Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
Abstract
1. Introduction
2. Methods and Materials
2.1. Materials
2.2. PCL Fiber Fabrication
2.3. Film Preparation
2.4. Combining PCL Nonwovens with Chitosan
2.5. Mechanical Properties
2.6. Hydrophilic Properties
- M1—mass of sample [g].
- M2—mass of sample after drying at 100 °C for 24 h [g].
- M3—mass of sample after 24 h immersion in 100 mL of distilled water [g].
- M4—mass of sample after re-drying at 100 °C for 24 h [g].
2.7. Gas Permeability
- V—volumetric flow [mL·s−1].
- l—the thickness of the sample [m].
- S—the area of the sample [m2].
- Δp—the pressure difference between both sides of the sample [Pa].
- l—thickness of sample [μm].
- Δp—pressure difference [Pa].
- Δm—difference in mass of samples [g].
- t—time [s].
- S—area of sample [mm2].
2.8. Morphology
2.9. UV-VIS Spectra
2.10. Thermal Analysis
2.11. Biodegradability Test
3. Results and Discussions
3.1. Mechanical Properties
3.2. Hydrophilic Properties
3.3. Gas Permeability
3.4. Films Morphology
3.5. UV-VIS Spectra
3.6. Thermal Analysis
3.7. Biodegradability Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janik, W.; Jakubski, Ł.; Kudła, S.; Dudek, G. Modified Polysaccharides for Food Packaging Applications: A Review. Int. J. Biol. Macromol. 2024, 258, 128916. [Google Scholar] [CrossRef] [PubMed]
- Avila, L.B.; Schnorr, C.; Silva, L.F.O.; Morais, M.M.; Moraes, C.C.; Da Rosa, G.S.; Dotto, G.L.; Lima, É.C.; Naushad, M. Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging. Foods 2023, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Grzebieniarz, W.; Biswas, D.; Roy, S.; Jamróz, E. Advances in Biopolymer-Based Multi-Layer Film Preparations and Food Packaging Applications. Food Packag. Shelf Life 2023, 35, 101033. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. Antimicrobial PLA-PVA Multilayer Films Containing Phenolic Compounds. Food Chem. 2022, 375, 131861. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Wang, D.; Ma, Y. Novel Multilayer Chitosan/Emulsion-Loaded Syringic Acid Grafted Apple Pectin Film with Sustained Control Release for Active Food Packaging. Food Hydrocoll. 2023, 142, 108823. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, S.; Li, M.; Sun, W.; Fan, G.; Jin, Y.; Yang, J.; Dong, T. Barrier and Mechanical Properties of Biodegradable Poly(ε-Caprolactone)/Cellophane Multilayer Film. J. Appl. Polym. Sci. 2013, 130, 1805–1811. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.; Bari, M.R.; Hamishehkar, H.; Kafil, H.S.; Lim, L.-T. Essential Oils-Loaded Electrospun Chitosan-Poly(Vinyl Alcohol) Nonwovens Laminated on Chitosan Film as Bilayer Bioactive Edible Films. LWT 2021, 144, 111217. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T.; De La Caba, K. Fish Gelatin Monolayer and Bilayer Films Incorporated with Epigallocatechin Gallate: Properties and Their Use as Pouches for Storage of Chicken Skin Oil. Food Hydrocoll. 2019, 89, 783–791. [Google Scholar] [CrossRef]
- Malafatti, J.O.D.; De Oliveira Ruellas, T.M.; Sciena, C.R.; Paris, E.C. PLA/Starch Biodegradable Fibers Obtained by the Electrospinning Method for Micronutrient Mineral Release. AIMSMATES 2023, 10, 200–212. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.M.; Balart, R.; Torres-Giner, S. Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Appl. Sci. 2019, 9, 533. [Google Scholar] [CrossRef]
- Suwantong, O. Biomedical Applications of Electrospun Polycaprolactone Fiber Mats. Polym. Adv. Techs. 2016, 27, 1264–1273. [Google Scholar] [CrossRef]
- Bilican, I.; Pekdemir, S.; Onses, M.S.; Akyuz, L.; Altuner, E.M.; Koc-Bilican, B.; Zang, L.-S.; Mujtaba, M.; Mulerčikas, P.; Kaya, M. Chitosan Loses Innate Beneficial Properties after Being Dissolved in Acetic Acid: Supported by Detailed Molecular Modeling. ACS Sustain. Chem. Eng. 2020, 8, 18083–18093. [Google Scholar] [CrossRef]
- Janik, W.; Ledniowska, K.; Nowotarski, M.; Kudła, S.; Knapczyk-Korczak, J.; Stachewicz, U.; Nowakowska-Bogdan, E.; Sabura, E.; Nosal-Kovalenko, H.; Turczyn, R.; et al. Chitosan-Based Films with Alternative Eco-Friendly Plasticizers: Preparation, Physicochemical Properties and Stability. Carbohydr. Polym. 2023, 301, 120277. [Google Scholar] [CrossRef]
- Janik, W.; Nowotarski, M.; Ledniowska, K.; Biernat, N.; Abdullah; Shyntum, D.Y.; Krukiewicz, K.; Turczyn, R.; Gołombek, K.; Dudek, G. Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. Int. J. Mol. Sci. 2023, 24, 13205. [Google Scholar] [CrossRef]
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2022.
- Aguirre-Loredo, R.Y.; Rodríguez-Hernández, A.I.; Morales-Sánchez, E.; Gómez-Aldapa, C.A.; Velazquez, G. Effect of Equilibrium Moisture Content on Barrier, Mechanical and Thermal Properties of Chitosan Films. Food Chem. 2016, 196, 560–566. [Google Scholar] [CrossRef]
- Arica, B.; Çaliş, S.; Atİlla, P.; Durlu, N.T.; Çakar, N.; Kaş, H.S.; Hincal, A.A. In Vitro and in Vivo Studies of Ibuprofen-Loaded Biodegradable Alginate Beads. J. Microencapsul. 2005, 22, 153–165. [Google Scholar] [CrossRef]
- Correlo, V.M.; Pinho, E.D.; Pashkuleva, I.; Bhattacharya, M.; Neves, N.M.; Reis, R.L. Water Absorption and Degradation Characteristics of Chitosan--Based Polyesters and Hydroxyapatite Composites. Macromol. Biosci. 2007, 7, 354–363. [Google Scholar] [CrossRef]
- Freier, T.; Koh, H.S.; Kazazian, K.; Shoichet, M.S. Controlling Cell Adhesion and Degradation of Chitosan Films by N-Acetylation. Biomaterials 2005, 26, 5872–5878. [Google Scholar] [CrossRef]
- Viacava, G.E.; Ansorena, M.R.; Marcovich, N.E. Multilayered Films for Food Packaging. In Nanostructured Materials for Food Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 447–475. ISBN 978-0-323-99525-2. [Google Scholar]
- Mochane, M.J.; Motsoeneng, T.S.; Sadiku, E.R.; Mokhena, T.C.; Sefadi, J.S. Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. Appl. Sci. 2019, 9, 2205. [Google Scholar] [CrossRef]
- Schneider, A.; Richert, L.; Francius, G.; Voegel, J.-C.; Picart, C. Elasticity, Biodegradability and Cell Adhesive Properties of Chitosan/Hyaluronan Multilayer Films. Biomed. Mater. 2007, 2, S45–S51. [Google Scholar] [CrossRef]
- Cooper, A.; Bhattarai, N.; Zhang, M. Fabrication and Cellular Compatibility of Aligned Chitosan–PCL Fibers for Nerve Tissue Regeneration. Carbohydr. Polym. 2011, 85, 149–156. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Multilayer Antimicrobial Films Based on Starch and PLA with Superficially Incorporated Ferulic or Cinnamic Acids for Active Food Packaging Purposes. Food Chem. Adv. 2023, 2, 100250. [Google Scholar] [CrossRef]
- Tampau, A.; González-Martínez, C.; Chiralt, A. Release Kinetics and Antimicrobial Properties of Carvacrol Encapsulated in Electrospun Poly-(ε-Caprolactone) Nanofibres. Application in Starch Multilayer Films. Food Hydrocoll. 2018, 79, 158–169. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Chitosan-Based Materials: Preparation, Modification and Application. J. Clean. Prod. 2022, 355, 131825. [Google Scholar] [CrossRef]
- Sadeghi, A.; Moztarzadeh, F.; Aghazadeh Mohandesi, J. Investigating the Effect of Chitosan on Hydrophilicity and Bioactivity of Conductive Electrospun Composite Scaffold for Neural Tissue Engineering. Int. J. Biol. Macromol. 2019, 121, 625–632. [Google Scholar] [CrossRef]
- Yee Foong, C.; Sultana, N. Fabrication of Electrospun Membranes Based on Poly(Caprolactone) (PCL) and PCL/Chitosan Layer by Layer for Tissue Engineering. J. Appl. Membr. Sci. Technol. 2017, 17, 25–33. [Google Scholar] [CrossRef]
- Cazón, P.; Morales-Sanchez, E.; Velazquez, G.; Vázquez, M. Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. J. Chem. Educ. 2022, 99, 2403–2408. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Mechanical and Barrier Properties of Chitosan Combined with Other Components as Food Packaging Film. Environ. Chem. Lett. 2020, 18, 257–267. [Google Scholar] [CrossRef]
- Gavara, R.; Hernandez, R.J. The Effect of Water on the Transport of Oxygen through Nylon-6 Films. Polym. J. Polym. Sci. B Polym. Phys. 1994, 32, 2375–2382. [Google Scholar] [CrossRef]
- Tang, C.; Liu, H. Cellulose Nanofiber Reinforced Poly(Vinyl Alcohol) Composite Film with High Visible Light Transmittance. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1638–1643. [Google Scholar] [CrossRef]
- Wardejn, S.; Wacławek, S.; Dudek, G. Improving Antimicrobial Properties of Biopolymer-Based Films in Food Packaging: Key Factors and Their Impact. Int. J. Mol. Sci. 2024, 25, 12580. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.X.F.; Hutmacher, D.W.; Schantz, J.-T.; Woodruff, M.A.; Teoh, S.H. Evaluation of Polycaprolactone Scaffold Degradation for 6 Months In Vitro and In Vivo. J. Biomed. Mater. Res. A 2009, 90, 906–919. [Google Scholar] [CrossRef] [PubMed]
- Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review. Polym. Degrad. Stab. 2010, 95, 2126–2146. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, H.; Cao, X.; Dalai, S. Compressive Mechanical Properties and Biodegradability of Porous Poly(caprolactone)/Chitosan Scaffolds. Polym. Degrad. Stab. 2008, 93, 1736–1741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubska, J.; Hudecki, A.; Kluska, D.; Grzybek, P.; Gołombek, K.; Pakieła, W.; Spałek, H.; Włodarczyk, P.; Kolano-Burian, A.; Dudek, G. Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging. Foods 2025, 14, 2470. https://doi.org/10.3390/foods14142470
Jakubska J, Hudecki A, Kluska D, Grzybek P, Gołombek K, Pakieła W, Spałek H, Włodarczyk P, Kolano-Burian A, Dudek G. Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging. Foods. 2025; 14(14):2470. https://doi.org/10.3390/foods14142470
Chicago/Turabian StyleJakubska, Justyna, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian, and Gabriela Dudek. 2025. "Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging" Foods 14, no. 14: 2470. https://doi.org/10.3390/foods14142470
APA StyleJakubska, J., Hudecki, A., Kluska, D., Grzybek, P., Gołombek, K., Pakieła, W., Spałek, H., Włodarczyk, P., Kolano-Burian, A., & Dudek, G. (2025). Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging. Foods, 14(14), 2470. https://doi.org/10.3390/foods14142470