Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Quality Assurance and Quality Control
2.4. Data Analysis
3. Results and Discussion
3.1. Model-Derived Findings
3.1.1. Impact of Individual Congeners on PCB-170 Prediction
3.1.2. Interaction Effects Between Co-Pollutants on PCB-170 Prediction
3.2. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janakiraman, S.; Sha, R.; Mani, N.K. Recent advancements in Point-of-Care Detection of Contaminants and Biomarkers in Human Breast Milk: A comprehensive review. Sens. Actuators Rep. 2025, 9, 100280. [Google Scholar] [CrossRef]
- Chi, Z.H.; Goodyer, C.G.; Hales, B.; Bayen, S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. Environ. Int. 2023, 171, 107717. [Google Scholar] [CrossRef]
- Torres-Moreno, A.; Mejia-Grau, K.; Puente-DelaCruz, L.; Codling, G.; Villa, A.; Ríos-Marquez, O.; Patequiva-Chauta, L.; Cobo, M.; Johnson-Restrepo, B. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) in human breast milk from Colombia: A probabilistic risk assessment approach. Chemosphere 2023, 339, 139597. [Google Scholar] [CrossRef]
- Herceg, R.S.; Milićević, T.; Jovanović, G.; Matek, S.M.; Mendaš, G.; Fingler, S.; Jakšić, G.; Popović, A.; Relić, D. Persistent organic pollutants in Croatian breast milk: An overview of pollutant levels and infant health risk assessment from 1976 to the present. Food Chem. Toxicol. 2023, 179, 113990. [Google Scholar] [CrossRef]
- Parizek, O.; Gramblicka, T.; Parizkova, D.; Polachova, A.; Bechynska, K.; Dvorakova, D.; Stupak, M.; Dusek, J.; Pavlikova, J.; Topinka, J.; et al. Assessment of organohalogenated pollutants in breast milk from the Czech Republic. Sci. Total Environ. 2023, 871, 161938. [Google Scholar] [CrossRef]
- Nermo, K.; Bakken, K.; Lyche, J.; Polder, A.; Jansen, A.; Kaldenbach, S.; Haddad-Weiserd, G.; Tor Strand, T.; Eggesbø, M. Trend analyses of persistent organic pollutants in human milk from first-time mothers in Norway between 2002 and 2021. Int. J. Hyg. Environ. Health 2025, 263, 114458. [Google Scholar] [CrossRef]
- Martínez, C.; Martínez Arroyo, A.; Alemán, D.; García, A.; Caba, M.; Garcidueñas, A.L.; Mora, A.; Zenteno, E. Persistent organic compounds in human milk and evaluation of the effectiveness of the Stockholm convention in Mexico. Environ. Adv. 2022, 8, 100190. [Google Scholar] [CrossRef]
- Fiedler, H.; Li, X.; Zhang, J. Persistent organic pollutants in human milk from primiparae—Correlations, global, regional, and national time-trends. Chemosphere 2023, 313, 137484. [Google Scholar] [CrossRef]
- Sillé, F.; Karakitsios, S.; Kleensang, A.; Koehler, K.; Maertens, A.; Miller, G.W.; Prasse, C.; Quiros-Alcala, L.; Ramachandran, G.; Hartung, T. The exposome—A new approach for risk assessment. ALTEX—Altern. Anim. Exp. 2020, 37, 3–23. [Google Scholar] [CrossRef]
- Chen, G.; Han, Z. The rise of deep learning: AI and engineering applications under the spotlight of the 2024 Nobel prize. Intell. Geoengin. 2025, 2, 14–21. [Google Scholar] [CrossRef]
- Konya, A.; Nematzadeh, P. Recent applications of AI to environmental disciplines: A review. Sci. Total Environ. 2024, 906, 167705. [Google Scholar] [CrossRef]
- Souza, M.C.O.; Souza, J.M.O.; Cruz, J.C.; Devóz, P.P.; Rocha, B.A.; Santana, A.; Campíglia, A.D.; Barbosa, F. The influence of the co-exposure to polycyclic aromatic hydrocarbons and toxic metals on DNA damage in Brazilian lactating women and their infants: A cross-sectional study using machine learning approaches. Chemosphere 2023, 334, 138975. [Google Scholar] [CrossRef]
- Huang, X.; Chen, J.; Liu, P. Assessing chemical exposure risk in breastfeeding infants: An explainable machine learning model for human milk transfer prediction. Ecotoxicol. Environ. Saf. 2025, 289, 117707. [Google Scholar] [CrossRef]
- Jovanović, G.; Herceg, R.S.; Stojić, A.; Klinčić, D.; Matek, S.M.; Grzunov, L.J.; Popović, A. Introducing of modeling techniques in the research of POPs in breast milk—A pilot study. Ecotoxicol. Environ. Saf. 2019, 172, 341–347. [Google Scholar] [CrossRef]
- Radić, N.; Perišić, M.; Jovanović, G.; Bezdan, T.; Stanišić, S.; Stanić, N.; Stojić, A. An AI-Based Framework for Characterizing the Atmospheric Fate of Air Pollutants Within Diverse Environmental Settings. Atmosphere 2025, 16, 231. [Google Scholar] [CrossRef]
- Jovanović, G.; Perišić, M.; Bačanin, N.; Živković, M.; Stanišić, S.; Štrumberger, I.; Alimpić, F.; Stojić, A. Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate. Toxics 2023, 11, 394. [Google Scholar] [CrossRef]
- Mendaš, G.; Jakovljević, I.; Herceg, R.S.; Fingler, S.; Jovanović, G.; Matek, S.M.; Pehnec, G.; Popović, A.; Stanković, D. Presence of polycyclic aromatic hydrocarbons and persistent organochlorine pollutants in human Milk: Evaluating their levels, association with Total antioxidant capacity, and risk assessment. Sci. Total Environ. 2024, 931, 172911. [Google Scholar] [CrossRef]
- Needham, L.L.; Grandjean, P.; Heinzow, B.; Jørgensen, P.J.; Nielsen, F.; Patterson, D.G., Jr.; Sjödin, A.; Turner, W.E.; Weihe, P. Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues. Environ. Sci. Technol. 2011, 45, 1121–1126. [Google Scholar] [CrossRef]
- Freund, Y. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html (accessed on 12 December 2024).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applica-tions. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Covert, I.; Lundberg, S.; Lee, S.-I. Understanding Global Feature Contributions With Additive Importance Measures. Adv. Neural Inf. Process. Syst. 2020, 33, 17212–17223. [Google Scholar]
- Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization. J. Mach. Learn. Res. 2021, 22, 1–73. [Google Scholar]
- McInnes, L. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- McInnes, L. HDBSCAN: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Hale, T.W.; Rowe, H.E. Medications and Mothers’ Milk; Springer Publishing Company: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Vasios, G.; Kosmidi, A.; Kalantzi, O.-I.; Tsantili-Kakolidou, A.; Kavantzas, N.; Theocharis, S.; Giaginis, C. Simple physicochemical properties related with lipophilicity, polarity, molecular size and ionization status exert significant impact on the transfer of drugs and chemicals into human breast milk. Expert Opin. Drug Metab. Toxicol. 2016, 11, 1273–1278. [Google Scholar] [CrossRef]
- Omar, M.L.; Alharbi, A.A.B.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- IARC. Polychlorinated Biphenyls and Polybrominated Biphenyls (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans); World Health Organization: Geneva, Switzerland, 2016; Volume 107. [Google Scholar]
- ATSDR. Toxicological Profile for Polychlorinated Biphenyls (PCBs). Agency for Toxic Substances and Disease Registry. 2022. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp17.pdf (accessed on 21 July 2025).
- Schantz, S.L.; Widholm, J.J.; Rice, D.C. Effects of PCB exposure on neuropsychological function in children. Environ. Health Perspect. 2003, 111, 357–576. [Google Scholar] [CrossRef]
- Balalian, A.A.; Stingone, J.A.; Kahn, L.G.; Herbstman, J.B.; Graeve, R.I.; Stellman, S.D.; Factor-Litvak, P. Perinatal exposure to polychlorinated biphenyls (PCBs) and child neurodevelopment: A comprehensive systematic review of outcomes and methodological approaches. Environ. Res. 2024, 252, 118912. [Google Scholar] [CrossRef]
- Polder, A.; Skaare, J.U.; Skjerve, E.; Løken, K.B.; Eggesbø, M. Levels of chlorinated pesticides and polychlorinated biphenyls in Norwegian breast milk (2002–2006), and factors that may predict the level of contamination. Sci. Total Environ. 2009, 407, 4584–4590. [Google Scholar] [CrossRef]
- Komprda, J.; Komprdová, K.; Domínguez-Romero, E.; Mikeš, O.; Řiháčková, K.; Čupr, P.; Černá, M.; Scheringer, M. Dynamics of PCB exposure in the past 50 years and recent high concentrations in human breast milk: Analysis of influencing factors using a physiologically based pharmacokinetic model. Sci. Total Environ. 2019, 690, 388–399. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Qian, L.; Geng, S.; Yao, X.; Gao, X.; Yan, Y.; Wen, J. Serum levels of polychlorinated biphenyls and polybrominated diphenyl ethers in early pregnancy and their associations with gestational diabetes mellitus. Chemosphere 2023, 339, 139640. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Meng, G.; Chi, M.; Li, J.; Yin, S.; Zhao, Y.; Wu, Y. Non-dioxin-like polychlorinated biphenyls in early pregnancy and risk of gestational diabetes mellitus. Environ. Int. 2018, 115, 127–132. [Google Scholar] [CrossRef]
- Mitra, T.; Gulati, R.; Ramachandran, K.; Rajiv, R.; Enning, E.A.L.; Pierret, C.K.; Kumari, S.R.; Janardhanan, R. Endocrine disrupting chemicals: Gestational diabetes and beyond. Diabetol. Metab. Syndr. 2024, 16, 95. [Google Scholar] [CrossRef]
Cluster | Count | Percentage [%] | PCB170 [ng g−1] | Mean Impact | Mean Absolute Impact | Mean Normalized Impact [%] | Mean Probability |
---|---|---|---|---|---|---|---|
C-1 | 25 | 13.44 | 1.53 | 0.02 | 1.34 | 1.62 | 0 |
C0 | 13 | 6.99 | 1.07 | −0.51 | 0.83 | −33.26 | 0.74 |
C1 | 11 | 5.91 | 3.07 | 1.96 | 2.54 | 127.2 | 0.92 |
C2 | 11 | 5.91 | 7.99 | 5.97 | 6.04 | 387.58 | 0.7 |
C3 | 9 | 4.84 | 4.28 | 2.76 | 2.99 | 179.39 | 0.91 |
C4 | 9 | 4.84 | 0.64 | −0.78 | 0.88 | −50.37 | 0.95 |
C5 | 27 | 14.52 | 0.35 | −1.17 | 1.17 | −75.62 | 0.63 |
C6 | 17 | 9.14 | 0.25 | −1.26 | 1.27 | −81.70 | 0.68 |
C7 | 9 | 4.84 | 0.29 | −1.25 | 1.26 | −81.11 | 0.87 |
C8 | 34 | 18.28 | 0.56 | −0.99 | 1.09 | −64.00 | 0.7 |
C9 | 21 | 11.29 | 1.90 | 0.30 | 0.80 | 19.37 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, G.; Bezdan, T.; Romanić, S.H.; Matek Sarić, M.; Biošić, M.; Mendaš, G.; Stojić, A.; Perišić, M. Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk. Toxics 2025, 13, 631. https://doi.org/10.3390/toxics13080631
Jovanović G, Bezdan T, Romanić SH, Matek Sarić M, Biošić M, Mendaš G, Stojić A, Perišić M. Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk. Toxics. 2025; 13(8):631. https://doi.org/10.3390/toxics13080631
Chicago/Turabian StyleJovanović, Gordana, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić, and Mirjana Perišić. 2025. "Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk" Toxics 13, no. 8: 631. https://doi.org/10.3390/toxics13080631
APA StyleJovanović, G., Bezdan, T., Romanić, S. H., Matek Sarić, M., Biošić, M., Mendaš, G., Stojić, A., & Perišić, M. (2025). Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk. Toxics, 13(8), 631. https://doi.org/10.3390/toxics13080631