Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Crop Species
2.3. Study Area
2.4. Sampling
2.5. Sample Analysis
2.6. Statistical Analysis
2.7. Clinical and Morphological Findings of Suspected Intoxication in Honey Bees: Evidence from Anamnesis and Laboratory Examinations
3. Results
3.1. Evaluation of the Experimental Group Results
3.2. Evaluation of the Control Group Results
3.2.1. Results Obtained from the Control Group by Sample Types
- Live bee samples:
- Bee brood samples:
- Honey samples:
- Pollen samples:
3.2.2. Results Obtained from the Control Group for Rapeseed and Sunflower Crops
- In rape crop (2020), acaricides (amitraz and tau-fluvalinate), an herbicide (fluazifop-P-butyl), and fungicides (captan, tebuconazole, cymoxanil, azoxystrobin, pyraclostrobin, zoxamides, fluopicolide, metalaxyl, propiconazole, and spiroxamine) were identified compared to 2021, when an acaricide (tau-fluvalinate), an herbicide (fluazifop-P-butyl) and a neonicotinoid (thiamethoxam) were detected;
- In sunflower crop (2020), only insecticides (piperonyl-butoxide, tetramethrin, tau-fluvalinate, DDT, and coumaphos) were identified compared to 2021, when only herbicides were identified (fluazifop-P-butyl).
3.2.3. Monitoring of Bee Colonies During the Active Season Between 2020 and 2021
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Collected Samples | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|
Bees | Bee Brood | Honey | Pollen | Bees | Bee Brood | Honey | Pollen | |
Experimental group /2020–2021 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Control group /2020–2021 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Total samples collected by sample type | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Total samples collected annually | 48 | 48 | ||||||
Total collected samples | 96 |
Disease/ Etiological Agent | Macroscopic Exam | Bacterioscopic Examination | Bacteriological Examination | Specific Methods | Serology | Chemical Methods | Other Methods | |
---|---|---|---|---|---|---|---|---|
Biological Material | Morphological Characters | |||||||
External Parasitical Diseases | ||||||||
Varroosis/ Varroa destructor | Bees (30–50 individuals/sample) queens, drones, honeycomb with overgrown brood (15 × 10 cm), detritus | Body flat, transversely oval, 1.1 mm long, 1.6 mm wide; the presence of the reddish-brown chitinous coating, covered with bristles; four pairs of legs; mouthpiece for stinging and sucking | - | - | Flotation method; washing method | - | - | - |
Acarapiosis/Aethina tumida | Adult bees alive, dying, or dead for 1–2 days | Adult—5 mm long and 3 mm wide, females being slightly longer than males; dark brown—black color (slightly lighter after copped); Egg—white, reniform (2/3 of the size of the bee egg); Larva—1.2 cm long, whitish, often covered with a thin sticky layer | - | - | Examining the bottom of the hive using traps | - | - | - |
Braulosis/Braula coeca | Bees, queens, drones, honeycomb with covered honey, and brood | Adult—almost spherical body, reddish brown color, covered entirely by black hairs; head with a pair of antennae, oral apparatus adapted for sucking and licking; three pairs of legs located on the ventral side of the thorax, finished with suction cups with which it clings to the pericarps on the bees’ thoraxes; Egg—(0.76/0.37 mm) oval shape, matte white; Larva—(0.8–2 mm) oval shape, transparent white, with two typical mouth hooks | - | - | Examination of the thoracic muscles | - | - | - |
Tropilaelaps Infestation/Tropilaelaps spp. | Honeycomb, adult bees | Tropilaelaps clareae (<1 mm in length); T. mercedesae (<9 mm in length); T. koenigerum (0.7 mm length) | - | - | Examination with the help of sticky foil | - | - | - |
Bacterial Diseases | ||||||||
American Foulbrood (AFB)/Paenibacillus larvae | Honeycomb with copped brood | Bacillus Gram (+), 1.5 − 5 × 0.5 − 0.6 μ, with rounded ends, mobile, cilia arranged peritrichously, sporulate, spore arranged centrally or subterminally, deformed, often spores are free | - Smear technique (Gram staining)—spores, vegetative forms; - Carbol fuchsin staining of slides obtained from larvae | Cultures on enriched medium (broth-agar and normal horse serum 15%) | - The Holst test - modified hanging drop technique | Polymerization chain reaction (PCR) | - | Dry kits technique |
European Foulbrood (EFB)/Melissococcus plutonius, Enterococcus faecalis, Paenibacillus alvei, Bacterium eurydice | Honeycomb with dead brood, dead and dehydrated larvae, and larvae intestine with clinical signs of disease | Melissococcus plutonius—Gram (+) cocci, typical lanceolate shape, dimensions 0.5 × 1.0 μ, placed in chains or clusters—sometimes Enterococcus faecalis; Paenibacillus alvei—Gram-labile bacilli, −5 μ × 0.5 − 0.8 μ, sporulated, the ellipsoidal spore located terminally or subterminally, which deforms the bacterial body; Brevibacillus laterosporus—Gram (+), sporulate bacilli, the spore is placed laterally, the bacterial body has a typical lance shape | Smear technique (Gram stain) | Medium Barley Collins; Products: “Bacto” “Oxoid”; Alexandrova seeding medium | - | Immuno-logical methods: - tube agglutination test - polymerization chain reaction (PCR) | - | Dry kits technique |
Internal Parasitic Diseases | ||||||||
Amoebiasis/Malpighamoeba mellificae | Dead or dying bees | Cysts of Malpighamaeba mellificae | Smear technique | - | - | - | - | - |
Nosemosis/Nosema sp. | Adult bees, droppings and the whole intestine | Spores of Nosema apis—completely oval, with a dark edge, well outlined, 5–7 μm long and 3–4 μm wide | The midgut smear technique of adult bees | - | Giemsa staining | - | - | - |
Acarapiosis/Acarapis woodi | Live or dying bees | Adult—oval-shaped body, segmented, with dimensions of 123–180/70–100 μm for the female and 85–116/57–85 μm for the male. In the tracheas of bees, the developmental stages of the mite (egg, larva, nymph) can sometimes be observed. Eggs—sizes of 60–120 μ | Usual histological techniques—methyl blue staining | - | - | - | Enzyme immuno-assay (ELISA) | - |
Mycotic Diseases | ||||||||
Chalkbrood/Ascosfera apis | Honeycombs with bee larvae | Ascochists—45–119 μm, dark green, translucent, inside there is a variable number of small spheres (ascospheres) containing ascospores and mycelial hyphae. Ascospores are ellipsoidal or slightly reniform, refringent, with dimensions of 1–2/2–3.5 μm | Direct smear technique | Mycological examination—Sabouraud medium | - | - | - | - |
Aspergillosis/Aspergillus spp. | Larvae, nymphs, and adult bees | Septate mycelia from which branch hyphae with a diameter of 2–3 μm. The hyphae form the conidiophore with the aspergillar vesicle on which the sterigmas are found. Several conidia arise from each sterigma, arranged in an oval-shaped chain and measuring 2–3 μm. Mature fungi have different colors and shades, depending on the species: Aspergillus flavus—greenish yellow, Aspergillus fumigatus —greyish green, Aspergillus niger—black. | Direct smear technique | Mycological examination—Sabouraud medium | - | - | - | - |
Intoxications | ||||||||
With drugs | Dying or dead bees (150–200 g/sample), honeycomb fragments | Identification of the medicinal substance | - | - | - | - | Thin-layer chromatography and Averoll–Norris (ethyl and methyl parathion) | - |
Toxic food poisoning | The hindgut from 10–12 bees | Pollen provenance using a pollen determiner | - | - | - | - | - | - |
With chemical substances | Dying bees, honeycomb fragments | Identification of the type of chemical; rear intestine enlarged and with dark content | - | - | - | - | Thin-layer chromatography | - |
References
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Kortsch, S.; Timberlake, T.P.; Cirtwill, A.R.; Sapkota, S.; Rokoya, M.; Devkota, K.; Roslin, T.; Memmott, J.; Saville, N. Decline in Honeybees and Its Consequences for Beekeepers and Crop Pollination in Western Nepal. Insects 2024, 15, 281. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Bee Health—How EFSA Is Helping to Protect Our Pollinators. 2012. Available online: https://www.efsa.europa.eu/en/press/news/120330a (accessed on 9 September 2023).
- Moldoveanu, O.C.; Maggioni, M.; Dani, F.R. Environmental ameliorations and politics in support of pollinators. Experiences from Europe: A review. J. Environ. Manag. 2024, 362, 121219. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17, 40. Available online: http://www.jstor.org/stable/26269237 (accessed on 7 September 2023). [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- Drossart, M.; Gérard, M. Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors. Insects 2020, 11, 649. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/eli/reg/2009/1107/oj/eng (accessed on 15 February 2024).
- European Food Safety Authority (EFSA). Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 2013, 11, 3295. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); Szentes, C.; Wassenberg, J.; Ingels, B.; Neri, F.M.; Rundlof, M.; Arce, A.; Rortais, A.; Ippolito, A.; Padovani, L.; et al. Supplementary information to the revised guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Support. Publ. 2023, 20, 7982E. [Google Scholar] [CrossRef]
- Food Safety Authority (EFSA); Ippolito, A.; Aguila, M.D.; Aiassa, E.; Guajardo, I.M.; Neri, F.M.; Alvarez, F.; Mosbach-Schulz, O.; Szentes, C. Review of the evidence on bee background mortality. EFSA Support. Publ. 2020, 17, 1880E. [Google Scholar] [CrossRef]
- Rortais, A.; Arnold, G.; Dorne, J.L.; More, S.J.; Sperandio, G.; Streissl, F.; Szentes, C.; Verdonck, F. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. Sci. Total Environ. 2017, 587–588, 524–537. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Auteri, D.; Arce, A.; Ingels, B.; Marchesi, M.; Neri, F.M.; Rundlöf, M.; Wassenberg, J. Analysis of the evidence to support the definition of Specific Protection Goals for bumble bees and solitary bees. EFSA Support. Publ. 2022, 19, 7125E. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP). Guidance on Exposure and Effects Testing for Assessing Risks to Bees, 2016. Available online: https://www.epa.gov/sites/default/files/2016-07/documents/guidance-exposure-effects-testing-assessing-risks-bees.pdf (accessed on 11 September 2023).
- European Food Safety Authority (EFSA); Brown, K.; Tomlinson, J.; Duncan, J.; Hinchcliffe, A.; Palmquist, K. Critical comparison of available and potential higher tier testing approaches for the risk assessment of plant protection products, considering at least field and semi-field experimental designs, extrapolation from dose-response relationship, and increased dosages (aquatic and terrestrial). Literature reviews on ecotoxicology of chemicals with special focus on plant protection products. EFSA Support. Publ. 2009, 6, 16E. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Review of the Guidance Document for the Risk Assessment for Bees, 2020. Available online: https://www.efsa.europa.eu/sites/default/files/topic/review-guidance-document-bees-specific-protection-goals.pdf (accessed on 5 September 2023).
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.T.; Anderson, T.D.; Wu-Smart, J.Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 2018, 26, 57–62. [Google Scholar] [CrossRef]
- Böhme, F.; Bischoff, G.; Zebitz, C.P.; Rosenkranz, P.; Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 2018, 13, e0199995. [Google Scholar] [CrossRef]
- Dong, J.; Huang, M.; Guo, H.; Zhang, J.; Tan, X.; Wang, D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int. J. Mol. Sci. 2023, 24, 5354. [Google Scholar] [CrossRef]
- Glavinic, U.; Tesovnik, T.; Stevanovic, J.; Zorc, M.; Cizelj, I.; Stanimirovic, Z.; Narat, M. Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae. PeerJ 2019, 7, e6325. [Google Scholar] [CrossRef]
- Tesovnik, T.; Zorc, M.; Ristanić, M.; Glavinić, U.; Stevanović, J.; Narat, M.; Stanimirović, Z. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 2020, 256, 113443. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Cameron, J.J.; Mortensen, A.N.; Bustamate, T.A.; Ellis, J.D. Chronic toxicity of amitraz, coumaphos and fluvalinate to Apis mellifera L. larvae reared in vitro. Sci. Rep. 2018, 8, 5635. [Google Scholar] [CrossRef]
- Cedergreen, N. Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef]
- Encerrado-Manriquez, A.M.; Pouv, A.K.; Fine, J.D.; Nicklisch, S.C.T. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. Sci. Total Environ. 2024, 916, 170193. [Google Scholar] [CrossRef]
- Wood, T.J.; Goulson, D. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. 2017, 24, 17285–17325. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Zaharia, R.; Trotuș, E.; Trașcă, G.; Georgescu, E.; Șapcaliu, A.; Fătu, V.; Petrișor, C.; Mincea, C. Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products. Agriculture 2023, 13, 830. [Google Scholar] [CrossRef]
- PRIMORIS. Available online: http://www.primoris-lab.com/bg-en/ (accessed on 2 September 2023).
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. Edition 3. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 29 September 2023).
- Cauia, E.; Siceanu, A.; Vișan, G.O.; Cauia, D.; Colța, T.; Spulber, R.A. Monitoring the field-realistic exposure of honeybee colonies to neonicotinoids by an integrative approach: A case study in Romania. Diversity 2020, 12, 24. [Google Scholar] [CrossRef]
- OIE (World Organisation for Animal Health). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), 6th ed.; OIE: Paris, France, 2008; Volume 1, pp. 388–429. [Google Scholar]
- Savu, V.; Șapcaliu, A.; Rădoi, I.; Milea, F.G.; Codreanu, I.; Raita, S.; Bădic, L. Incidence of Some Intoxication’S Evolution in Romania in Apis mellifera Carpathica Bees Monitored in a Bee Disease Prevention Program in the Active Beekeeping Season of 2019; Scientific Papers; Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad” Iași: Iasi, Romania, 2019; Volume 62, pp. 9–16. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Potts, S.G.; Roberts, S.P.M.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Gray, A.; Brodschneider, R.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; da Costa, C.A.; et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 2019, 58, 479–485. [Google Scholar] [CrossRef]
- Gregorc, A.; Alburaki, M.; Sampson, B.; Knight, P.R.; Adamczyk, J. Toxicity of selected acaricides to honey bees (Apis mellifera) and Varroa (Varroa destructor Anderson and Trueman) and their use in controlling Varroa within honey bee colonies. Insects 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Savu, V.; Şapcaliu, A. Pathology of Bees; Publishing House of the Tomorrow’s Romania Foundation: Bucharest, Romania, 2013; pp. 31–38. [Google Scholar]
- Rondeau, G.; Sánchez-Bayo, F.; Tennekes, H.A.; Decourtye, A.; Ramírez-Romero, R.; Desneux, N. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci. Rep. 2014, 4, 5566. [Google Scholar] [CrossRef]
- Bortolotti, L.; Montanari, R.; Marcelino, J.; Medrzycki, P.; Maini, S.; Porrini, C. Efects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectol. 2003, 56, 63–67. [Google Scholar]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gao, J.; Wu, T.; Han, B.; Qian, B.; Shi, M.; Yang, S.; Diao, Q.; Bu, C.; Dai, P. Exposure of chlorothalonil and acetamiprid reduce the survival and cause multiple internal disturbances in Apis mellifera larvae reared in vitro. Front. Physiol. 2023, 14, 1114403. [Google Scholar] [CrossRef]
- Rortais, A.; Arnold, G.; Halm, M.P.; Touffet-Briens, F. Modes of honeybee’s exposure to systemic insecticides: Estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005, 36, 71–83. [Google Scholar] [CrossRef]
- Taenzler, V.; Weyers, A.; Maus, C.; Ebeling, M.; Levine, S.; Cabrera, A.; Schmehl, D.; Gao, Z.; Rodea-Palomares, I. Acute toxicity of pesticide mixtures to honey bees is generally additive, and well predicted by Concentration Addition. Sci. Total Environ. 2023, 857, 159518. [Google Scholar] [CrossRef]
Crops | Year | Active Substances Used | ||
---|---|---|---|---|
Secuieni Group (NT) | Albota Group (AG) | Fundulea Group (CL) | ||
Rapeseed | 2020 | Imidacloprid (Nuprid 600 FS) Clotihanidin + betacyfluthrin (Modesto 480 FS) | Imidacloprid (Nuprid 600 FS) Clotihanidin + betacyfluthrin (Modesto 480 FS) | Imidacloprid (Nuprid 600 FS) Clotihanidin + betacyfluthrin (Modesto 480 FS) |
2021 | Cyantraniliprole (Lumiposa 625 FS) | Cyantraniliprole (Lumiposa 625 FS) | Cyantraniliprole (Lumiposa 625 FS) | |
Sunflower | 2020 | Imidacloprid (Nuprid Al) Clotihanidin (Poncho 600 FS) | Imidacloprid (Nuprid 600 FS) Clotihanidin (Poncho 600 FS) Thiamethoxam (Cruiser 350 FS) | Imidacloprid (Nuprid 600 FS) Clotihanidin (Poncho 600 FS) Thiamethoxam (Cruiser 350 FS) |
2021 | Cypermethrin (Langis) | Cypermethrin (Langis) | Cypermethrin (Langis) |
Crop | Active Substance | Commercial Product | Concentration (g/L) | Recommended Dose (mL/kg Seed) | Equivalent Dose (g a.i./kg Seed) |
---|---|---|---|---|---|
Oilseed rape | Imidacloprid | Nuprid 600 FS | 600 | 10 | 6.0 |
Clotianidin + Beta-cyfluthrin | Modesto 480 FS | 400 g/L + 80 | 10 | 4.00 + 0.80 = 4.80 | |
Cyantraniliprol | Lumiposa 625 FS | 625 | 10 | 6.25 | |
Sunflower | Imidacloprid | Nuprid Al/600 FS | 600 | 10 | 6.0 |
Clotianidin | Poncho 600 FS | 600 | 10 | 6.0 | |
Thiamethoxam | Cruiser 350 FS | 350 | 10 | 3.5 |
No. | Type of Biological Material | Quantity per Sample | No of Samples | Accepted Containers | Storage and Transport Conditions |
---|---|---|---|---|---|
1. | Adult bees | Minimum 200 g | 24 | Plastic or glass containers, rezistent to −20°C, tightly sealed | Frozen, transported within 24 h |
2. | Honey | 250 g or 15–20 cm2 of comb | 24 | Food-grade plastic containers | Stored at room temperature, protected from light and heat |
3. | Pollen/Bee bread | 150 g | 24 | Food-grade plastic containers | Refrigerated (4 °C), transported within 24 h |
4. | Bee brood (comb section) | 15–20 cm2 | 24 | Plastic containers | Refrigerated (4 °C), transported within 24 h |
Year | Group Location | Crop | Type of Sample | Tau-Fluvalinate (mg/kg) (Limit 0.01 mg/kg) | Other Pesticides (mg/kg) |
---|---|---|---|---|---|
2020 | Fundulea (CL) | Oilseed rape | Honey | 0.12 | Bromopropylate—0.011 |
Pollen | 0.38 | - | |||
Sunflower | Honey | - | Acetamiprid—0.05 dimoxystrobin—0.05 | ||
Bees | - | piperonyl-butoxide—0.01 tetramethrin—0.01 | |||
Bee brood | 0.22 | - | |||
2021 | Fundulea (CL) | Oilseed rape | Pollen | - | Prothioconazole-dethio (sum of isomers)—0.016 tebuconazole—0.11 and 0.12 |
Albota (AG) | Pollen | - | Acetamiprid—0.010 prothioconazole-dethio (sum of isomers)—0.019 tebuconazole—0.012 trifloxystrobin—0.010 |
Year | Crop | Group Location | Type of Sample | Amitraz (mg/kg) | Tau-Fluvalinate (mg/kg) (Limit 0.01 mg/kg) | Other Pesticides (mg/kg) |
---|---|---|---|---|---|---|
2020 | Oilseed rape | NT | Honey | - | 0.12 | Bromopropylate—0.011 |
Pollen | - | - | captan—0.57 dimethoate—0.12 cymoxanil—0.022 fluopicolide—0.026 hexythiazox—0.010 metalaxyl and metalaxyl-M—0.031 propiconazole (sum of isomers)—0.026 spiroxamine (sum of isomers)—0.036 tebuconazole—0.094 | |||
- | 0.38 | - | ||||
Bees | 0.050 | 0.020 | - | |||
Bee brood | 0.13 | 0.61 | - | |||
0.24 | 0.36 | - | ||||
Pollen | - | - | Captan—0.31 cymoxanil—0.011 azoxystrobine—0.022 metalaxyl and metalaxyl-M—0.024 pyraclostrobin—0.053 tebuconazole—0.068 zoxamide—0.025 | |||
Bees | - | 0.011 | - | |||
Bee brood | - | 0.26 | - | |||
CL | Honey | - | 0.15 | - | ||
- | 0.30 | - | ||||
Pollen | - | - | Captan—0.069 dimethoate—0.023 tebuconazole—0.023 | |||
Bee brood | - | 0.022 | - | |||
- | 0.56 | - | ||||
Sunflower | NT | Honey | - | - | Acetamiprid—0.034 dimoxystrobin—0.013 | |
- | 0.040 | - | ||||
Bees | - | - | piperonyl-butoxide—0.012 tetramethrin—0.012 | |||
- | 58.7 | DDT—0.015 | ||||
AG | Bees | - | 1.0 | - | ||
- | 0.021 | Coumaphos—0.033 | ||||
CL | Honey | - | 0.021 | - | ||
2021 | Oilseed rape | NT | Honey | - | 0.032 | - |
- | 0.034 | - | ||||
Bees | - | 0.014 | Fluazifop-P-butyl (fluazifop acid (free)—0.062 | |||
AG | Honey | - | 0.016 | - | ||
- | 0.013 | - | ||||
Bees | - | - | Thiametoxam—0.46 | |||
CL | Honey | - | 0.014 | - | ||
Sunflower | NT | Honey | - | 0.018 | Boscalid—0.026 dimoxystrobin—0.040 | |
- | - | AMPA (aminomethylphosphonic acid) limit 0.01 mg/kg glufosinate-ammonium (sum of glufosinate, its salts, MPP, and NAG expressed as glufosinate equivalents) limit 0.01 mg/kg glyphosate—0.01 | ||||
Pollen | - | 0.035 | - | |||
Bee brood | - | 0.49 | - | |||
AG | Honey | - | 0.024 | - | ||
- | 0.18 | - | ||||
Bees | - | - | Fluazifop-P-butyl (fluazifop acid (free)—0.019 | |||
Bee brood | - | 0.57 | - | |||
CL | Honey | - | 0.039 | - | ||
Bee brood | - | 0.076 | - | |||
- | 0.13 | - |
Year | Crop | Type of Sample | Pesticide | Mean | Min | Max |
---|---|---|---|---|---|---|
2020 | Oilseed rape | Honey | Tau-fluvalinate | 0.190 | 0.120 | 0.300 |
Bees | Amitraz | 0.050 | 0.050 | 0.050 | ||
Bee brood | Amitraz | 0.130 | 0.130 | 0.130 | ||
Tau-fluvalinate | 0.490 | 0.360 | 0.610 | |||
Sunflower | Honey | Acetamiprid | 0.034 | 0.034 | 0.034 | |
Dimoxystrobin | 0.013 | 0.013 | 0.013 | |||
Bees | Piperonyl-butoxide | 0.012 | 0.012 | 0.012 | ||
Tetramethrin | 0.012 | 0.012 | 0.012 | |||
DDT | 0.015 | 0.015 | 0.015 | |||
Tau-fluvalinate | 1.000 | 1.000 | 1.000 | |||
Coumaphos | 0.033 | 0.033 | 0.033 | |||
2021 | Oilseed rape | Honey | Tau-fluvalinate | 0.027 | 0.013 | 0.034 |
Bees | Fluazifop-P-butyl | 0.062 | 0.062 | 0.062 | ||
Thiamethoxam | 0.460 | 0.460 | 0.460 | |||
Sunflower | Honey | Boscalid | 0.026 | 0.026 | 0.026 | |
Dimoxystrobin | 0.040 | 0.040 | 0.040 | |||
Glyphosate | 0.010 | 0.010 | 0.010 | |||
Glufosinate-ammonium | 0.010 | 0.010 | 0.010 | |||
AMPA | 0.010 | 0.010 | 0.010 | |||
Bees | Fluazifop-P-butyl | 0.019 | 0.019 | 0.019 | ||
Bee brood | Tau-fluvalinate | 0.385 | 0.130 | 0.570 |
No Private Apiaries Studied | Total Number of Private Bee Colonies Monitored in the Inactive Season (2021) | Total Number of Dead Bee Colonies from Private, Confirmed of Pesticides in the Inactive Season (2021) |
---|---|---|
NT | 285 | 182 |
AG | 233 | 59 |
CL | 307 | 118 |
Total = 6 | 825 | 359 |
Products | Compounds (Pesticides) | Control Group | Experimental Group | p-Value * |
---|---|---|---|---|
Honey | Tau-fluvalinate ** | 0.09 | 0.01 | <0.0001 |
Captan | 0.04 | 0 | NS | |
Dimethoate | 0.01 | 0 | NS | |
Bee | Tau-fluvalinate | 0.02 | 0 | NS |
Piperonyl-butoxide | 0.01 | 0.01 | NS | |
Amitraz | 0.05 | 0 | NS | |
DDT | 0.02 | 0 | NS | |
Coumaphos | 0.03 | 0 | NS | |
Tetramethrin | 0.01 | 0.01 | NS | |
Bee brood | Tau-fluvalinate ** | 0.34 | 0.01 | NS |
Amitraz | 0.04 | 0 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodescu, D.; Fătu, V.; Şapcaliu, A.; Bădic, E.L.; Zaharia, R.; Tăpăloagă, D.; Robu, A.-D.; Moraru, R.-A. Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons. Agriculture 2025, 15, 1648. https://doi.org/10.3390/agriculture15151648
Bodescu D, Fătu V, Şapcaliu A, Bădic EL, Zaharia R, Tăpăloagă D, Robu A-D, Moraru R-A. Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons. Agriculture. 2025; 15(15):1648. https://doi.org/10.3390/agriculture15151648
Chicago/Turabian StyleBodescu, Dan, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu, and Radu-Adrian Moraru. 2025. "Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons" Agriculture 15, no. 15: 1648. https://doi.org/10.3390/agriculture15151648
APA StyleBodescu, D., Fătu, V., Şapcaliu, A., Bădic, E. L., Zaharia, R., Tăpăloagă, D., Robu, A.-D., & Moraru, R.-A. (2025). Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons. Agriculture, 15(15), 1648. https://doi.org/10.3390/agriculture15151648