Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = biofuel standard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2181 KB  
Article
Experimental Study on the Influence of Acoustic Waves on the Particle Emissions from an IC Engine Fueled with Diesel and Isopropanol-Biodiesel Blends
by Sai Manoj Rayapureddy, Jonas Matijošius, Alfredas Rimkus and Aleksandras Chlebnikovas
Energies 2025, 18(22), 5961; https://doi.org/10.3390/en18225961 - 13 Nov 2025
Abstract
Road transport in the European Union is responsible for approximately 60% of PM10 emissions and 45% of PM2.5 emissions. Acoustic agglomeration is researched to be the most effective after-treatment method to control particle pollution. Recent experimental research suggests that at a frequency of [...] Read more.
Road transport in the European Union is responsible for approximately 60% of PM10 emissions and 45% of PM2.5 emissions. Acoustic agglomeration is researched to be the most effective after-treatment method to control particle pollution. Recent experimental research suggests that at a frequency of around 20 kHz and a sound pressure level of 140 dB, particles can be agglomerated. The kinetic energy of the particles is influenced by the presence of acoustics, and this enhances the collision efficiency between the particles. These collided fine particles increase in size and can be easily filtered through conventional filters. Additionally, clean burning biofuels produce comparatively fewer particles; hence RME is used for experiments along with its two blends of isopropanol (RME95I5 and RME90I10). The results are then compared to those of standard diesel fuel. With an increase in load, an average reduction of 20% in fine particles is observed along with an increase in large-sized particles. The aggregation of smaller particles is observed in a range of 0–50% in almost all tested conditions. With the increase in isopropanol from 5 to 10%, oxygen content in the fuel increased by 7%, a 1% reduction in carbon and a 2% reduction in C/H ratio is observed which led to a 6 and 9% reduction in particle emissions at 60 Nm and 90 Nm, respectively. At higher loads, D100, RME95I5 and RME90I10 recorded an agglomeration of 10%, 111% and 189%, respectively. Similar results are observed for the tendency for agglomeration at lower loads. Full article
(This article belongs to the Special Issue Performance and Emissions of Vehicles and Internal Combustion Engines)
Show Figures

Figure 1

31 pages, 1718 KB  
Article
A Comparative Techno-Economic Analysis of Waste Cooking Oils and Chlorella Microalgae for Sustainable Biodiesel Production
by Ahmed A. Bhran
Processes 2025, 13(11), 3526; https://doi.org/10.3390/pr13113526 - 3 Nov 2025
Viewed by 632
Abstract
This research work presents a techno-economic assessment of biodiesel production with non-standard waste cooking oil (WCO) (brown grease of small restaurants, yellow grease of households) and semi-open Chlorella sp. microalgal cultivation, which covers the problematic areas of scale and cost-efficiency in sustainable biodiesel [...] Read more.
This research work presents a techno-economic assessment of biodiesel production with non-standard waste cooking oil (WCO) (brown grease of small restaurants, yellow grease of households) and semi-open Chlorella sp. microalgal cultivation, which covers the problematic areas of scale and cost-efficiency in sustainable biodiesel production. Cost-effective biodiesel feedstock research has been motivated by the urgency of finding sustainable sources of energy. With base-catalyzed transesterification optimized by ANOVA and response surface methodology (RSM), the present study recorded biodiesel yields of up to 99.08% in household WCO (at optimum conditions; 55 °C, 3.3 mg/g NaOH, ethanol) and 96.61% in restaurant WCO (at optimum conditions; 54 °C, 1.5 mg/g NaOH, methanol) compared to 28.6% in Chlorella sp. (semi-open photobioreactors). Concerning the two types of WCO feedstocks, the obtained equations are able to compute the biodiesel viscosity and yield, in good correlation with the experimental values, in relation to the temperature and ratio of catalyst to oil/alcohol solution. The assessed household WCO has better yield and quality as it contains fewer impurities, whereas the restaurant WCO needed to be further purified, driving up the prices. Although Chlorella biodiesel is carbon neutral, its production and extraction costs are higher, making it less economically feasible for biodiesel production. Economic analysis showed that the capital costs of household WCO, restaurant WCO, and Chlorella sp. are USD 190,000, USD 220,000, and USD 720,000, respectively, based on 1,000,000 L/year as biodiesel production rate. Low capital costs as well as byproduct glycerol income of the two investigated types of WCO play a role in their low payback periods (0.23–0.91 years) and high ROI (110–444.4%). The analysis highlights the economic and environmental benefits of WCO, especially household WCO, as a scalable biodiesel feedstock, which provides new insights into process optimization and sustainable biodiesel strategies. To enhance its sustainability and cost-effectiveness and contribute to the transition to renewable biofuels globally, future studies need to emphasize energy reduction in microalgae production and purification of restaurant WCO. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

18 pages, 3388 KB  
Article
Quantifying Policy-Induced Cropland Dynamics: A Probabilistic and Spatial Analysis of RFS-Driven Expansion and Abandonment on Marginal Lands in the U.S. Corn Belt
by Shuai Li and Xuzhen He
Sustainability 2025, 17(21), 9568; https://doi.org/10.3390/su17219568 - 28 Oct 2025
Viewed by 268
Abstract
Rapid biofuel expansion has significantly reshaped agricultural land use in the United States, raising concerns about the conversion and long-term sustainability of marginal croplands. Understanding how policy incentives influence these land-use changes remains a key challenge in sustainable land management. This study aims [...] Read more.
Rapid biofuel expansion has significantly reshaped agricultural land use in the United States, raising concerns about the conversion and long-term sustainability of marginal croplands. Understanding how policy incentives influence these land-use changes remains a key challenge in sustainable land management. This study aims to quantify the effects of the Renewable Fuel Standard on cropland expansion and subsequent abandonment in the U.S. Midwest using a probabilistic and spatially explicit framework. The analysis integrates geospatial datasets from USDA, USGS, gridMET, and the U.S. Energy Information Administration, combining indicators of soil productivity, slope, precipitation, temperature, and market accessibility. Bayesian logistic regression models were developed to estimate pre-policy baseline probabilities of corn cultivation and to generate counterfactual scenarios—hypothetical conditions representing land-use patterns in the absence of policy incentives. Results show that over one-quarter of marginal land cultivated in 2016 would likely not have been planted without biopower policy-related incentives, indicating that policy-driven expansion extended into less suitable areas. A second-stage analysis identified regions where such lands were later abandoned, revealing the role of climatic and economic constraints in shaping long-term sustainability. These findings demonstrate the effectiveness of integrating probabilistic modelling with high-resolution spatial data to evaluate causal policy effects and quantify counterfactual impacts—that is, the measurable differences between observed and simulated land-use outcomes. Full article
Show Figures

Figure 1

16 pages, 1199 KB  
Article
Enhancement of Lipids Content in Chlorella sp. Under Phosphorus Limitation and Heavy Metal Addition for Biodiesel Production
by Napisa Pattharaprachayakul, Ramachandran Sivaramakrishnan and Aran Incharoensakdi
Phycology 2025, 5(3), 49; https://doi.org/10.3390/phycology5030049 - 19 Sep 2025
Viewed by 590
Abstract
Microalgae are photosynthetic microorganisms that could be used as potential microbial cell factories by directly converting CO2 into valuable bioproducts and biofuels. This study aims to improve the production of biofuel from the isolated green alga Chlorella sp., in terms of an [...] Read more.
Microalgae are photosynthetic microorganisms that could be used as potential microbial cell factories by directly converting CO2 into valuable bioproducts and biofuels. This study aims to improve the production of biofuel from the isolated green alga Chlorella sp., in terms of an increase in its lipid content and its conversion to fatty acid methyl esters (FAMEs) when the cells are grown under the influence of phosphorus (P) limitation and heavy metal addition. The results show that the highest content of lipids, at 68.9%, was achieved within one day under 0% P with a 17 µM cobalt addition. Moreover, supplementation with a low Pb concentration increased cell growth even under P limitation, but under this condition, its lipid content was decreased after seven days of growth. The lipids of Chlorella sp. were transesterified to produce FAMEs. The overall biodiesel properties of the obtained FAMEs were of acceptable quality according to the standards (ASTM and EN). Additionally, the energy conversion from light energy to lipids was shown to be in the range of 10–16% conversion efficiency within seven days. Hence, the physiological modification of Chlorella sp. culture by phosphorus limitation coupled with the addition of a low concentration of heavy metals enabled the improvement of lipid content, with the subsequent transesterification resulting in the production of biodiesel with acceptable quality. Full article
Show Figures

Figure 1

25 pages, 2563 KB  
Article
Decarbonizing Aviation: The Low-Carbon Footprint and Strategic Potential of Colombian Palm Oil for Sustainable Aviation Fuel
by David Arturo Munar-Flórez, Nidia Elizabeth Ramírez-Contreras, Jorge Alberto Albarracín-Arias, Phanor Arias-Camayo, Víctor Rincón-Romero, Jesús Alberto García-Núñez, Camilo Ardila-Badillo and Mónica Cuéllar-Sánchez
Energies 2025, 18(18), 4978; https://doi.org/10.3390/en18184978 - 19 Sep 2025
Viewed by 1112
Abstract
The global energy transition is pushing the development of advanced biofuels to reduce greenhouse gas (GHG) emissions in the aviation industry. This study thoroughly evaluates the potential of the Colombian crude palm oil (CPO) sector to support sustainable aviation fuel (SAF) production. Extensive [...] Read more.
The global energy transition is pushing the development of advanced biofuels to reduce greenhouse gas (GHG) emissions in the aviation industry. This study thoroughly evaluates the potential of the Colombian crude palm oil (CPO) sector to support sustainable aviation fuel (SAF) production. Extensive primary data from 53 palm oil mills and 269 palm plantations were examined. The methodology included a carbon footprint analysis of SAF produced from Colombian CPO through the HEFA pathway, an economic aspects analysis, a review of renewable fuel standards, and an assessment of market access for low-CO2-emitting feedstocks. The results show that the carbon footprint of the Colombian palm oil-SAF is 16.11 g CO2eq MJ−1 SAF, which is significantly lower than the 89.2 g CO2eq MJ−1 reference value for traditional jet fuel. This figure considers current direct Land Use-Change (DLUC) emissions and existing methane capture practices within the Colombian palm oil agro-industry. A sensitivity analysis indicated that this SAF’s carbon footprint could decrease to negative values of −4.58 g CO2eq MJ−1 if all surveyed palm oil mills implement methane capture. Conversely, excluding DLUC emissions from the assessment raised the values to 47.46 g CO2eq MJ−1, highlighting Colombia’s favorable DLUC profile as a major factor in its low overall CPO carbon footprint. These findings also emphasize that methane capture is a key low-carbon practice for reducing the environmental impact of sustainable fuel production, as outlined by the CORSIA methodology. Based on the economic analysis, investing in Colombian CPO-based SAF production is a financially sound decision. However, the project’s profitability is highly susceptible to the volatility of SAF sales prices and raw material costs, underscoring the need for meticulous risk management. Overall, these results demonstrate the strong potential of Colombian palm oil for producing sustainable aviation fuels that comply with CORSIA requirements. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 1068 KB  
Article
Reducing Oil Waste Through Condition-Based Maintenance: A Diagnostic Study Using FTIR and Viscosity Monitoring
by Artur Wolak and Wojciech Krasodomski
Sustainability 2025, 17(18), 8214; https://doi.org/10.3390/su17188214 - 12 Sep 2025
Viewed by 878
Abstract
Engine oil condition critically affects vehicle performance, fuel efficiency, and engine durability. While conventional oil change strategies are based on fixed intervals or mileage thresholds, they often neglect real operating conditions and the actual state of lubricant degradation. This study investigates nine used [...] Read more.
Engine oil condition critically affects vehicle performance, fuel efficiency, and engine durability. While conventional oil change strategies are based on fixed intervals or mileage thresholds, they often neglect real operating conditions and the actual state of lubricant degradation. This study investigates nine used engine oil samples collected from passenger vehicles operating in diverse environments, including city traffic, highway routes, hybrid systems, and diesel engines. The oils were assessed using kinematic viscosity measurements and Fourier transform infrared (FTIR) spectroscopy to monitor key degradation indicators—oxidation, nitration, sulfonation, fuel dilution, soot contamination, and additive depletion. Each case is fully documented with detailed operational histories, facilitating a nuanced, real-world understanding of oil aging. The results demonstrate that degradation levels vary considerably, even under similar mileage ranges, highlighting the influence of urban usage patterns and engine design. In several cases, premature or delayed oil changes were observed, confirming that standard service intervals may be suboptimal. FTIR proved effective in detecting subtle chemical transformations, particularly in samples affected by biofuel components or prolonged thermal stress. These findings emphasize the value of integrating laboratory diagnostics into oil change decision-making and support more tailored maintenance strategies. Such an approach can reduce unnecessary oil replacement, limit waste generation, and extend engine lifespan, contributing to both environmental and economic sustainability. This study supports the implementation of condition-based oil change strategies to minimize lubricant waste and promote maintenance practices aligned with sustainability principles. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

36 pages, 479 KB  
Review
A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications
by Jawaher Al Balushi, Shamail Al Saadi, Mitra Ahanchi, Manar Al Attar, Tahereh Jafary, Muna Al Hinai, Anteneh Mesfin Yeneneh and J. Sadhik Basha
Biomass 2025, 5(3), 55; https://doi.org/10.3390/biomass5030055 - 10 Sep 2025
Viewed by 3196
Abstract
Spent coffee grounds (SCGs), a globally abundant by-product of the coffee industry, represent a significant source of lignocellulosic biomass with considerable valorization potential. Rich in organic compounds, lipids, and antioxidants, SCGs are increasingly recognized as a sustainable feedstock for energy, materials, and environmental [...] Read more.
Spent coffee grounds (SCGs), a globally abundant by-product of the coffee industry, represent a significant source of lignocellulosic biomass with considerable valorization potential. Rich in organic compounds, lipids, and antioxidants, SCGs are increasingly recognized as a sustainable feedstock for energy, materials, and environmental applications within a circular bioeconomy framework. This review critically examines recent advances in SCG valorization via thermochemical, biochemical, and material-based pathways. The review focuses on the conversion of SCGs into biofuels (biodiesel, bioethanol, biogas, and bio-oil), activated carbon for water and air purification, biodegradable polymers, and soil-enhancing amendments. Comparative analyses of process conditions, product yields, and techno-economic feasibility are provided through summarized tables. Although laboratory-scale studies demonstrate promising outcomes, challenges persist in terms of process scalability, environmental impacts, feedstock variability, and lack of regulatory standardization. Furthermore, comprehensive life cycle assessments and policy integration remain underdeveloped. By merging all findings, this review identifies key knowledge gaps and outlines strategic directions for future research, including the development of integrated valorization platforms, hybrid conversion systems, and industrial-scale implementation. The findings support the role of SCG valorization in advancing sustainable resource management and contribute directly to the achievement of multiple Sustainable Development Goals. Full article
21 pages, 6426 KB  
Article
Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance
by Eduardo D. Arroyo Dagobeth, Daniel D. Otero Meza, Juan J. Cabello Eras, Jorge L. Moya Rodríguez and Jairo G. Salcedo Mendoza
Recycling 2025, 10(5), 173; https://doi.org/10.3390/recycling10050173 - 10 Sep 2025
Viewed by 938
Abstract
This study aimed to assess the physical, chemical, and combustion properties of pellets made from corncob and rice husk residues sourced in Sucre, Colombia, and to evaluate the performance of different blending ratios. Before pelletization, the residues were ground and processed using a [...] Read more.
This study aimed to assess the physical, chemical, and combustion properties of pellets made from corncob and rice husk residues sourced in Sucre, Colombia, and to evaluate the performance of different blending ratios. Before pelletization, the residues were ground and processed using a small-scale flat die pellet mill equipped with a 6 mm die. Physical properties were evaluated according to ISO standards for particle density, bulk density, and impact resistance assessment. Proximate and ultimate analyses, as well as heating values, were determined and compared against the ISO 17225-6:2021 classification for herbaceous biomass. The 70:30 corncob-to-rice husk blend (CC70:RH30) showed good quality, with 7.23% ash, 9.18% moisture, and an LHV of 15.19 MJ/kg, meeting the criteria for Class B pellets. Combustion performance was assessed using a custom-designed macro-TGA, revealing that co-pelletized blends exhibited improved ignition temperatures and comprehensive combustion indices compared to the individual feedstocks. Additionally, calorific values were proportional to the blending ratios. In summary, controlling the blending ratio of corncob and rice husk residues during pellet production allows modulation of both the total ash content and the lower heating value of the resulting solid biofuels, making them more suitable for thermochemical conversion routes such as combustion and/or gasification. Full article
Show Figures

Figure 1

21 pages, 1615 KB  
Article
Coproduction of Biodiesel and Bioethanol from Ricinus communis Seed Through an Integrated Process
by Alejandra G. Oliva-Rodríguez, Fernando Salinas De León, Thelma K. Morales-Martínez, José Antonio Rodríguez-De la Garza, Miguel A. Medina-Morales, Marisol Cruz-Requena, Gustavo A. Neyra-Escobedo and Leopoldo J. Ríos-González
Processes 2025, 13(9), 2877; https://doi.org/10.3390/pr13092877 - 9 Sep 2025
Viewed by 722
Abstract
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated [...] Read more.
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated the integrated use of R. communis seeds for the production of biodiesel and bioethanol using eco-efficient technologies. Ultrasound-assisted extraction enhanced oil recovery reached a maximum yield of 34%, surpassing the conventional Soxhlet method. Transesterification was optimized through factorial design, achieving a predicted biodiesel yield of 97% (Qualitek 4.0, 90% confidence interval), with an experimental maximum yield of 90.8% under optimal conditions (24:1 methanol-to-oil ratio, 0.4% catalyst, 90% sonication amplitude, 60 min). The biodiesel met international standards for engine applications. Starch from the residual seed cake was hydrolyzed with enzymatic complexes, yielding 6.8 g/L of reducing sugars, equivalent to 91.4% hydrolysis yield. Fermentation of the hydrolysates with Zymomonas mobilis produced 3.1 g/L ethanol, corresponding to 90.8% of the theoretical yield. This integrated approach exemplifies a circular bioeconomy model by combining biodiesel and bioethanol production, maximizing resource utilization, and minimizing waste. The results highlight the potential of R. communis as a sustainable, scalable feedstock for renewable energy, contributing to energy security and environmental sustainability. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

20 pages, 1435 KB  
Article
Evaluation of Tire Pyrolysis Oil–HVO Blends as Alternative Diesel Fuels: Lubricity, Engine Performance, and Emission Impacts
by Tomas Mickevičius, Agnieszka Dudziak, Jonas Matijošius and Alfredas Rimkus
Energies 2025, 18(16), 4389; https://doi.org/10.3390/en18164389 - 18 Aug 2025
Viewed by 1362
Abstract
In the pursuit of sustainable and circular energy sources, this study examines the potential of tire pyrolysis oil (TPO) as a diesel fuel substitute when combined with hydrotreated vegetable oil (HVO), a second-generation biofuel. At varying TPO-HVO blend percentages, this investigation evaluates engine [...] Read more.
In the pursuit of sustainable and circular energy sources, this study examines the potential of tire pyrolysis oil (TPO) as a diesel fuel substitute when combined with hydrotreated vegetable oil (HVO), a second-generation biofuel. At varying TPO-HVO blend percentages, this investigation evaluates engine performance and emissions in relation to critical fuel parameters, including density, viscosity, and lubricity. The high-frequency reciprocating rig (HFRR) method was employed to examine tribological aspects, and a single-cylinder diesel engine was tested under various load conditions. The findings indicated that blends containing up to 30% TPO maintained sufficient lubrication and engine performance to comply with diesel standards, concurrently reducing carbon monoxide and smoke emissions. The increase in TPO proportion resulted in a decrease in cetane number, an increase in NOx emissions, and a rise in viscosity, particularly under full engine load conditions. The utilization of TPO is crucial for converting tire waste into fuel, as it mitigates the accumulation of tire waste and reduces dependence on fossil fuels, despite existing challenges. This study provides critical insights into the efficacy of blending methods and underscores the necessity of additional fuel refining processes, such as cetane enhancement and desulfurization, to facilitate their integration into transportation energy systems. Full article
Show Figures

Figure 1

14 pages, 1014 KB  
Article
Bioenergy Production from Solid Fuel Conversion of Cattle Manure and Resource Utilization of the Combustion Residues
by Eunsung Lee, Junsoo Ha and Seongwook Oa
Processes 2025, 13(8), 2417; https://doi.org/10.3390/pr13082417 - 30 Jul 2025
Cited by 1 | Viewed by 1030
Abstract
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the [...] Read more.
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the nutrient recovery potential of its combustion residues. Solid fuel was prepared from cattle manure collected in Gyeongsangbuk-do, Korea, and its fuel characteristics and ash composition were analyzed after combustion. Combustion tests conducted using a dedicated solid fuel boiler showed that an average lower heating value of 13.27 MJ/kg was achieved, meeting legal standards. Under optimized combustion, CO and NOx emissions (129.9 and 41.5 ppm) were below regulatory limits (200 and 90 ppm); PM was also within the 25 mg/Sm3 standard. The bottom ash contained high concentrations of P2O5 and K, and its heavy metal content was below the regulatory threshold, suggesting its potential reuse as a fertilizer material. Although the Zn concentration in the fly ash exceeded the standard, its quantity was negligible. Therefore, the solid fuel conversion of cattle manure can become a viable and environmentally sustainable solution for both bioenergy production and nutrient recycling, contributing to improved waste management in livestock operations. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

27 pages, 940 KB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Cited by 1 | Viewed by 3792
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

19 pages, 2630 KB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Cited by 1 | Viewed by 1227
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

23 pages, 3015 KB  
Review
Sustainable Fuels for Gas Turbines—A Review
by István Péter Kondor
Sustainability 2025, 17(13), 6166; https://doi.org/10.3390/su17136166 - 4 Jul 2025
Viewed by 2222
Abstract
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and [...] Read more.
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and gaseous fuels in gas turbines by evaluating their environmental impacts, performance characteristics, and technical integration potential. The study examines a broad range of alternatives, including biofuels, hydrogen, alcohols, ethers, synthetic fuels, and biogas, focusing on their production methods, combustion behavior, and compatibility with existing turbine technology. Key findings indicate that several bio-derived and synthetic fuels can serve as viable drop-in replacements for conventional jet fuels, especially under ASTM D7566 standards. Hydrogen and other gaseous alternatives show promise for industrial applications but require significant combustion system adaptations. The study concludes that a transition to sustainable fuels in gas turbines is achievable through coordinated advancements in combustion technology, fuel infrastructure, and regulatory support, thus enabling meaningful reductions in greenhouse gas emissions and advancing global decarbonization efforts. Full article
Show Figures

Figure 1

23 pages, 1703 KB  
Article
Assessing and Projecting Long-Term Trends in Global Environmental Air Quality
by Yongtao Jin
Sustainability 2025, 17(13), 5981; https://doi.org/10.3390/su17135981 - 29 Jun 2025
Viewed by 780
Abstract
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This [...] Read more.
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This study focuses on trend analysis and expectations for the duration of control for environmental air quality (EAQ) indicators, assesses the current EAQ conditions across global countries, and presents reasonable suggestions for environmental control. The study begins by examining the annual, per capita, and per square meter (m2) carbon dioxide (CO2) emission peak and standardizations, where carbon standardization is a replacement for carbon neutrality. A similar quantitative methodology was employed to assess classical air quality factors such as sulfur dioxide (SO2) and nitrogen oxides (NOx). The findings suggest that the average control year length (ACYL) of NOx is longer than that of SO2, and the ACYL of SO2 is, in turn, longer than that of CO2. From an energy structure perspective, regressions results indicate that biofuel and wind power contribute to improvements in EAQ, while coal, oil, and gas power exert negative impacts. Moreover, a long-term EAQ model utilizing an adjusted max–min normalization method is proposed to integrate various EAQ indicators. This study also presents an EAQ ranking for global countries and recommends countries with critical EAQ challenges. The results demonstrate that it is plausible to control EAQ factors at an excellent level with advances in control technologies and effective measures by government, industries, and individuals. Full article
Show Figures

Figure 1

Back to TopTop