R. solani. in vitro assays showed that KW16 inhibited R. solani growth by up to 58%, primarily by releasing volatile compounds. In planta experiments further highlighted KW16′s ability to colonize oilseed rape internal tissues, significantly enhancing its growth and development. In the presence of the pathogen, KW16 abolished the negative impact of R. solani and promoted plant growth, increasing shoot and root biomass by 216% and 1737%, respectively, when compared to the plants grown in fungal-infested soil. Biochemical and genome analyses confirmed the strain’s metabolic versatility, resistance to biotic and abiotic factors, and a whole spectrum of PGP and biocontrol traits such as biofilm formation, production of phytohormones, and synthesis of lytic enzymes, siderophores, and volatiles, alongside its ability to survive in the presence of autochthonous soil microflora. These findings position KW16 as a potent biological alternative to synthetic fungicides, with significant potential for sustainable crop protection. Full article
Show Figures

Figure 1

20 pages, 8044 KiB  
Article
Harnessing a Microbial Consortium and Compost to Control Grapevine Pathogens: A Sustainable Viticulture Strategy for Disease Suppression and Quality Enhancement
by Lobna Hajji-Hedfi, Takwa Wannassi and Ahmed M. Abdel-Azeem
Horticulturae 2025, 11(7), 769; https://doi.org/10.3390/horticulturae11070769 - 2 Jul 2025
Viewed by 430
Abstract
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator [...] Read more.
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator, and Plasmopara viticola, in three cultivars: Victoria, Superior Seedless, and Early Sweet. The microbial consortium (P. yamanorum + T. longibrachiatum) combined with compost (treatment T4) significantly outperformed the individual treatments, reducing disease severity indices (DSIs) to 7.72, 5.35, and 3.37% in Victoria; 5.70, 6.95, and 3.32% in Superior Seedless; and 4.98, 2.35, and 2.84% in Early Sweet. The treatment also enhanced physiological traits, such as the chlorophyll content, and defense responses, including ascorbate peroxidase (APX), peroxidase (POX), and catalase (CAT) enzyme activities. Biochemical markers, including the total protein content, phenolic content, and reduced malondialdehyde (MDA) levels, indicated an improved oxidative stress tolerance. The soil analysis confirmed an increased pH, organic matter, nitrogen content, and microbial biomass. T4 further reduced the fruit disease incidence and improved quality attributes, including the sugar content and size, while lowering nitrate accumulation. These findings highlight the synergistic benefits of combining a microbial consortium with compost as a sustainable strategy to promote grapevine health, productivity, and soil resilience. Full article
(This article belongs to the Special Issue Grapevine Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

28 pages, 3054 KiB  
Review
Impact of Antibacterial Agents in Horticulture: Risks to Non-Target Organisms and Sustainable Alternatives
by Mirza Abid Mehmood, Muhammad Mazhar Iqbal, Muhammad Ashfaq, Nighat Raza, Jianguang Wang, Abdul Hafeez, Samah Bashir Kayani and Qurban Ali
Horticulturae 2025, 11(7), 753; https://doi.org/10.3390/horticulturae11070753 - 1 Jul 2025
Viewed by 708
Abstract
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable [...] Read more.
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable agriculture. This review examines the ecological and health impacts of antibacterial agents (e.g., streptomycin, oxytetracycline, etc.) in horticultural crops, focusing on their effects on non-target organisms such as beneficial microbes involved in plant growth promotion and resistance development. Certain agents (e.g., triclosan, sulfonamides, and fluoroquinolones) leach into water systems, degrading water quality, while others leave toxic residues in crops, leading to human health risks like dysbiosis and antibiotic resistance. To mitigate these hazards, sustainable alternatives such as integrated plant disease management (IPDM) and biotechnological solutions are essential. Advances in genetic engineering including resistance-conferring genes like EFR1/EFR2 (Arabidopsis), Bs2 (pepper), and Pto (tomato) help combat pathogens such as Ralstonia solanacearum and Xanthomonas campestris. Additionally, CRISPR-Cas9 enables precise genome editing to enhance inherent disease resistance in crops. Emerging strategies like biological control, plant-growth-promoting rhizobacteria (PGPRs), and nanotechnology further reduce dependency on chemical antibacterial agents. This review highlights the urgent need for sustainable disease management to safeguard ecosystem and human health while ensuring food security. Full article
(This article belongs to the Special Issue New Insights into Stress Tolerance of Horticultural Crops)
Show Figures

Figure 1

17 pages, 1782 KiB  
Review
Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives
by Takalani Whitney Maake and Phumzile Sibisi
Bacteria 2025, 4(3), 29; https://doi.org/10.3390/bacteria4030029 - 28 Jun 2025
Viewed by 417
Abstract
Postharvest losses of Solanaceae crops, which include potatoes (Solanum tuberosum), tomatoes (Solanum lycopersicum), bell peppers (Capsicum annuum), and others, are one of the major challenges in agriculture throughout the world, impacting food security and economic viability. Agrochemicals [...] Read more.
Postharvest losses of Solanaceae crops, which include potatoes (Solanum tuberosum), tomatoes (Solanum lycopersicum), bell peppers (Capsicum annuum), and others, are one of the major challenges in agriculture throughout the world, impacting food security and economic viability. Agrochemicals have been successfully employed to prevent postharvest losses in agriculture. However, the excessive use of agrochemicals may cause detrimental effects on consumer health, the emergence of pesticide-resistant pathogens, increased restrictions on existing pesticides, environmental harm, and the decline of beneficial microorganisms, such as natural antagonists to pests and pathogens. Hence, there is a need to search for a safer and more environmentally friendly alternative. Microbial antagonists have gained more attention in recent years as substitutes for the management of pests and pathogens because they minimize the excessive applications of toxic substances while providing a sustainable approach to plant health management. However, more research is required to make microbial agents more stable and effective and less toxic before they can be used in commercial settings. Therefore, research is being conducted to develop new biological control agents and obtain knowledge of the mechanisms of action that underlie biological disease control. To accomplish this objective, the review aims to investigate microbial antagonists’ modes of action, potential future applications for biological control agents, and difficulties encountered during the commercialization process. We also highlight earlier publications on the function of microbial biological control agents against postharvest crop diseases. Therefore, we can emphasize that the prospects for biological control are promising and that the use of biological control agents to control crop diseases can benefit the environment. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 7674 KiB  
Article
Foliar Application of Bacillus thuringiensis Enhances Tea Quality and Plant Defense via Phyllosphere Microbiome Modulation
by Yulin Xiong, He Liu, Dongliang Li, Wei Xie, Zhong Wang, Xiaohong Fang, Jizhou Wang, Wei Chen, Xi Du, Yanyan Li, Chuanpeng Nie, Chuanhua Yin, Pumo Cai and Yongcong Hong
Agriculture 2025, 15(13), 1386; https://doi.org/10.3390/agriculture15131386 - 27 Jun 2025
Viewed by 320
Abstract
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the [...] Read more.
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the structure and function of the phyllosphere microbiome remain unclear. This study evaluated the effects of Bt spraying on tea quality, microbiome composition, diversity, and potential functions using tea leaf quality measurements and high-throughput sequencing of the 16S/ITS rDNA genes. Results showed that spraying Bt1 significantly increased the contents of free amino acids (by 15.27%), flavonoids (by 18.00%), soluble sugars (by 62.55%), and key compounds such as epicatechin gallate (by 10.50%), gallocatechin gallate (by 122.52%), and epigallocatechin gallate (by 61.29%), leading to improved leaf quality. Co-occurrence network analysis indicated that the community structure of both epiphytic and endophytic microbes became more complex after Bt treatment. The abundance of beneficial bacteria, such as Novosphingobium, Methylobacterium, and Sphingomonas, increased significantly, while pathogenic fungi like Aspergillus and Phyllosticta decreased. Functional prediction indicated enhanced amino acid metabolism, secondary metabolism, and carbohydrate metabolism, particularly the biosynthesis of flavonoids, which supports disease resistance and boosts secondary metabolite levels. Furthermore, Bt application reduced pathogenic fungi, enhancing the tea plant’s resistance to diseases. Overall, foliar spraying of Bt can positively alter the phyllosphere microbiome by enriching beneficial bacteria and improving metabolic functions, ultimately enhancing tea plant resistance and quality, and providing a scientific basis for sustainable pest management in tea cultivation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

Back to TopTop