Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (155)

Search Parameters:
Keywords = bioisosteres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 950 KiB  
Article
Synthesis and Antifungal Evaluation Against Candida spp. of 5-Arylfuran-2-Carboxamide Derivatives
by Salvatore Mirabile, Giovanna Ginestra, Rosamaria Pennisi, Davide Barreca, Giuseppina Mandalari and Rosaria Gitto
Microorganisms 2025, 13(8), 1835; https://doi.org/10.3390/microorganisms13081835 - 6 Aug 2025
Abstract
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have [...] Read more.
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have previously identified the N-[(4-sulfamoylphenyl)methyl][1,1′-biphenyl]-4-carboxamide to have fungistatic and fungicidal properties, likely due to the hydrophobic biphenyl–chemical features affecting the structural organization of Candida spp. cell membrane. Here, we designed and synthesized a novel series of twelve 5-arylfuran-2-carboxamide derivatives bearing a new hydrophobic tail as bioisosteric replacement of the diphenyl fragment. Its antifungal effectiveness against C. albicans, C. glabrata, and C. parapsilosis, including ATCC and clinically isolated strains, was assessed for all compounds. The most active compound was N-benzyl-5-(3,4-dichlorophenyl)furan-2-carboxamide (6), with fungistatic and fungicidal effects against C. glabrata and C. parapsilosis strains (MIC = 0.062–0.125 and 0.125–0.250 mg/mL, respectively). No synergistic effects were observed when combined with fluconazole. Interestingly, fluorescent microscopy analysis after staining with SYTO 9 and propidium iodide revealed that compound 6 affected the cell membrane integrity in C. albicans strain 16. Finally, carboxamide 6 exhibited a dose-dependent cytotoxicity on erythrocytes, based on assessing the LDH release. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 - 3 Aug 2025
Viewed by 224
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Graphical abstract

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 670
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 401
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 15832 KiB  
Review
The Chalcogen Exchange: The Replacement of Oxygen with Sulfur and Selenium to Boost the Activity of Natural Products
by Muhammad Jawad Nasim, Wesam Ali, Eufrânio N. da Silva Júnior, Rahman Shah Zaib Saleem, Caroline Gaucher, Jadwiga Handzlik, Silvana Pedatella and Claus Jacob
Sci 2025, 7(2), 74; https://doi.org/10.3390/sci7020074 - 3 Jun 2025
Viewed by 1208
Abstract
Antioxidants, such as stilbenes, anthocyanidins, coumarins, tannins and flavonoids, are often based on oxygen-containing redox systems and tend to feature several hydroxyl groups in their chemical structures. From a synthetic perspective, oxygen atoms are prone to bioisosteric replacement with sulfur and, notably, selenium. [...] Read more.
Antioxidants, such as stilbenes, anthocyanidins, coumarins, tannins and flavonoids, are often based on oxygen-containing redox systems and tend to feature several hydroxyl groups in their chemical structures. From a synthetic perspective, oxygen atoms are prone to bioisosteric replacement with sulfur and, notably, selenium. The main objective of this narrative literature review is to explore if and how bioisosteric substitution of oxygen with sulfur or selenium can enhance the biological activity of natural products. This replacement boosts the biological activity of the resulting molecules considerably as they now combine the redox and antioxidant properties of the original flavonoids and other natural products with the specific redox behavior of sulfur and selenium. Besides sequestering free radicals and peroxides, they may, for instance, also catalyze the removal of oxidative stressors, capture free metal ions and even provide scope for selenium supplementation. Since these molecules resemble their natural counterparts, they also exhibit considerable selectivity inside the body and a good pharmacokinetic profile. Still, the synthesis of such hybrid molecules integrating sulfur and selenium into flavonoids and other natural products is a challenge and requires innovative synthetic strategies and approaches. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2024)
Show Figures

Figure 1

17 pages, 3789 KiB  
Article
A PI3K Inhibitor with Low Cardiotoxicity and Its Synergistic Inhibitory Effect with Gilteritinib in Acute Myelogenous Leukemia (AML) Cells
by Tianze Wu, Yi Chen, Yimin Gong, Mingzhu Lu, Chengbin Yang, Yannan Yang, Yun Ling and Yaming Zhou
Molecules 2025, 30(11), 2347; https://doi.org/10.3390/molecules30112347 - 27 May 2025
Viewed by 712
Abstract
N-(2-chloro-5-(3-(pyridin-4-yl)-1H-pyrazolo [3,4-b]pyridin-5-yl)pyridin-3-yl)-4-fluorobenzenesulfonamide, namely, FD274, is a promising 7-azaindazole-based PI3K inhibitor candidate with high antitumor efficacy against acute myeloid leukemia and reduced cardiotoxicity in the zebrafish model. To advance its clinical translation, in this work, we conducted comprehensive assessments of the [...] Read more.
N-(2-chloro-5-(3-(pyridin-4-yl)-1H-pyrazolo [3,4-b]pyridin-5-yl)pyridin-3-yl)-4-fluorobenzenesulfonamide, namely, FD274, is a promising 7-azaindazole-based PI3K inhibitor candidate with high antitumor efficacy against acute myeloid leukemia and reduced cardiotoxicity in the zebrafish model. To advance its clinical translation, in this work, we conducted comprehensive assessments of the cardiotoxicity of FD274 and preliminarily investigated its synergistic antitumor effects with an FLT3 inhibitor, Gilteritinib. The cardiotoxicity profile of FD274, as well as its bioisostere FD268 (positive control), was evaluated using the C57BL/6 mouse model and the H9C2 cell line. The cardiotoxicity of FD274 after a consecutive 20-day treatment period was further assessed in an HL-60 xenograft mouse model. The synergistic cytotoxicity of FD274 with Gilteritinib was evaluated in the HL-60 cell line and the FLT3-ITD cell line MV-4-11. FD274 demonstrated lower adverse effects associated with cardiac dysfunction, oxidative stress, and myocardial injury in the C57BL/6 mouse model and in the H9C2 cell line as compared with FD268. Its negligible adverse effect was further validated in the HL-60 xenograft mice after the 20-day treatment process. Moreover, FD274 demonstrated a synergistic pro-apoptotic effect with Gilteritinib in both HL-60 and MV-4-11 cells. Our findings confirmed the low cardiotoxicity of FD274 and its great potential for combination therapy with Gilteritinib, warranting further development. Full article
Show Figures

Graphical abstract

23 pages, 1376 KiB  
Article
Microwave Assisted Synthesis of Antioxidant Dihydro-Pyrazole Hybrids as Possible Lipoxygenase Inhibitors
by Stergiani-Chrysovalanti Peitzika, Eirini Tsiampakari and Eleni Pontiki
Molecules 2025, 30(10), 2224; https://doi.org/10.3390/molecules30102224 - 20 May 2025
Viewed by 987
Abstract
Free radicals and inflammation have pivotal role in various degenerative diseases like cancer, rheumatoid arthritis, diabetes, cardiovascular and neurodegenerative disorders. Pyrazoles possess a wide range of biological activities such as antifungal, antituberculosis, antimicrobial, antiviral, anti-inflammatory, anti-convulsant, anticancer etc. In this present study a [...] Read more.
Free radicals and inflammation have pivotal role in various degenerative diseases like cancer, rheumatoid arthritis, diabetes, cardiovascular and neurodegenerative disorders. Pyrazoles possess a wide range of biological activities such as antifungal, antituberculosis, antimicrobial, antiviral, anti-inflammatory, anti-convulsant, anticancer etc. In this present study a series of dibenzalacetones and the corresponding pyrazole hybrids were designed through bioisosterism, synthesized and biologically evaluated to highlight the importance of the extended conjugated system and substitution to the anti-inflammatory and antioxidant activity. The synthesis of dibenzalacetones was achieved via Claisen-Schmidt reaction. The dihydro-pyrazoles were synthesized from the substituted dibenzacetones and phenylhydrazines, hydrazine and semicarbazide under microwave irradiation optimizing reaction conditions. The synthesized compounds were spectroscopically characterized and evaluated for their anti-lipid peroxidation (AAPH) activity, their interaction with the free radical DPPH and the inhibition of soybean LOX. The novel derivatives were studied in terms of their physicochemical properties. Many of the dihydro-pyrazoles showed potent antioxidant properties and significant inhibition of soybean lipoxygenase as a result of their physicochemical features. Compounds 4a and 4b presented the most potent anti-lipid peroxidation abilities (98% and 97%), whereas compounds 2d and 2e have proved to be the most potent lipoxygenase inhibitors with IC50 values 2.5 μM and 0.35 μM. Moreover, docking studies with soybean lipoxygenase highlight the interactions of the novel derivatives with the enzyme. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

9 pages, 1886 KiB  
Proceeding Paper
Modeling the Quantitative Structure–Activity Relationships of 1,2,4-Triazolo[1,5-a]pyrimidin-7-amine Analogs in the Inhibition of Plasmodium falciparum
by Inalegwu S. Apeh, Thecla O. Ayoka, Charles O. Nnadi and Wilfred O. Obonga
Eng. Proc. 2025, 87(1), 52; https://doi.org/10.3390/engproc2025087052 - 21 Apr 2025
Viewed by 725
Abstract
Triazolopyrimidine and its analogs represent an important scaffold in medicinal chemistry research. The heterocycle of 1,2,4-triazolo[1,5-a] pyrimidine (1,2,4-TAP) serves as a bioisostere candidate for purine scaffolds, N-acetylated lysine, and carboxylic acid. This study modeled the quantitative structure–activity relationship (QSAR) of 125 congeners of [...] Read more.
Triazolopyrimidine and its analogs represent an important scaffold in medicinal chemistry research. The heterocycle of 1,2,4-triazolo[1,5-a] pyrimidine (1,2,4-TAP) serves as a bioisostere candidate for purine scaffolds, N-acetylated lysine, and carboxylic acid. This study modeled the quantitative structure–activity relationship (QSAR) of 125 congeners of 1,2,4-TAP from the ChEMBL database in the inhibition of Plasmodium falciparum using six machine learning algorithms. The most significant features among 306 molecular descriptors, including one molecular outlier, were selected using recursive feature elimination. A ratio of 20% was used to split the x- and y-matrices into 99 training and 24 test compounds. The regression models were built using machine learning sci-kit-learn algorithms (multiple linear regression (MLR), k-nearest neighbours (kNN), support vector regressor (SVR), random forest regressor (RFR) RIDGE regression, and LASSO). Model performance was evaluated using the coefficient of determination (R2), mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), p-values, F-statistic, and variance inflation factor (VIF). Five significant variables were considered in constructing the model (p < 0.05) with the following regression equation: pIC50 = 5.90 − 0.71npr1 − 1.52pmi3 + 0.88slogP − 0.57vsurf-CW2 + 1.11vsurf-W2. On five-fold cross-validation, three algorithms—kNN (MSE = 0.46, R2 = 0.54, MAE = 0.54, RMSE = 0.68), SVR (MSE = 0.33, R2 = 0.67, MAE = 0.46, RMSE = 0.57), and RFR (MSE = 0.43, R2 = 0.58, MAE = 0.51, RMSE = 0.66)—showed strong robustness, efficiency, and reliability in predicting the pIC50 of 1,2,4-triazolo[1,5-a]pyrimidine. The models provided useful data on the functionalities necessary for developing more potent 1,2,4-TAP analogs as anti-malarial agents. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

25 pages, 7873 KiB  
Review
Recent Developments of 1,3,4-Thiadiazole Compounds as Anticancer Agents
by Serena Indelicato, David Bongiorno, Manuela Mauro and Stella Cascioferro
Pharmaceuticals 2025, 18(4), 580; https://doi.org/10.3390/ph18040580 - 16 Apr 2025
Cited by 1 | Viewed by 3430
Abstract
The World Health Organization has recently underlined the increasing global burden of cancer, with a particularly alarming impact on underserved populations. In recent years, 1,3,4-thiadiazole has emerged as a versatile pharmacophore to obtain bioactive compounds. The pharmacological properties of this ring are primarily [...] Read more.
The World Health Organization has recently underlined the increasing global burden of cancer, with a particularly alarming impact on underserved populations. In recent years, 1,3,4-thiadiazole has emerged as a versatile pharmacophore to obtain bioactive compounds. The pharmacological properties of this ring are primarily attributed to its role as a bioisostere of pyrimidine, the core structure of three nucleic bases. This structural feature endows 1,3,4-thiadiazole derivatives with the ability to interfere with DNA replication processes. Additionally, the mesoionic behavior of this heterocycle gives it important properties, such as the ability to cross biological membranes and interact with target proteins. Noteworthy, in analogy to the other sulfur heterocycles, the presence of C-S σ* orbitals, conferring small regions of low electron density on the sulfur atom, makes interaction with the target easier. This review focuses on the most promising anticancer agents with 1,3,4-thiadiazole structure reported in the past five years, providing information that may be useful to medicinal chemists who intend to develop new anticancer derivatives. Full article
Show Figures

Graphical abstract

27 pages, 6210 KiB  
Article
Synthetic Epoxyeicosatrienoic Acid Mimics Protect Mesangial Cells from Sorafenib-Induced Cell Death
by Marcus de Bourg, Abhishek Mishra, Rawand S. Mohammad, Christophe Morisseau, Bruce D. Hammock, John D. Imig and Anders Vik
Molecules 2025, 30(7), 1445; https://doi.org/10.3390/molecules30071445 - 24 Mar 2025
Viewed by 758
Abstract
Nineteen potential mimics of 8,9-epoxyeicosatrienoic acid (8,9-EET), a natural bioactive oxylipin, were synthesized and evaluated for their ability to protect renal mesangial cells against sorafenib-induced cell death in a water-soluble tetrazolium (WST-8) assay. All compounds were also evaluated as inhibitors of soluble epoxide [...] Read more.
Nineteen potential mimics of 8,9-epoxyeicosatrienoic acid (8,9-EET), a natural bioactive oxylipin, were synthesized and evaluated for their ability to protect renal mesangial cells against sorafenib-induced cell death in a water-soluble tetrazolium (WST-8) assay. All compounds were also evaluated as inhibitors of soluble epoxide hydrolase. As expected of a potent pan-kinase inhibitor the drug sorafenib caused a significant decrease in cell viability in HRMCs. Several analogs containing amide and oxamide groups in place of the epoxide showed efficacy in reducing sorafenib induced human renal mesangial cell (HRMC) death. Oxamide containing analogs proved particularly effective, with the most promising analog increasing cell viability five-fold over control at 1 µM. These analogs, containing an oxamide group as a bioisostere for the epoxide in 8,9-EET, did not display significant inhibitory activity towards soluble epoxide hydrolase. This preliminary structure–activity relationship analysis reveals the oxamide group as a promising bioisostere for the epoxide in the 8,9-position of the fatty acid chain, producing protective effects against sorafenib-induced cell death in HRMCs. Collectively, these findings demonstrate the potential for using epoxide mimics and particularly oxamides as 8,9-EET analogs as bioisosteres of the corresponding epoxide in a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Graphical abstract

30 pages, 11287 KiB  
Article
Computationally Guided Design, Synthesis, and Evaluation of Novel Non-Hydroxamic Histone Deacetylase Inhibitors, Based on N-Trifluoroacetamide as a Zinc-Binding Group, Against Breast Cancer
by Gerardo Morales-Herrejón, Juan Benjamín García-Vázquez, Cynthia Fernández-Pomares, Norbert Bakalara, José Correa-Basurto and Humberto L. Mendoza-Figueroa
Pharmaceuticals 2025, 18(3), 351; https://doi.org/10.3390/ph18030351 - 28 Feb 2025
Viewed by 1056
Abstract
Background: Histone deacetylases (HDACs) are enzymes that deacetylate histone proteins, impacting the transcriptional repression and activation of cancer-associated genes such as P53 and Ras. The overexpression of HDACs in breast cancer (BC) underscores their significance as therapeutic targets for modulating gene expression [...] Read more.
Background: Histone deacetylases (HDACs) are enzymes that deacetylate histone proteins, impacting the transcriptional repression and activation of cancer-associated genes such as P53 and Ras. The overexpression of HDACs in breast cancer (BC) underscores their significance as therapeutic targets for modulating gene expression through epigenetic regulation. Methods: In this study, a novel series of SAHA (suberoylanilide hydroxamic acid) analogs were designed using an in silico ligand-based strategy. These analogs were then synthesized and evaluated for their HDAC-inhibitory capacity as well as their antiproliferative capacity on breast cancer cells. These compounds retained an aliphatic LINKER, mimicking the natural substrate acetyl-lysine, while differing from the hydroxamic fragment present in SAHA. Results: The synthesized compounds exhibited HDAC inhibitory activity, suggesting potential for binding to these pharmacological targets. Compounds 5b, 6a, and 6b were identified as promising candidates in the evaluation on breast cancer cell lines MCF-7 and MDA-MB-231 at 72 h. Specifically, compound 6b, which contains an N-trifluoroacetyl group as a zinc-binding group (ZBG), demonstrated an IC50 of 76.7 µM in the MDA-MB-231 cell line and 45.7 µM in the MCF-7 cell line. In the non-tumorigenic cell line, the compound exhibited an IC50 of 154.6 µM. Conversely, SAHA exhibited an almost negligible safety margin with regard to its cytotoxic activity when compared to breast cancer cells and healthy cells (MCF-10A). This observation underscores the elevated toxicity exhibited by hydroxamic acid-derived molecules. Conclusions: The bioisosteric modification of ZBG by N-trifluoroacetyl in 6a and 6b demonstrated favorable cytotoxic activity, exhibiting a higher safety margin. This study underscores the challenge of identifying novel ZBGs to replace hydroxamic acid in the development of HDAC inhibitors, with the objective of enhancing their physicochemical and toxicological profile for utilization in BC treatment. Full article
Show Figures

Graphical abstract

36 pages, 13267 KiB  
Article
Synthesis, Antiproliferative Activity, and ADME Profiling of Novel Racemic and Optically Pure Aryl-Substituted Purines and Purine Bioisosteres
by Martina Piškor, Astrid Milić, Sanja Koštrun, Maja Majerić Elenkov, Petra Grbčić, Sandra Kraljević Pavelić, Krešimir Pavelić and Silvana Raić-Malić
Biomolecules 2025, 15(3), 351; https://doi.org/10.3390/biom15030351 - 28 Feb 2025
Viewed by 1003
Abstract
The aim of this study was to synthesize new racemic and optically pure aryl-substituted purine bioisosteres using ultrasound-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Regioselective synthesis of α-azido alcohols was applied to afford heterocycles with a 2-hydroxyeth-1-yl linker. Catalytic asymmetric synthesis using halohydrin dehalogenase in [...] Read more.
The aim of this study was to synthesize new racemic and optically pure aryl-substituted purine bioisosteres using ultrasound-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Regioselective synthesis of α-azido alcohols was applied to afford heterocycles with a 2-hydroxyeth-1-yl linker. Catalytic asymmetric synthesis using halohydrin dehalogenase in the ring-opening of epoxides gave enantioenriched azido alcohols, which subsequently afforded R- and S-enantiomers of purine and pyrrolo[2,3-d]pyrimidines with a 1-hydroxyeth-2-yl linker. The newly synthesized compounds were evaluated in vitro for their antiproliferative activity against four malignant tumor cell lines. The influence of regioisomerism and the stereochemistry of the hydroxyethyl group, as well as a N-heterocyclic scaffold linked to the aryl moiety on cytostatic activity was evaluated. Of all the compounds tested, purine 40a and pyrrolo[2,3-d]pyrimidine 45a derivatives with p-trifluoromethyl-substituted aryl connected to 1,2,3-triazole via a 2-hydroxyeth-1-yl spacer showed promising submicromolar antiproliferative activity. In addition, compound 45a exhibited selectivity towards the tumor cell line, with a selectivity index (SI) of 40, moderate clearance, and good membrane permeability. Full article
Show Figures

Graphical abstract

17 pages, 2664 KiB  
Review
Ferrocene Derivatives as Histone Deacetylase Inhibitors: Synthesis and Biological Evaluation
by Rostislava Angelova and Georgi Stavrakov
Organics 2025, 6(1), 4; https://doi.org/10.3390/org6010004 - 26 Jan 2025
Cited by 2 | Viewed by 1394
Abstract
Ferrocene is an organometallic compound that has attracted considerable scientific interest due to its unique properties, including low toxicity, excellent stability in aqueous and aerobic media, and high lipophilicity, which enhances membrane permeability. The ferrocene moiety has been effectively used as a bioisostere [...] Read more.
Ferrocene is an organometallic compound that has attracted considerable scientific interest due to its unique properties, including low toxicity, excellent stability in aqueous and aerobic media, and high lipophilicity, which enhances membrane permeability. The ferrocene moiety has been effectively used as a bioisostere of phenyl rings and heteroaromatic groups in the structures of approved tyrosine kinase inhibitors and histone deacetylase inhibitors (HDACis). HDACis exert their cytotoxic effects by blocking cyclin/CDK complexes, causing cell cycle arrest, inducing apoptosis, inhibiting angiogenesis, and through non-histone-directed mechanisms. This mini-review summarizes the synthesis and biological evaluation of small libraries of compounds in which a ferrocenyl moiety is incorporated into the structure of suberoylanilide hydroxamic acid (SAHA) and a number of analogues. The influence of the organometallic function on the antiproliferative effect is investigated. Both docking analysis and in vitro studies confirm that the ferrocenyl-modified HDACis exhibit potent cytotoxicity and strong inhibitory activity against the various enzyme isoforms. Full article
Show Figures

Figure 1

21 pages, 8490 KiB  
Article
2-Aminothiophene Derivatives—New Drug Candidates Against Leishmaniasis: Drug Design, Synthesis, Pharmacomodulation, and Antileishmanial Activity
by Rodrigo Santos Aquino de Araújo, Vitória Gaspar Bernardo, Robert da Silva Tibúrcio, Danilo Cesar Galindo Bedor, Michel Leandro de Campos, Roberto Pontarolo, Julyanne Maria Saraiva de Sousa, Klinger Antonio da Franca Rodrigues, Marcus Tullius Scotti, Anuraj Nayarisseri, Pascal Marchand and Francisco Jaime Bezerra Mendonça-Junior
Pharmaceuticals 2025, 18(1), 125; https://doi.org/10.3390/ph18010125 - 17 Jan 2025
Cited by 1 | Viewed by 2063
Abstract
Background/Objectives: Leishmaniasis is one of the 20 Neglected Tropical Diseases according to the WHO, affecting approximately 12 million people in four continents, generating serious public health problems. The lack of therapeutic options, associated with toxicity and the emergence of resistance to the [...] Read more.
Background/Objectives: Leishmaniasis is one of the 20 Neglected Tropical Diseases according to the WHO, affecting approximately 12 million people in four continents, generating serious public health problems. The lack of therapeutic options, associated with toxicity and the emergence of resistance to the few available drugs, makes it urgent to develop new drug options. In this context, the aims of this work are to expand the knowledge about the pharmacophore group responsible for the antileishmanial potential of 2-aminothiophene derivatives. Thus, new compounds were synthesized containing chemical modifications at the C-3, C-4, and C-5 positions of the 2-aminothiophene ring, in addition to the S-Se bioisosterism. Methods: Dozens of 2-AT and 2-aminoselenophen (2-AS) derivatives were sequentially synthesized through applications of the Gewald reaction and were then evaluated in vitro for their activities against L. amazonensis and for cytotoxicity against macrophages. Results: Several series of compounds were synthesized, and it was possible to identify some substitution patterns favorable to the activity generating compounds with IC50 values below 10 µM, such as the non-essentiality of the presence of a carbonitrile group at C-3; the importance of the presence and size of cycloalkyl/piperidinyl chains at C-4 and C-5 in modulating the activity; and the increase in activity without affecting the safety of the S/Se bioisosteric substitution. Conclusions: Taken together, these findings reaffirm the great potential of 2-aminothiophenes to generate antileishmanial drug candidates and offers contributions to the drug design of compounds with an even more promising profile for the problem of leishmaniasis. Full article
(This article belongs to the Special Issue Drug Discovery of Antiprotozoal Agents 2024)
Show Figures

Graphical abstract

13 pages, 2476 KiB  
Article
Enzymatic Synthesis of Biologically Active H-Phosphinic Analogue of α-Ketoglutarate
by Vsevolod L. Filonov, Maxim A. Khomutov, Yaroslav V. Tkachev, Artem V. Udod, Dmitry V. Yanvarev, Fabio Giovannercole, Elena N. Khurs, Sergei N. Kochetkov, Daniela De Biase and Alex R. Khomutov
Biomolecules 2024, 14(12), 1574; https://doi.org/10.3390/biom14121574 - 10 Dec 2024
Viewed by 1259
Abstract
Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids [...] Read more.
Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites. Previous studies employing NMR-based metabolomic and proteomic analyses show that in Escherichia coli, α-KG-γ-PH (the distal H-phosphinic analogue of α-ketoglutarate) can be converted into L-Glu-γ-PH. Notably, α-KG-γ-PH and L-Glu-γ-PH are antibacterial compounds, but their intracellular targets only partially overlap. L-Glu-γ-PH is known to be a substrate of aspartate transaminase and glutamate decarboxylase, but its substrate properties with NAD+-dependent glutamate dehydrogenase (GDH) have never been investigated. Compounds containing P-H bonds are strong reducing agents; therefore, enzymatic NAD+-dependent oxidation is not self-evident. Herein, we demonstrate that L-Glu-γ-PH is a substrate of eukaryotic GDH and that the pH optimum of L-Glu-γ-PH NAD+-dependent oxidative deamination is shifted to a slightly alkaline pH range compared to L-glutamate. By 31P NMR, we observe that α-KG-γ-PH exists in a pH-dependent equilibrium of keto and germinal diol forms. Furthermore, the stereospecific enzymatic synthesis of α-KG-γ-PH from L-Glu-γ-PH using GDH is a possible route for its bio-based synthesis. Full article
Show Figures

Figure 1

Back to TopTop