Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = biogenic emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2435 KB  
Article
Vegetation Dynamics and Atmospheric Glyoxal in Houston, Texas (2018–2022)
by Salma Bibi and Bernhard Rappenglück
Atmosphere 2026, 17(1), 100; https://doi.org/10.3390/atmos17010100 - 18 Jan 2026
Viewed by 160
Abstract
Twenty years of MODIS satellite data (2002–2022), TROPOMI glyoxal observations (2018–2022), and ground-based isoprene measurements were used to examine vegetation greenness (NDVI) and atmospheric glyoxal over Houston, Texas. Biogenically produced glyoxal grew by 51% between 2018 and 2022, despite a 2% per decade [...] Read more.
Twenty years of MODIS satellite data (2002–2022), TROPOMI glyoxal observations (2018–2022), and ground-based isoprene measurements were used to examine vegetation greenness (NDVI) and atmospheric glyoxal over Houston, Texas. Biogenically produced glyoxal grew by 51% between 2018 and 2022, despite a 2% per decade decrease in summer vegetation greenness and continued urbanization. Ambient mixing ratios of isoprene, the main biogenic glyoxal precursor, paradoxically dropped by 14% within the same time frame. Temperature (+0.68 °C/year), ozone (+28%), and photochemical oxidants all significantly increased over this time, according to analysis of concurrent environmental data. The results indicate that higher temperature-driven isoprene emissions (+35%) and accelerated photochemical oxidation (+10%) overcame the declining vegetation signal, resulting in net increases in atmospheric glyoxal. This suggests that Houston’s remaining flora is experiencing temperature-driven changes in biogenic volatile organic compound (VOC) emissions per unit area, even while its greenness has reduced. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Graphical abstract

26 pages, 4591 KB  
Article
Environmental Impact Assessment of New Cement Production Blending Calcareous Green Algae and Fly Ash
by Hafiz M. Irfan, Chi-Yun Wu, Muhammad Saddam Hussain and Wei Wu
Processes 2026, 14(2), 299; https://doi.org/10.3390/pr14020299 - 14 Jan 2026
Viewed by 180
Abstract
To improve traditional cement manufacturing, which generates a large amount of greenhouse gases, blending calcareous green algae and fly ash as cement replacement materials is expected to achieve nearly zero carbon emissions. As a calcareous green alga, Halimeda macroloba is a significant producer [...] Read more.
To improve traditional cement manufacturing, which generates a large amount of greenhouse gases, blending calcareous green algae and fly ash as cement replacement materials is expected to achieve nearly zero carbon emissions. As a calcareous green alga, Halimeda macroloba is a significant producer of biogenic calcium carbonate (CaCO3), sequestering approximately 440 kg of carbon dioxide (CO2) per 1000 kg of CaCO3, with CaCO3 production reported in relation to algal biomass. To assess the new low-carbon/low-waste cement production process, the proposed scenarios (2 and 3) are validated via Python-based modeling (Python 3.12) and Aspen Plus® simulation (Aspen V14). The core technology is the pre-calcination of algae-derived CaCO3 and fly ash from coal combustion, which are added to a rotary kiln to enhance the proportions of tricalcium silicate (C3S) and dicalcium silicate (C2S) for forming the desired silicate phases in clinker. Through the lifecycle assessment (LCA) of all scenarios using SimaPro® (SimaPro 10.2.0.3), the proposed Scenario 2 achieves the GWP at approximately 0.906 kg CO2-eq/kg clinker, lower than the conventional cement production process (Scenario 1) by 47%. If coal combustion is replaced by natural gas combustion, the fly ash additive is reduced by 74.5% in the cement replacement materials, but the proposed Scenario 3 achieves the GWP at approximately 0.753 kg CO2-eq/kg clinker, lower than Scenario 2 by 16.9%. Moreover, the LCA indicators show that Scenario 3 has lower environmental impacts on human health, ecosystem, and resources than Scenario 1 by 24.5%, 60.0% and 68.6%, respectively. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

21 pages, 1231 KB  
Article
Undervalued Contribution of OVOCs to Atmospheric Activity: A Case Study in Beijing
by Kaitao Chen, Ziyan Chen, Fang Yang, Xingru Li and Fangkun Wu
Toxics 2026, 14(1), 77; https://doi.org/10.3390/toxics14010077 - 14 Jan 2026
Viewed by 233
Abstract
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed [...] Read more.
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed the concentration levels and compositions of VOCs and their atmospheric activities, offering a new perspective on VOCs. This analysis was conducted through offline measurements of volatile phenols and carbonyl compounds, complemented by online VOC observations during the summer period of high O3 levels. The total atmospheric VOCs concentration was found to be 51.29 ± 10.01 ppbv, with phenols contributing the most (38.87 ± 11.57%), followed by carbonyls (34.91 ± 6.85%), and aromatics (2.70 ± 1.03%, each compound is assigned to only one category based on its primary functional group, with no double counting). Carbonyls were the largest contributors to the OFP at 59.03 ± 14.69%, followed by phenols (19.94 ± 4.27%). The contribution of phenols to the SOAFP (43.37 ± 9.53%) and the LOH (67.74 ± 16.72%) is dominant. Among all quantified VOC species, phenol and formaldehyde exhibited the highest species-level contributions to atmospheric reactivity metrics, including LOH, OFP and SOAFP, owing to their combination of elevated concentrations and large kinetic or MIR coefficients. Using the PMF model for source analysis, six main sources of volatile organic compounds were identified. Solvent use and organic chemicals production were found to be the primary contributors, accounting for 31.76% of the total VOCs emissions, followed by diesel vehicle exhaust (17.80%) and biogenic sources (15.51%). This study introduces important OVOCs such as phenols, re-evaluates the importance of OVOCs and their role in atmospheric chemical processes, and provides new insights into atmospheric VOCs. These findings are crucial for developing effective air pollution control strategies and improving air quality. This study emphasizes the importance of OVOCs, especially aldehydes and phenols, in the mechanism of summer O3 generation. Full article
Show Figures

Graphical abstract

17 pages, 1005 KB  
Article
Microbial Community Profiling of Concrete
by Caroline Danner, Julien Charest, Carlijn Borghuis, Philipp Aschenbrenner, Jakob Lederer, Robert L. Mach and Astrid R. Mach-Aigner
Microorganisms 2026, 14(1), 131; https://doi.org/10.3390/microorganisms14010131 - 7 Jan 2026
Viewed by 205
Abstract
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential [...] Read more.
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential of microorganisms to contribute positively to concrete recycling and self-healing. In this study, we investigated the bacterial and fungal communities inhabiting urban concrete samples using amplicon-based taxonomic profiling targeting the 16S rRNA gene and internal transcribed spacer (ITS) region. Our analyses revealed a diverse assemblage of microbial taxa capable of surviving the extreme physicochemical conditions of concrete. Several taxa were associated with known metabolic functions relevant to concrete degradation, such as acid and sulphate production, as well as biomineralization processes that may support crack repair and surface sealing. These findings suggest that concrete-associated microbiomes may serve as a reservoir of biological functions with potential applications in sustainable construction, including targeted biodegradation for recycling and biogenic mineral formation for structural healing. This work provides a foundation for developing microbial solutions to reduce the environmental footprint of concrete infrastructure. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

29 pages, 2496 KB  
Article
Numerical Modeling of the Global Effects of Ozone Formation During the Oxidation of Non-Methane Volatile Organic Compounds
by Arina Okulicheva, Margarita Tkachenko, Sergei Smyshlyaev and Alexander Baklanov
Climate 2025, 13(12), 251; https://doi.org/10.3390/cli13120251 - 15 Dec 2025
Viewed by 602
Abstract
Isoprene (C5H8), the most abundant biogenic volatile organic compound (400–600 Tg C yr−1), exerts complex NOx-dependent influence on tropospheric ozone, yet its representation remains absent in many climate models. This study aims to quantify isoprene’s [...] Read more.
Isoprene (C5H8), the most abundant biogenic volatile organic compound (400–600 Tg C yr−1), exerts complex NOx-dependent influence on tropospheric ozone, yet its representation remains absent in many climate models. This study aims to quantify isoprene’s impact on tropospheric chemical composition using the Russian Earth system model INM-CM6.0 with newly implemented isoprene oxidation chemistry. Two 12-year experiments (2008–2019) were conducted: a control run without isoprene and an experiment with the Mainz Isoprene Mechanism (MIM1: 44 reactions, 16 species). Results reveal a NOx-dependent two-layer vertical structure. In the tropical surface layer (0–5 km, 20° S–20° N), ozone decreases by 10–15 ppb through radical termination under low-NOx (<100 ppt), with 15–30% OH reduction and 30–60% CO increase. In the middle troposphere (8–12 km), ozone increases by 10–15 ppb through thermal decomposition of vertically transported PAN and MPAN. In subtropics (20–35°) with elevated NOx (>500 ppt), isoprene stimulates ozone formation at all altitudes (+3–12 ppb). Oxidation product distributions establish a spatial hierarchy: local (ISON, NALD: 0–5 km), regional (MPAN: to 8 km), and global (PAN: reaching high latitudes at 8–12 km). Comparison with CAMS, MERRA-2, and ERA5 reanalyses shows substantial improvement: tropical CO discrepancies decrease from 20–30% to 10–15%, OH by factors of 2–3, and ozone overestimation from 30–40% to 10–15%. These findings demonstrate that explicit isoprene chemistry is essential for accurate tropospheric composition simulation, particularly given the projected 21–57% emission increases by 2100 under climate warming. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

17 pages, 3312 KB  
Article
Characterization of VOCs at Shaoxing in the Winter Campaign: Sources and Chemical Reactivity
by Dongfeng Shi, Yan Lyu, Junpeng Song, Qing Ren, Xing Chen, Liyong Hu, Wenting Zhuge, Kewen Hu, Dongmei Cai, Xianda Gong and Jianmin Chen
Atmosphere 2025, 16(12), 1404; https://doi.org/10.3390/atmos16121404 - 14 Dec 2025
Viewed by 429
Abstract
Despite recent improvements in particulate matter (PM) pollution, haze events still frequently occur in many regions of China. Volatile organic compounds (VOCs), as key precursors in atmospheric photochemistry, play a crucial role in haze formation. To elucidate their contributions, high-resolution hourly VOC measurements [...] Read more.
Despite recent improvements in particulate matter (PM) pollution, haze events still frequently occur in many regions of China. Volatile organic compounds (VOCs), as key precursors in atmospheric photochemistry, play a crucial role in haze formation. To elucidate their contributions, high-resolution hourly VOC measurements were conducted in Shaoxing, an industrial city in eastern China, during a winter field campaign from 1 December 2023 to 15 January 2024. The VOC groups were dominated by alkanes (31.5–53.8%), followed by alkenes (7.1–15.1%) and aromatics (6.7–14.1%). Positive Matrix Factorization (PMF) analysis resolved six major VOC sources: vehicle emissions (VE, 33.8%), combustion sources (CS, 20.0%), industrial emissions (IE, 13.4%), gasoline evaporation (GE, 14.6%), solvent usage (SU, 6.9%), and biogenic activities (BA, 12.6%). Based on the PMF results, we further evaluated the source-specific contributions of VOCs to OH radical loss rate (LOH), ozone formation potential (OFP), and secondary organic aerosol potential (SOAP). During the haze episode, GE was the dominant driver of LOH (33%), while IE (23%), GE (22%), and VE (20%) were major SOAP contributors. In contrast, during the other periods, CS contributed most to both OFP (24%) and SOAP (28%), followed by VE (22–23%). Overall, our study highlights the critical role of anthropogenic activities in driving secondary pollution and suggests that sector-specific mitigation strategies hold significant potential for local haze abatement. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 465 KB  
Article
Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage
by Augustine Okafor and Larry Hughes
Energies 2025, 18(24), 6415; https://doi.org/10.3390/en18246415 - 8 Dec 2025
Viewed by 313
Abstract
Producing methanol through carbon capture and utilization presents a sustainable alternative to traditional methods. This study explores two main production pathways, which are further divided into four distinct scenarios. In Nova Scotia, methanol could be produced by combining green hydrogen with either biogenic [...] Read more.
Producing methanol through carbon capture and utilization presents a sustainable alternative to traditional methods. This study explores two main production pathways, which are further divided into four distinct scenarios. In Nova Scotia, methanol could be produced by combining green hydrogen with either biogenic or fossil-derived carbon dioxide sources. The four scenarios differ in scale, carbon source, and methanol output. Scenario 1, a small biomass plant, captures 0.033 Mt CO2/yr and produces 0.024 Mt methanol, but uses only 3% of the green hydrogen. Scenario 2, a natural gas plant, captures 0.90 Mt CO2/yr and produces 0.66 Mt methanol with 69% hydrogen use. Scenario 3, a coal plant, captures 2.30 Mt CO2/yr, converting 57% to 0.94 Mt methanol. Scenario 4, a proposed BECCS plant, captures 2.46 Mt CO2/yr, converts 53% to 0.94 Mt green methanol, and delivers the highest net-negative emissions, making it the most climate-friendly option. While Scenarios 1, 2, and 3 could benefit from retrofitting existing plants, Scenario 4 would require significant infrastructure investment to make it a reality. The study concludes that while Nova Scotia possesses the resources to support renewable and non-renewable methanol production, challenges related to CO2 availability, green hydrogen production, biomass supply, energy requirement, and public perception must be addressed. Full article
Show Figures

Figure 1

17 pages, 1695 KB  
Review
The Multifunctional Role of Salix spp.: Linking Phytoremediation, Forest Therapy, and Phytomedicine for Environmental and Human Benefits
by Giovanni N. Roviello
Forests 2025, 16(12), 1808; https://doi.org/10.3390/f16121808 - 2 Dec 2025
Viewed by 563
Abstract
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in [...] Read more.
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in phytoremediation and growing contribution to forest therapy through emissions of biogenic volatile organic compounds (BVOCs). As urbanization accelerates and environmental pressures intensify globally, the surprising adaptability and multifunctionality of Salix justify the utilization of this genus in building resilient and health-promoting ecosystems. The major points discussed in this work include willow-based phytoremediation strategies, such as rhizodegradation, phytoextraction, and phytostabilization, contributing to restoring even heavily polluted soils, especially when combined with specific strategies of microbial augmentation and trait-based selection. Salix plantations and even individual willow trees may contribute to forest therapy (and ‘forest bathing’ approaches) through volatile compounds emitted by Salix spp. such as ocimene, β-caryophyllene, and others, which exhibit neuroprotective (against Parkinson’s disease), anti-inflammatory, and mood-enhancing properties. Willow’s significantly extended foliage season in temperate regions allows for prolonged ‘forest bathing’ opportunities, enhancing passive therapeutic engagement in urban green infrastructures. Remarkably, the pharmacological potential of willow extends beyond salicin, encompassing a diverse array of phytocompounds with applications in phytomedicine. Finally, willow’s ease of propagation and adaptability make this species a convenient solution for multifunctional landscape design, where ecological restoration and human well-being converge. Overall, this review demonstrates the integrative value of Salix spp. as a keystone genus in sustainable landscape planning, combining remarkable environmental resilience with therapeutic benefits. Future studies should explore standardized methods to evaluate the combined ecological and therapeutic performance of Salix spp., integrating long-term field monitoring with analyses of BVOC emissions under varying environmental stresses. Full article
Show Figures

Figure 1

30 pages, 5248 KB  
Systematic Review
Effect of Metakaolin and Biochar Addition on the Performance of 3D Concrete Printing: A Meta-Analysis Approach
by Imtiaz Iqbal, Tala Kasim, Waleed Bin Inqiad, Svetlana Besklubova, Payam Sadrolodabaee, Daniel Jozef Nowakowski and Mujib Rahman
Sustainability 2025, 17(23), 10725; https://doi.org/10.3390/su172310725 - 30 Nov 2025
Viewed by 538
Abstract
Three-dimensional (3D) concrete printing (3DCP) is an emerging digital construction technology that enables geometrically complex structures with reduced labour, material waste, and formwork. However, the sustainability of 3DCP remains constrained by its heavy reliance on Portland cement, a major source of global CO [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) is an emerging digital construction technology that enables geometrically complex structures with reduced labour, material waste, and formwork. However, the sustainability of 3DCP remains constrained by its heavy reliance on Portland cement, a major source of global CO2 emissions. This study systematically examines metakaolin (MK) and biochar (BC) as sustainable additives for 3DCP, focusing on their independent effects on mechanical performance, printability, dimensional stability, and environmental impact. A comprehensive literature review (2015 to June 2025) identified 254 publications, of which 21 met the inclusion criteria for quantitative meta-analysis, contributing a total of 95 datasets for compressive and flexural strength. Pooled effect sizes were calculated using a random-effects model, supported by risk-of-bias and heterogeneity analyses. The results indicate statistically significant improvements in mechanical properties, with an overall pooled ratio of means (ROM) of 1.12 (95% CI: 1.06–1.20; I2 = 48.9%), representing the overall mechanical performance effect across all datasets, while ROM for compressive and flexural strength was calculated separately in the main analysis. Meta-regression revealed that BC increased compressive and flexural strengths by 7% and 9%, respectively, while MK achieved greater enhancements of 21% and 13.4%. Optimum performance was observed at 15–20% MK for compressive strength and 10–15% for flexural strength, whereas BC performed best at 3–5% and 2–5%, respectively. BC contributed to CO2 reductions of up to 43% through clinker substitution and biogenic carbon sequestration. These findings demonstrate that MK and BC are complementary eco-efficient modifiers capable of enhancing both structural and environmental performance in 3DCP. Future research should address long-term durability, standardisation of printing parameters, and cradle-to-grave life cycle assessments to strengthen practical implementation. Full article
Show Figures

Figure 1

40 pages, 2206 KB  
Review
Technological Approaches for the Capture and Reuse of Biogenic Carbon Dioxide Towards Sustainable Anaerobic Digestion
by Anastasia Theodoropoulou, Dimitra Antonia Bagaki, Maria Gaspari, Panagiotis Kougias, Laura Treu, Stefano Campanaro, Dolores Hidalgo, Rudolphus Antonius Timmers, Maja Berden Zrimec, Robert Reinhardt, Antonio Grimalt-Alemany, Estelle Maria Goonesekera, Irini Angelidaki, Vasileia Vasilaki, Dimitris Malamis, Elli Maria Barampouti and Sofia Mai
Sustainability 2025, 17(22), 10385; https://doi.org/10.3390/su172210385 - 20 Nov 2025
Cited by 1 | Viewed by 1050
Abstract
Anaerobic digestion (AD) produces renewable energy but releases biogenic CO2 and generates digestate requiring management. This paper evaluates four emerging pathways for CO2 capture and reuse in AD systems: (1) in situ CO2 conversion to CH4 via microbial electrolysis [...] Read more.
Anaerobic digestion (AD) produces renewable energy but releases biogenic CO2 and generates digestate requiring management. This paper evaluates four emerging pathways for CO2 capture and reuse in AD systems: (1) in situ CO2 conversion to CH4 via microbial electrolysis cells (MECs), (2) hydrogenotrophic CO2 methanation using green hydrogen, (3) enzymatic CO2 capture coupled with autotrophic algae cultivation, and (4) digestate pyrolysis with syngas biomethanation. Each pathway is assessed in terms of technical feasibility, biocatalyst performance, system configuration, and key implementation challenges. Integrated scenarios demonstrate up to 98% CO2 emission reduction, substantial bioenergy yield improvements, and enhanced nutrient and biomass recovery compared to conventional AD. MEC-based and hydrogenotrophic pathways show the highest energy efficiency, while algae-based systems provide added bioproduct valorization. The remaining limitations include cost, process integration, and scale-up. The study defines development priorities to advance zero-emission AD technologies for the agri-food and waste management sectors. Full article
Show Figures

Figure 1

31 pages, 5187 KB  
Article
Development and Characterization of Biogenic Hydroxyapatite Coatings Derived from Crab Shell Waste on Ti6Al4V Substrates
by Yago Antonio de Lima Guedes, Maurício Maia Ribeiro, Douglas Santos Silva, Raí Felipe Pereira Junio, Roberto Paulo Barbosa Ramos, Sergio Neves Monteiro, Elza Monteiro Leão Filha and Jean da Silva Rodrigues
Materials 2025, 18(22), 5222; https://doi.org/10.3390/ma18225222 - 18 Nov 2025
Cited by 1 | Viewed by 589
Abstract
In this work, we developed and characterized a hydroxyapatite (HA) ceramic coating derived from Ucides cordatus crab-shell waste and applied it onto Ti–Al–V titanium substrates for biomedical use. Substrate analysis confirmed an α + β two-phase microstructure and Rockwell C hardness of ~35 [...] Read more.
In this work, we developed and characterized a hydroxyapatite (HA) ceramic coating derived from Ucides cordatus crab-shell waste and applied it onto Ti–Al–V titanium substrates for biomedical use. Substrate analysis confirmed an α + β two-phase microstructure and Rockwell C hardness of ~35 HRC; optical emission spectrometry indicated a non-conforming Ti–6Al–4V composition (Al slightly above and V slightly below ASTM F136-18 limits), with expected α-phase predominance. Aqueous synthesis of biogenic HA used CaO (from 800 °C calcined shells) reacted with β-tricalcium phosphate (β-Ca3(PO4)2), followed by deposition onto Ti–Al–V surfaces prepared with or without a thermochemical treatment that homogenized roughness (Ra ≈ 0.587 µm). The coatings were continuous, ~95–98 µm thick, and showed good qualitative adhesion. Scanning Electron Microscopy (SEM) revealed porous, nanocrystalline, acicular morphologies typical of biogenic apatite’s. Energy-Dispersive X-ray Spectroscopy (EDS) yielded Ca/P ≈ 1.85–1.88, while X-ray Fluorescence (XRF) indicated Ca-enrichment relative to stoichiometric HA. X-ray Diffraction (XRD) confirmed a predominantly hexagonal HA phase with high crystallinity. These results demonstrate a technically and environmentally feasible route to bioactive coatings using marine biowaste, aligning low-cost, local waste valorization with functional performance on titanium implants. Full article
Show Figures

Graphical abstract

21 pages, 1019 KB  
Article
Linking the LCA of Forest Bio-Based Products for Construction, Ecosystem Services, and Sustainable Forest Management
by Teresa Garnica, Soledad Montilla, José Antonio Tenorio Ríos, Ángel Lora, Antonio J. Molina Herrera and Marta Conde
Sustainability 2025, 17(22), 10134; https://doi.org/10.3390/su172210134 - 13 Nov 2025
Viewed by 545
Abstract
The multifunctional role of forests in supplying renewable biomaterials and delivering ecosystem services (ESs) is often overlooked in standard life cycle assessment (LCA) methodologies, despite its relevance for sustainable construction. This study developed the BioCons Impact Compensation Model (ICM), which integrates ES into [...] Read more.
The multifunctional role of forests in supplying renewable biomaterials and delivering ecosystem services (ESs) is often overlooked in standard life cycle assessment (LCA) methodologies, despite its relevance for sustainable construction. This study developed the BioCons Impact Compensation Model (ICM), which integrates ES into life cycle inventory (LCI) databases and quantifies proprietary BioCons Mitigation Indicators, capturing additional environmental information, ensuring transparency, and preventing greenwashing. Using structural Scots pine in Spain as a case study, the GWP-luluc-roots indicator was found to be 226.84 kg CO2-eq/FU, representing 36% of the biogenic carbon (616.45 kg CO2-eq/FU), highlighting the contribution of root-derived carbon to long-term soil carbon storage. The BioCons Mitigation Indicators demonstrate that mitigation generally exceeds environmental impacts, except for HTP-nc-inorganics, with surplus ES available as biocredits to offset emissions in other life cycle stages. Integrating these indicators into environmental product declarations (EPDs) provides a transparent and accurate view of environmental performance. The results validate the hypothesis that forest bio-based construction products (FBCPs) act as carriers of ESs embedded in derived products, supporting more comprehensive and robust sustainability assessments. Full article
Show Figures

Figure 1

14 pages, 1604 KB  
Article
Decoupled Leaf Physiology and Branch-Level BVOC Emissions in Two Tree Species Under Water and Nitrogen Treatments
by Shuangjiang Li, Diao Yan, Xuemei Liu, Maozi Lin and Zhigang Yi
Forests 2025, 16(11), 1708; https://doi.org/10.3390/f16111708 - 9 Nov 2025
Viewed by 545
Abstract
Soil water availability and nitrogen (N) deposition critically influence biogenic volatile organic compound (BVOC) emissions, thereby affecting atmospheric chemistry. However, their differential short- and long-term effects remain unclear. Here, Ormosia pinnata and Pinus massoniana seedlings were exposed to three water regimes (moderate drought, [...] Read more.
Soil water availability and nitrogen (N) deposition critically influence biogenic volatile organic compound (BVOC) emissions, thereby affecting atmospheric chemistry. However, their differential short- and long-term effects remain unclear. Here, Ormosia pinnata and Pinus massoniana seedlings were exposed to three water regimes (moderate drought, MD; normal irrigation, NI; near-saturated irrigation, NSI) and two nitrogen (N0; 0 kg N ha−1 yr−1; N80; 80 kg N ha−1 yr−1) treatments for 20 months. Branch-level BVOC emissions and leaf physiological and biochemical traits were examined after 8 months (short term) and 16 months (long term). In the short term, P. massoniana predominantly emitted α-pinene, β-pinene, and γ-terpinene, whereas O. pinnata emitted isoprene (ISO). After prolonged exposure, ISO became the dominant in both species. Short-term MD and NSI conditions stimulated ISO emissions in O. pinnata, with N80 addition further amplifying this effect. In contrast, long-term treatments tended to suppress ISO emissions in O. pinnata, particularly under N80. Short-term water treatments had no significant effect on monoterpene (MT) emissions in P. massoniana. Under long-term water treatments, N80 suppressed ISO emissions; nevertheless, ISO emission rates (ISOrate) progressively increased with increasing soil water availability. Although leaf intercellular CO2 concentration (Ci), stomatal conductance (gs), and photosynthesis-related enzymes exhibited partial correlations with BVOC emissions, an overall decoupling between leaf traits and emission patterns was evident. Our findings demonstrate the significant changes in both BVOC composition and emission magnitudes under the joint effects of water availability and nitrogen deposition, providing important implications for improving regional air quality modeling and BVOC emission predictions. Full article
Show Figures

Figure 1

22 pages, 7941 KB  
Article
Comparison Between Experimental and Simulated Hygrothermal Response of Chopped-Straw- and Cellulose-Insulated Wood Frame Panels
by Brock Conley and Mark Carver
Buildings 2025, 15(22), 4017; https://doi.org/10.3390/buildings15224017 - 7 Nov 2025
Viewed by 468
Abstract
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied [...] Read more.
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied carbon emissions—stemming from the production and transport of building materials—must be prioritized during the design phase. Without intervention, construction materials could consume up to half of the remaining global 1.5 °C carbon budget by 2050. This paper highlights NRCan’s prototype, low-carbon, prefabricated panels filled with chopped straw and cellulose insulation under the Prefabricated Exterior Energy Retrofit (PEER) research project. The research advances confidence in performance and durability of biogenic materials by conducting controlled experiments, guarded hot box testing, and hygrothermal modelling. These panels present a promising pathway to drastically lower embodied carbon in the built environment. The validated hygrothermal model, accurate to between 3% and 7, enables assessment of hygrothermal performance across Canadian climates, retrofit scenarios and future climate conditions. This work supports the evidence for low-carbon or bio-based materials as a solution for Canada’s built environment. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 22622 KB  
Article
Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
by Jing Fan, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(19), 3321; https://doi.org/10.3390/rs17193321 - 27 Sep 2025
Viewed by 880
Abstract
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of [...] Read more.
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx)—such as the formaldehyde-to-nitrogen dioxide ratio (FNR, defined as HCHO/NO2, where HCHO represents VOCs and NO2 represents NOx)—is one of the most widely used satellite-based indicators. Recent studies have highlighted glyoxal (CHOCHO) as another critical ozone precursor, prompting the proposal of the glyoxal-to-nitrogen dioxide ratio (GNR, CHOCHO/NO2) as an alternative metric. This study systematically compares the performance of FNR and GNR across four major urban agglomerations in China: Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing (CY) region, by integrating satellite remote sensing with ground-based observations. Results reveal that both indices exhibit consistent spatial trends in OFS distribution, transitioning from VOC-limited regimes in urban centers to NOx-limited regimes in surrounding suburban areas. However, differences emerge in threshold values and classification outcomes. During summer, FNR identifies urban areas as transitional regimes (or VOC-limited in regions such as YRD and PRD), while suburban areas are classified as NOx-limited. In contrast, GNR, which shows heightened sensitive to anthropogenic VOCs (AVOCs), exhibits a more restricted spatial extent in the transition regimes. By autumn, most urban areas shift toward VOC-limited regimes, while suburban regions remain NOx-limited. Thresholds for both VOCs and NOx increase during this period, with GNR demonstrating stronger sensitivity to NOx. These findings underscore that the choice between FNR and GNR directly influences OFS determination, as their differing responses to biogenic and anthropogenic emissions lead to different conclusions. Future research should focus on integrating the complementary strengths of both indices to develop a more robust OFS identification method, thereby providing a theoretical basis for formulating effective ozone control strategies. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Trace Gases and Air Quality)
Show Figures

Figure 1

Back to TopTop