Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (787)

Search Parameters:
Keywords = biodegradable fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 10775 KiB  
Article
Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation—Toward Smart 2D Biomaterials
by Julia Radwan-Pragłowska, Aleksandra Kopacz, Aleksandra Sierakowska-Byczek, Łukasz Janus, Piotr Radomski and Aleksander Radwan-Pragłowski
Appl. Sci. 2025, 15(15), 8713; https://doi.org/10.3390/app15158713 - 6 Aug 2025
Abstract
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes [...] Read more.
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes enhanced with periclase (MgO) and gold nanoparticles (AuNPs). The membranes were fabricated using an optimized electrospinning process and subsequently characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and contact angle measurements. Additionally, in vitro biodegradation studies in simulated body fluid (SBF) and cytocompatibility tests with osteoblast-like cells were conducted. The results demonstrated that the incorporation of MgO and AuNPs significantly influenced the structural and chemical properties of the membranes, improving their wettability and bioactivity. SEM imaging confirmed uniform fiber morphology with well-distributed nanoparticles. FT-IR spectroscopy indicated successful integration of bioactive components into the PLA matrix. Cytocompatibility assays showed that modified membranes promoted higher osteoblast adhesion and proliferation compared to pristine PLA membranes. Furthermore, biodegradation studies revealed a controlled degradation rate suitable for guided bone regeneration applications. These findings suggest that electrospun PLA membranes enriched with MgO and AuNPs present a promising biomaterial for GBR applications, offering improved bioactivity, mechanical stability, and biocompatibility. Full article
(This article belongs to the Special Issue Bioactive Composite Materials: From Preparation to Application)
Show Figures

Figure 1

33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 10388 KiB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Viewed by 195
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 164
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 222
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

19 pages, 10032 KiB  
Article
Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering
by Chandana B. Shivakumar, Nithya Rani Raju, Pruthvi G. Ramu, Prashant M. Vishwanath, Ekaterina Silina, Victor Stupin and Raghu Ram Achar
Pharmaceutics 2025, 17(8), 953; https://doi.org/10.3390/pharmaceutics17080953 - 23 Jul 2025
Viewed by 400
Abstract
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts [...] Read more.
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts their use in biological systems, amino groups were added to the fiber surface using the aminolysis technique, greatly increasing the wettability of the membranes. Methods: Polycaprolactone nanofibrous membranes were synthesized via the electrospinning technique and surface modification by aminolysis. Trypsin, pepsin, and pancreatin were conjugated onto the aminolyzed PNF surface to further strengthen biocompatibility by enhancing the hydrophilicity, porosity, and biodegradation rate. SEM, FTIR, EDX, and liquid displacement method were performed to investigate proteolytic efficiency and morphological and physical characteristics such as hydrophilicity, porosity, and degradation rates. Results: Enzyme activity tests, which showed a zone of clearance, validated the successful enzyme conjugation and stability over a wide range of pH and temperatures. Scanning electron microscopy (SEM) confirms the smooth morphology of nanofibers with diameters ranging from 150 to 950 nm. Fourier transform infrared spectroscopy (FTIR) revealed the presence of O–H, C–O, C=O, C–N, C–H, and O–H functional groups. Energy-dispersive X-ray (EDX) elemental analysis indicates the presence of carbon, oxygen, and nitrogen atoms owing to the presence of peptide and amide bonds. The liquid displacement technique and contact angle proved that Pepsin-PNFs possess notably increased porosity (88.50% ± 0.31%) and hydrophilicity (57.6° ± 2.3 (L), 57.9° ± 2.5 (R)), respectively. Pancreatin-PNFs demonstrated enhanced enzyme activity and degradation rate on day 28 (34.61%). Conclusions: These enzyme-conjugated PNFs thus show improvements in physicochemical properties, making them ideal candidates for various biomedical applications. Future studies must aim for optimization of enzyme conjugation and in vitro and in vivo performance to investigate the versatility of these scaffolds. Full article
Show Figures

Figure 1

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 1019
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 572
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

20 pages, 10209 KiB  
Article
Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing
by H. M. D. U. Sewwandi, J. D. Chathuranga, W. G. C. M. Kulasooriya, D. K. A. Induranga, S. V. A. A. Indupama, G. D. C. P. Galpaya, M. K. D. M. Gunasena, H. V. V. Priyadarshana and K. R. Koswattage
J. Compos. Sci. 2025, 9(7), 365; https://doi.org/10.3390/jcs9070365 - 14 Jul 2025
Viewed by 313
Abstract
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray [...] Read more.
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Mechanical properties of the materials were investigated through compression, tensile, and bending tests in order to assess their strength and flexibility, while biodegradability was evaluated through soil burial tests. The results indicate that SCBA addition enhances compressive strength, with optimal performance obtained at 15% SCBA content, while tensile and bending strengths showed an enhancement at 5% content. FTIR and XRD analyses suggested an increase in amorphous regions and notable microstructural interactions between SCBA particles and cellulose fibers, particularly at a 10% concentration. SEM images further confirmed effective particle dispersion and improved porosity in the composite materials. Furthermore, samples incorporating SCBA exhibited superior biodegradability compared to pure pulp. Overall, these findings highlight that incorporating 10–15% SCBA provides a promising balance between mechanical integrity and environmental sustainability, offering a viable strategy for developing eco-friendly, high-performance packaging materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Composites and Manufacturing Innovations)
Show Figures

Figure 1

16 pages, 6023 KiB  
Article
Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
by Justyna Jakubska, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian and Gabriela Dudek
Foods 2025, 14(14), 2470; https://doi.org/10.3390/foods14142470 - 14 Jul 2025
Viewed by 416
Abstract
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer [...] Read more.
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer film production method, combining electrospun polycaprolactone (PCL) fibers with a chitosan matrix. Two configurations were investigated: (1) nonwoven PCL layers placed between chitosan sheets and (2) a chitosan sheet sandwiched between two nonwoven PCL layers. Both systems were evaluated using PCL fibers derived from medical-grade and technical-grade polymers. The chitosan/polycaprolactone/chitosan (CH/PCL/CH) configuration demonstrated superior performance, achieving enhanced interlayer cohesion and significantly improved mechanical strength, durability, and barrier properties. Notably, this configuration achieved tensile strength and elongation at break values of 57.1 MPa and 36.3%, respectively—more than double those of pure chitosan films. This breakthrough underscores the potential of multilayered biopolymer films as eco-friendly packaging solutions, offering exceptional promise for sustainable applications in the food packaging industry. Full article
Show Figures

Graphical abstract

31 pages, 2704 KiB  
Review
Nanofabrication Techniques for Enhancing Plant–Microbe Interactions in Sustainable Agriculture
by Wajid Zaman, Atif Ali Khan Khalil, Adnan Amin and Sajid Ali
Nanomaterials 2025, 15(14), 1086; https://doi.org/10.3390/nano15141086 - 14 Jul 2025
Viewed by 530
Abstract
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal [...] Read more.
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal for applications such as nutrient delivery systems, microbial inoculants, and environmental monitoring. This review explores various types of nanomaterials employed in agriculture, focusing on their role in enhancing microbial colonization and soil health and optimizing plant growth. Key nanofabrication techniques, including top-down and bottom-up manufacturing, electrospinning, and nanoparticle synthesis, are discussed in relation to controlled release systems and microbial inoculants. Additionally, the influence of surface properties such as charge, porosity, and hydrophobicity on microbial adhesion and colonization is examined. Moreover, the potential of nanocoatings and electrospun fibers to enhance seed protection and promote beneficial microbial interactions is investigated. Furthermore, the integration of nanosensors for detecting pH, reactive oxygen species, and metabolites offers real-time insights into the biochemical dynamics of plant–microbe systems, applicable to precision farming. Finally, the environmental and safety considerations regarding the use of nanomaterials, including biodegradability, nanotoxicity, and regulatory concerns, are addressed. This review emphasizes the potential of nanomaterials to revolutionize sustainable agricultural practices by improving crop health, nutrient efficiency, and environmental resilience. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

16 pages, 2079 KiB  
Article
Biogas Production from Agave durangensis Mezcal Bagasse Pretreated Using Chemical Processes
by Refugio Hernández-López, Iván Moreno-Andrade, Blanca E. Barragán-Huerta, Edson B. Estrada-Arriaga and Marco A. Garzón-Zúñiga
Fermentation 2025, 11(7), 399; https://doi.org/10.3390/fermentation11070399 - 12 Jul 2025
Viewed by 483
Abstract
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and [...] Read more.
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and improve the anaerobic digestion (AD) process. The chemical composition of bagasse was analyzed before and after the chemical pretreatments and then AD experiments were conducted in anaerobic sequential batch reactors (A-SBR) to analyze the effect of pretreatments on biogas production performance. The results showed that acid pretreatment increased cellulose content to 0.606 g, which represented an increase of 34%, and significantly reduced hemicellulose. In contrast, alkaline pretreatment did not show significant changes in cellulose composition, although it caused a swelling of the Agave durangensis mezcal bagasse (Ad-MB) fibers. In terms of biogas production, Ad-MB pretreated with acid (Ad-MB-acid) increased cumulative production by 76% compared to the Agave durangensis mezcal bagasse that was not pretreated (Ad-MB-not pretreated) and by 135% compared to Agave durangensis mezcal bagasse pretreated with an alkaline solution (Ad-MB-alkaline). These results confirmed that Agave durangensis solid waste from the mezcal industry that receives acidic chemical pretreatment has the potential to generate biogas as a sustainable biofuel that can be used to reduce the ecological footprint of this industry. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Antistatic Melt-Electrowritten Biodegradable Mesh Implants for Enhanced Pelvic Organ Prolapse Repair
by Daniela Cruz, Francisca Vaz, Evangelia Antoniadi, Ana Telma Silva, Joana Martins, Fábio Pinheiro, Nuno Miguel Ferreira, Luís B. Bebiano, Rúben F. Pereira, António Fernandes and Elisabete Silva
Appl. Sci. 2025, 15(14), 7763; https://doi.org/10.3390/app15147763 - 10 Jul 2025
Viewed by 346
Abstract
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the [...] Read more.
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the use of biodegradable implantable meshes, which can support the organs, guide tissue regeneration, and be fully absorbed without damaging the surrounding tissues. In this study, biodegradable polycaprolactone (PCL) meshes were fabricated using melt electrowritten (MEW), incorporating the antistatic agent Hostastat® FA 38 (HT) to address these limitations. The goal was to produce microscaffolds with suitable biophysical properties, particularly more stable fiber deposition and reduced fiber diameter. Different HT concentrations (0.03, 0.06, and 0.1 wt%) were investigated to assess their influence on the fiber diameter and mechanical properties of the PCL meshes. Increasing HT concentration significantly reduced fiber diameter by 14–17%, 39–45%, and 65–66%, depending on mesh geometry (square or sinusoidal). At 0.06 wt%, PCL/HT meshes showed a 24.10% increase in tensile strength and a 55.59% increase in Young’s Modulus compared to pure PCL meshes of similar diameter. All formulations demonstrated cell viability >90%. Differential scanning calorimetry (DSC) revealed preserved thermal stability and changes in crystallinity with HT addition. These findings indicate that the antistatic agent yields promising results, enabling the production of thinner, more stable fibers with higher tensile strength and Young’s Modulus than PCL meshes, without adding cellular toxicity. Developing a thinner and more stable mesh that mimics vaginal tissue mechanics could offer an innovative solution for POP repair. Full article
Show Figures

Figure 1

13 pages, 2944 KiB  
Article
Milking the Orchil: How the Presence of Goat Milk in the Orchil Dyebath May Affect the Color of Dyed Wool
by Isabella Whitworth, Victor J. Chen and Gregory D. Smith
Heritage 2025, 8(7), 272; https://doi.org/10.3390/heritage8070272 - 9 Jul 2025
Viewed by 324
Abstract
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and [...] Read more.
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and without goat milk added to orchil dyebaths, each made using lichens from three different sources. The results showed orchil containing milk dyed yarns a noticeably deeper red hue. The colorants extracted from the dyed yarns were analyzed by liquid chromatography-diode-array-detector-mass spectrometry to assess the relative amounts of nine identifiable orceins. The data showed that the yarns dyed with milk gave extracts exhibiting several fold more α-aminoorcein and α-hydroxyorcein, with only small differences in the other seven. Scanning electron microscopic analysis of a representative pair of dyed yarns showed that milk promoted surface changes in the fiber that may indicate increased cutaneous damage. Hypotheses for the milk’s effects on orchil dyeing were proposed that included the formation of milk–protein complexes with the two enriched orceins that possibly enhanced wool binding and/or better wool uptake of free and/or complexed orceins due to biodegradation of the wool’s surface cuticle caused by microbial growth promoted by the addition of milk. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

15 pages, 2397 KiB  
Article
Tribological Evaluation of Brake Materials with Silk and Grewia optiva Natural Fibers
by Gustavo S. Gehlen, Tej Singh, Liu Y. Barros, Jean Carlos Poletto, Germano Lasch, Alice A. Rodrigues, Régis H. S. Souza, Ney F. Ferreira, Sharafat Ali and Patric D. Neis
Lubricants 2025, 13(7), 295; https://doi.org/10.3390/lubricants13070295 - 3 Jul 2025
Viewed by 436
Abstract
The growing demand for sustainable, high-performance composite materials has increased the interest in natural fibers as reinforcements for brake friction materials (BFMs). Silk and Grewia optiva fibers, in particular, have emerged as promising candidates for BFMs due to their good mechanical properties, biodegradability, [...] Read more.
The growing demand for sustainable, high-performance composite materials has increased the interest in natural fibers as reinforcements for brake friction materials (BFMs). Silk and Grewia optiva fibers, in particular, have emerged as promising candidates for BFMs due to their good mechanical properties, biodegradability, and availability. To evaluate their potential, friction materials were formulated with 6% Grewia (GF), 6% silk (SF), and a hybrid formulation containing 3% of both fibers (SGF), alongside a reference material reinforced with 6% aramid fiber (AF). These composites were then tested on a braking tribometer using an extended SAE J2522 procedure to assess their performance. The AF formulation showed slightly better wear resistance and the GF formulation showed inferior performance during high-temperature cycles, whereas SF and SGF performed close to the reference formulation (AF) in these sections. In terms of friction stability, SF matched the AF formulation, while GF demonstrated significantly poorer stability. The first high-temperature exposure of the BFMs (Fade 1) served as a critical thermal settlement phase, after which they demonstrated both improved friction stability and repeatable performance characteristics. Finally, this study demonstrates that silk fiber represents a viable, sustainable alternative to aramid in BFMs, exhibiting comparable performance in terms of friction stability and thermal resistance. Full article
(This article belongs to the Special Issue Experimental Advances in Eco-Friendly Friction Materials)
Show Figures

Figure 1

Back to TopTop