Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
Abstract
Highlights
- Analyzed the spatiotemporal differences and causes of ozone sensitivity between FNR and GNR in four major urban agglomerations in China.
- Revealed a common spatial distribution pattern for both indices: VOC-limited regimes in urban centers and NOx-limited regimes in suburban areas.
- Due to its higher sensitivity to anthropogenic VOCs, GNR classifications exhibit a stronger tendency toward NOx-limited regimes compared to FNR.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Ground-Based Observation
2.3. TROPOMI Satellite Data
2.4. Methods
3. Results
3.1. Ozone Pollution Characteristics
3.2. Spatiotemporal Variations in Ozone Precursors and Indicator Indices
3.3. Threshold Determination of FNR and GNR
3.4. Spatial Classification of Ozone Formation Sensitivity
3.5. Comparison of FNR and GNR Ozone Formation Sensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-Level Ozone Pollution and Its Health Impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Ma, X.; Huang, J.; Zhao, T.; Liu, C.; Zhao, K.; Xing, J.; Xiao, W. Rapid Increase in Summer Surface Ozone over the North China Plain during 2013–2019: A Side Effect of Particulate Matter Reduction Control? Atmos. Chem. Phys. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Oksanen, E. Impacts of Ozone on Forest Plants and Ecosystems. Forests 2021, 12, 1345. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting Trends of PM2.5 and Surface-Ozone Concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T. Worsening Urban Ozone Pollution in China from 2013 to 2017—Part 2: The Effects of Emission Changes and Implications for Multi-Pollutant Control. Atmos. Chem. Phys. 2020, 20, 6323–6337. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Hofzumahaus, A.; Fuchs, H.; Bohn, B.; Holland, F.; Liu, Y.; Rohrer, F.; Shao, M.; Sun, K.; et al. Experimental Budgets of OH, HO2, and RO2 Radicals and Implications for Ozone Formation in the Pearl River Delta in China 2014. Atmos. Chem. Phys. 2019, 19, 7129–7150. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric Chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Chan, K.L.; Hu, Q.; Xie, Z.; Liu, H.; Si, F.; Liu, J. Ship-Based MAX-DOAS Measurements of Tropospheric NO2, SO2, and HCHO Distribution along the Yangtze River. Atmos. Chem. Phys. 2018, 18, 5931–5951. [Google Scholar] [CrossRef]
- Souri, A.H.; Nowlan, C.R.; Wolfe, G.M.; Lamsal, L.N.; Chan Miller, C.E.; Abad, G.G.; Janz, S.J.; Fried, A.; Blake, D.R.; Weinheimer, A.J.; et al. Revisiting the Effectiveness of HCHO/NO2 Ratios for Inferring Ozone Sensitivity to Its Precursors Using High Resolution Airborne Remote Sensing Observations in a High Ozone Episode during the KORUS-AQ Campaign. Atmos. Environ. 2020, 224, 117341. [Google Scholar] [CrossRef]
- Valin, L.C.; Fiore, A.M.; Chance, K.; González Abad, G. The Role of OH Production in Interpreting the Variability of CH2O Columns in the Southeast U.S. JGR Atmos. 2016, 121, 478–493. [Google Scholar] [CrossRef]
- Martin, R.V.; Parrish, D.D.; Ryerson, T.B.; Nicks, D.K.; Chance, K.; Kurosu, T.P.; Jacob, D.J.; Sturges, E.D.; Fried, A.; Wert, B.P. Evaluation of GOME Satellite Measurements of Tropospheric NO2 and HCHO Using Regional Data from Aircraft Campaigns in the Southeastern United States. J. Geophys. Res. 2004, 109, D24307. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.D.; Valin, L. Inferring Changes in Summertime Surface Ozone-NOx-VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- Ren, J.; Guo, F.; Xie, S. Diagnosing Ozone-NOx-VOC Sensitivity and Revealing Causes of Ozone Increases in China Based on 2013–2021 Satellite Retrievals. Atmos. Chem. Phys. 2022, 22, 15035–15047. [Google Scholar] [CrossRef]
- Witte, J.C.; Duncan, B.N.; Douglass, A.R.; Kurosu, T.P.; Chance, K.; Retscher, C. The Unique OMI HCHO/NO2 Feature during the 2008 Beijing Olympics: Implications for Ozone Production Sensitivity. Atmos. Environ. 2011, 45, 3103–3111. [Google Scholar] [CrossRef]
- Lin, H.; Xing, C.; Hong, Q.; Liu, C.; Ji, X.; Liu, T.; Lin, J.; Lu, C.; Tan, W.; Li, Q.; et al. Diagnosis of Ozone Formation Sensitivities in Different Height Layers via MAX-DOAS Observations in Guangzhou. JGR Atmos. 2022, 127, e2022JD036803. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, T.; Luo, Y.; Miao, C.; Su, P.; Liu, F.; Zhang, G.; Qin, S.; Song, Y.; Bu, N.; et al. Identification of Ozone Sensitivity for NO2 and Secondary HCHO Based on MAX-DOAS Measurements in Northeast China. Environ. Int. 2022, 160, 107048. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, M.; Yao, Y.; Zeng, C.; Zhang, W.; Yan, H.; Gao, P.; Fan, L.; Ye, D. Research on the Ozone Formation Sensitivity Indicator of Four Urban Agglomerations of China Using Ozone Monitoring Instrument (OMI) Satellite Data and Ground-Based Measurements. Sci. Total Environ. 2023, 869, 161679. [Google Scholar] [CrossRef]
- Wang, M.; Sheng, H.; Liu, Y.; Wang, G.; Huang, H.; Fan, L.; Ye, D. Research on the Diurnal Variation Characteristics of Ozone Formation Sensitivity and the Impact of Ozone Pollution Control Measures in “2 + 26” Cities of Henan Province in Summer. Sci. Total Environ. 2023, 888, 164121. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and Temporal Variability of Ozone Sensitivity over China Observed from the Ozone Monitoring Instrument. JGR Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Curci, G.; Palmer, P.I.; Kurosu, T.P.; Chance, K.; Visconti, G. Estimating European Volatile Organic Compound Emissions Using Satellite Observations of Formaldehyde from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2010, 10, 11501–11517. [Google Scholar] [CrossRef]
- Li, X.; Brauers, T.; Hofzumahaus, A.; Lu, K.; Li, Y.P.; Shao, M.; Wagner, T.; Wahner, A. MAX-DOAS Measurements of NO2, HCHO and CHOCHO at a Rural Site in Southern China. Atmos. Chem. Phys. 2013, 13, 2133–2151. [Google Scholar] [CrossRef]
- Stavrakou, T. Evaluating the Performance of Pyrogenic and Biogenic Emission Inventories against One Decade of Space-Based Formaldehyde Columns. Atmos. Chem. Phys. 2009, 9, 1037–1060. [Google Scholar] [CrossRef]
- Kang, Y.; Tang, G.; Li, Q.; Liu, B.; Yao, D.; Wang, Y.; Wang, Y.; Wang, Y.; Liu, W. Problems with and Improvement of HCHO/NO2 for Diagnosing Ozone Sensitivity—A Case in Beijing. Remote Sens. 2023, 15, 1982. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3–NOx–VOC Sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Fu, T.-M.; Zhang, L.; Henze, D.K.; Miller, C.C.; Lerot, C.; Abad, G.G.; De Smedt, I.; Zhang, Q.; Van Roozendael, M.; et al. Adjoint Inversion of Chinese Non-Methane Volatile Organic Compound Emissions Using Space-Based Observations of Formaldehyde and Glyoxal. Atmos. Chem. Phys. 2018, 18, 15017–15046. [Google Scholar] [CrossRef]
- Gratsea, M.; Vrekoussis, M.; Richter, A.; Wittrock, F.; Schönhardt, A.; Burrows, J.; Kazadzis, S.; Mihalopoulos, N.; Gerasopoulos, E. Slant Column MAX-DOAS Measurements of Nitrogen Dioxide, Formaldehyde, Glyoxal and Oxygen Dimer in the Urban Environment of Athens. Atmos. Environ. 2016, 135, 118–131. [Google Scholar] [CrossRef]
- Chen, Y.; Su, W.; Xing, C.; Yin, H.; Lin, H.; Zhang, C.; Liu, H.; Hu, Q.; Liu, C. Kilometer-Level Glyoxal Retrieval via Satellite for Anthropogenic Volatile Organic Compound Emission Source and Secondary Organic Aerosol Formation Identification. Remote Sens. Environ. 2022, 270, 112852. [Google Scholar] [CrossRef]
- Lerot, C.; Hendrick, F.; Roozendael, M.V.; Alvarado, L.M.A.; Richter, A.; Smedt, I.D.; Theys, N.; Vlietinck, J.; Yu, H.; Gent, J.V.; et al. Glyoxal Tropospheric Column Retrievals from TROPOMI—Multi-Satellite Intercomparison and Ground-Based Validation. Atmos. Meas. Tech. 2021, 14, 7775–7807. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The Impact of Volatile Organic Compounds on Ozone Formation in the Suburban Area of Shanghai. Atmos. Environ. 2020, 232, 117511. [Google Scholar] [CrossRef]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef]
- De Smedt, I.; Pinardi, G.; Vigouroux, C.; Compernolle, S.; Bais, A.; Benavent, N.; Boersma, F.; Chan, K.-L.; Donner, S.; Eichmann, K.-U.; et al. Comparative Assessment of TROPOMI and OMI Formaldehyde Observations against MAX-DOAS Network Column Measurements. Atmos. Chem. Phys. 2021, 21, 12561–12593. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Liu, S.; Valks, P.; Pinardi, G.; Xu, J.; Chan, K.L.; Argyrouli, A.; Lutz, R.; Beirle, S.; Khorsandi, E.; Baier, F.; et al. An Improved TROPOMI Tropospheric NO2 Research Product over Europe. Atmos. Meas. Tech. 2021, 14, 7297–7327. [Google Scholar] [CrossRef]
- De Smedt, I.; Theys, N.; Yu, H.; Danckaert, T.; Lerot, C.; Compernolle, S.; Van Roozendael, M.; Richter, A.; Hilboll, A.; Peters, E.; et al. Algorithm Theoretical Baseline for Formaldehyde Retrievals from S5P TROPOMI and from the QA4ECV Project. Atmos. Meas. Tech. 2018, 11, 2395–2426. [Google Scholar] [CrossRef]
- Vigouroux, C.; Langerock, B.; Bauer Aquino, C.A.; Blumenstock, T.; Cheng, Z.; De Mazière, M.; De Smedt, I.; Grutter, M.; Hannigan, J.W.; Jones, N.; et al. TROPOMI–Sentinel-5 Precursor Formaldehyde Validation Using an Extensive Network of Ground-Based Fourier-Transform Infrared Stations. Atmos. Meas. Tech. 2020, 13, 3751–3767. [Google Scholar] [CrossRef]
- Li, Y.; Yu, C.; Tao, J.; Lu, X.; Chen, L. Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data. Remote Sens. 2024, 16, 316. [Google Scholar] [CrossRef]
- Li, R.; Xu, M.; Li, M.; Chen, Z.; Zhao, N.; Gao, B.; Yao, Q. Identifying the Spatiotemporal Variations in Ozone Formation Regimes across China from 2005 to 2019 Based on Polynomial Simulation and Causality Analysis. Atmos. Chem. Phys. 2021, 21, 15631–15646. [Google Scholar] [CrossRef]
- Pusede, S.E.; Cohen, R.C. On the Observed Response of Ozone to NOx and VOC Reactivity Reductions in San Joaquin Valley California 1995–Present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar] [CrossRef]
- Sillman, S. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Kleinman, L.I. Low and High NOx Tropospheric Photochemistry. J. Geophys. Res. 1994, 99, 16831–16838. [Google Scholar] [CrossRef]
- Schroeder, J.R.; Crawford, J.H.; Fried, A.; Walega, J.; Weinheimer, A.; Wisthaler, A.; Müller, M.; Mikoviny, T.; Chen, G.; Shook, M.; et al. New Insights into the Column CH2O/NO2 Ratio as an Indicator of Near-surface Ozone Sensitivity. JGR Atmos. 2017, 122, 8885–8907. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.M.; Murray, L.T.; Valin, L.C.; Lamsal, L.N.; Duncan, B.; Folkert Boersma, K.; De Smedt, I.; Abad, G.G.; Chance, K.; et al. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends. JGR Atmos. 2017, 122, 10439–10461. [Google Scholar] [CrossRef]
- Li, L.; Xie, F.; Li, J.; Gong, K.; Xie, X.; Qin, Y.; Qin, M.; Hu, J. Diagnostic Analysis of Regional Ozone Pollution in Yangtze River Delta, China: A Case Study in Summer 2020. Sci. Total Environ. 2022, 812, 151511. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, K.; Zhang, K.; Zhu, S.; Wang, M.; Li, L. VOCs Sources and Roles in O3 Formation in the Central Yangtze River Delta Region of China. Atmos. Environ. 2023, 302, 119755. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Pei, C.; Chen, T.; Mu, J.; Liu, Y.; Wang, Y.; Wang, W.; Xue, L. Worsening Ozone Air Pollution with Reduced NO and VOCs in the Pearl River Delta Region in Autumn 2019: Implications for National Control Policy in China. J. Environ. Manag. 2022, 324, 116327. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, S.; Zhang, R.; Yuan, M.; Ying, Q. Assessment of Summertime O3 Formation and the O3-NOX-VOC Sensitivity in Zhengzhou, China Using an Observation-Based Model. Sci. Total Environ. 2022, 813, 152449. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, L.; Sun, J.; Zhang, L.; Li, Y.; Li, K.; Liu, B.; Zhang, J.; Wang, Y. Maximizing Ozone Control by Spatial Sensitivity-Oriented Mitigation Strategy in the Pearl River Delta Region, China. Sci. Total Environ. 2023, 905, 166987. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Xiao, S.; Wu, Z.; Wang, X. Ozone Formation at a Suburban Site in the Pearl River Delta Region, China: Role of Biogenic Volatile Organic Compounds. Atmosphere 2023, 14, 609. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, J.; Guo, H.; Lyu, X. Impact of NOx Reduction on Long-Term Surface Ozone Pollution in Roadside and Suburban Hong Kong: Field Measurements and Model Simulations. Chemosphere 2022, 302, 134816. [Google Scholar] [CrossRef]
- Wang, N.; Du, Y.; Chen, D.; Meng, H.; Chen, X.; Zhou, L.; Shi, G.; Zhan, Y.; Feng, M.; Li, W.; et al. Spatial Disparities of Ozone Pollution in the Sichuan Basin Spurred by Extreme, Hot Weather. Atmos. Chem. Phys. 2024, 24, 3029–3042. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, J.; Han, L.; Tian, W.; Wang, C.; Li, Y.; Chen, J. Source Apportionment of VOCs and Ozone Formation Potential and Transport in Chengdu, China. Atmos. Pollut. Res. 2023, 14, 101730. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, X.; Zheng, Z.; Dai, Y.; Du, G.; Han, J.; Hou, L.; Duan, E. Summer O3 Pollution Cycle Characteristics and VOCs Sources in a Central City of Beijing-Tianjin-Hebei Area, China. Environ. Pollut. 2023, 323, 121293. [Google Scholar] [CrossRef]
- Zhang, H.; Li, A.; Hu, Z.; Ren, H.; Zhong, H.; Guo, J.; Yun, L.; Zhang, M. Observation on the Aerosol and Ozone Precursors in Suburban Areas of Shenzhen and Analysis of Potential Source Based on MAX-DOAS. J. Environ. Sci. 2023, 132, 109–121. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Chen, X.; Zhai, T.; Ma, X.; Yang, X.; Chen, S.; Li, X.; Zeng, L.; Lu, K. Observation and Modeling of Organic Nitrates on a Suburban Site in Southwest China. Sci. Total Environ. 2023, 859, 160287. [Google Scholar] [CrossRef]
- Rappenglück, B.; Dasgupta, P.K.; Leuchner, M.; Li, Q.; Luke, W. Formaldehyde and Its Relation to CO, PAN, and SO2 in the Houston-Galveston Airshed. Atmos. Chem. Phys. 2010, 10, 2413–2424. [Google Scholar] [CrossRef]
- Parrish, D.D.; Ryerson, T.B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J.G.; Washenfelder, R.A.; De Gouw, J.A.; Peischl, J.; et al. Primary and Secondary Sources of Formaldehyde in Urban Atmospheres: Houston Texas Region. Atmos. Chem. Phys. 2012, 12, 3273–3288. [Google Scholar] [CrossRef]
- Li, L.Y.; Chen, Y.; Xie, S.D. Spatio-Temporal Variation of Biogenic Volatile Organic Compounds Emissions in China. Environ. Pollut. 2013, 182, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global Budgets of Atmospheric Glyoxal and Methylglyoxal, and Implications for Formation of Secondary Organic Aerosols. J. Geophys. Res. 2008, 113, D15303. [Google Scholar] [CrossRef]
- Kaiser, J.; Wolfe, G.M.; Min, K.E.; Brown, S.S.; Miller, C.C.; Jacob, D.J.; deGouw, J.A.; Graus, M.; Hanisco, T.F.; Holloway, J.; et al. Reassessing the Ratio of Glyoxal to Formaldehyde as an Indicator of Hydrocarbon Precursor Speciation. Atmos. Chem. Phys. 2015, 15, 7571–7583. [Google Scholar] [CrossRef]
- Chan Miller, C.; Jacob, D.J.; Marais, E.A.; Yu, K.; Travis, K.R.; Kim, P.S.; Fisher, J.A.; Zhu, L.; Wolfe, G.M.; Hanisco, T.F.; et al. Glyoxal Yield from Isoprene Oxidation and Relation to Formaldehyde: Chemical Mechanism, Constraints from SENEX Aircraft Observations, and Interpretation of OMI Satellite Data. Atmos. Chem. Phys. 2017, 17, 8725–8738. [Google Scholar] [CrossRef]
- Singh, A.; Ring, A.M.; He, H.; Allen, D.J.; Dickerson, R.R.; Salawitch, R.J.; Canty, T.P. Inferring Near-Surface Ozone Production Regimes: Insights from Using Satellite Retrievals over the Contiguous US. Atmos. Environ. 2025, 352, 121208. [Google Scholar] [CrossRef]
- Ryan, R.G.; Rhodes, S.; Tully, M.; Schofield, R. Surface Ozone Exceedances in Melbourne, Australia Are Shown to Be under NOx Control, as Demonstrated Using Formaldehyde:NO2 and Glyoxal:Formaldehyde Ratios. Sci. Total Environ. 2020, 749, 141460. [Google Scholar] [CrossRef] [PubMed]
City | O3 Formation Region | June to August | September to November | ||
---|---|---|---|---|---|
FNR (%) | GNR (%) | FNR (%) | GNR (%) | ||
BTH | VOC | 0.02 | 0 | 55.09 | 47.09 |
VOC-NOx | 40.18 | 20.51 | 20.18 | 23 | |
NOx | 59.80 | 79.49 | 24.73 | 29.91 | |
YRD | VOC | 1.54 | 0 | 52.34 | 32.95 |
VOC-NOx | 39.24 | 19.22 | 38.22 | 53.34 | |
NOx | 59.21 | 80.78 | 9.44 | 13.71 | |
PRD | VOC | 3.09 | 0 | 35.67 | 13.03 |
VOC-NOx | 38.18 | 23.39 | 48.04 | 57.31 | |
NOx | 58.73 | 76.61 | 16.29 | 29.66 | |
CY | VOC | 0.02 | 0.04 | 6.45 | 3.39 |
VOC-NOx | 18.29 | 4.37 | 54.17 | 56.85 | |
NOx | 81.29 | 95.59 | 39.38 | 39.76 |
No. | Observation Period | Site Location | Site Type | Method | FNR | GNR | Ozone Formation Region | Reference |
---|---|---|---|---|---|---|---|---|
1 | 17–23 August 2020 | Nanjing (YRD) | Urban | CMAQ&OBM | Transition region | Transition region | Transition region | Li et al., 2022 [44] |
2 | 24 August to 11 October 2018 | Changzhou (YRD) | Urban | EKMA | VOC-limited | VOC-limited | VOC-limited | Liu et al., 2023 [45] |
3 | September to November 2018 | Guangzhou (PRD) | Urban | Chemical box model & EKMA | VOC-limited | VOC-limited | VOC-limited | Zhao et al., 2022 [46] |
4 | July 2019 | Zhengzhou | Urban | OBM | Transition region | Transition region | VOC-limited & Transition region | Wang et al., 2023 [47] |
5 | 26–30 September 2021 | Guangzhou (PRD) | Urban | CMAQ | VOC-limited | VOC-limited | VOC-limited | Wang et al., 2023 [48] |
6 | 29 August to 3 September 2020 | Huadu (PRD) | Suburban | EKMA | VOC-limited | Transition region | VOC-limited | Wang et al., 2023 [49] |
7 | 2014–2019 | Hongkong | Urban& Suburban | RIR& EKMA | VOC-limited | VOC-limited | VOC-limited | Zeng et al., 2022 [50] |
8 | August 2022 | Chengdu & Chongqing (CY) | Urban | OBM | Transition region | Transition region | VOC-limited& Transition region | Wang et al., 2024 [51] |
9 | June to August 2019 | Chengdu (CY) | Urban | EKMA | VOC-limited | VOC-limited | VOC-limited | Wang et al., 2023 [52] |
10 | June to August 2020 | Shijiazhuang (BTH) | Urban | PMF | Transition region | Transition region | VOC-limited | Guan et al., 2023 [53] |
11 | September 2020 to February 2021 | Shenzhen (PRD) | Suburban | VOCs/NOx ratio | Transition region | NOx-limited | NOx-limited | Zhang et al., 2023 [54] |
12 | 10 August to 10 September 2019 | Chengdu (CY) | Suburban | RIR | Transition region | Transition region | VOC-limited | Li et al., 2023 [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Yu, C.; Li, Y.; Zhang, Y.; Fan, M.; Tao, J.; Chen, L. Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations. Remote Sens. 2025, 17, 3321. https://doi.org/10.3390/rs17193321
Fan J, Yu C, Li Y, Zhang Y, Fan M, Tao J, Chen L. Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations. Remote Sensing. 2025; 17(19):3321. https://doi.org/10.3390/rs17193321
Chicago/Turabian StyleFan, Jing, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao, and Liangfu Chen. 2025. "Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations" Remote Sensing 17, no. 19: 3321. https://doi.org/10.3390/rs17193321
APA StyleFan, J., Yu, C., Li, Y., Zhang, Y., Fan, M., Tao, J., & Chen, L. (2025). Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations. Remote Sensing, 17(19), 3321. https://doi.org/10.3390/rs17193321