Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Polycaprolactone Nanofibers Films
2.2. Conjugation of Enzymes to Polycaprolactone Nanofiber Films
2.3. Confirmation of PCL–Enzyme Conjugation
2.4. Physical Characterization of Enzyme-Conjugated PCL Nanofibers
2.4.1. Scanning Electron Microscopy
2.4.2. Fourier Transform Infrared (FTIR) Spectroscopy
2.4.3. Energy-Dispersive X-Ray
2.4.4. Contact Angles
2.4.5. Porosity of PNFs
2.4.6. Rate of Degradation of PNFs
2.5. Mechanical Characterization
2.6. Biochemical Characterization of Enzyme-Conjugated PCL Nanofibers
2.6.1. Enzyme Activity of Conjugated PNF
2.6.2. Effect of pH on the Activity of Enzyme-Conjugated PNFs
2.6.3. Effect of Temperature on the Activity of Enzyme-Conjugated PNFs
2.7. Statistical Analysis
3. Results
3.1. Confirmation of Enzyme Conjugation on PNFs
3.2. Physical Characterization of Enzyme-Conjugated PCL Nanofibers
3.2.1. SEM Analysis
3.2.2. FTIR Spectra for Functional Group Analysis
3.2.3. EDX Analysis
3.2.4. Contact Angle Analysis
3.2.5. Percentage Porosity of Nanofibers
3.2.6. Rate of Degradation of Nanofibers
3.3. Mechanical Characterization
3.4. Biochemical Characterization of PNFs
3.4.1. Protease Activity Assay
3.4.2. Effect of pH on the Activity of the Immobilized Enzyme
3.4.3. Effect of Temperature on the Activity of the Immobilized Enzyme
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBB | Coomassie Brilliant Blue |
EDX | Energy-dispersive X-ray |
EtOH | Ethyl alcohol |
FE-SEM | Field Emission Scanning Electron Microscope |
FTIR | Fourier Transform Infrared Spectroscopy |
Pan-PNF | Pancreatin-conjugated Polycaprolactone Nanofiber |
PCL | Polycaprolactone |
Pep-PNF | Pepsin-conjugated Polycaprolactone Nanofiber |
PNF | Polycaprolactone Nanofiber |
SEM | Scanning Electron Microscope |
TCA | Trichloroacetic acid |
Tris–HCl | Tris(hydroxymethyl)aminomethane hydrochloride |
Try-PNF | Trypsin-conjugated Polycaprolactone Nanofiber |
References
- Altyar, A.E.; El-Sayed, A.; Abdeen, A.; Piscopo, M.; Mousa, S.A.; Najda, A.; Abdel-Daim, M.M. Future regenerative medicine developments and their therapeutic applications. Biomed. Pharmacother. 2023, 158, 114131. [Google Scholar] [CrossRef]
- Spear, A.M.; Lawton, G.; Staruch, R.M.T.; Rickard, R.F. Regenerative medicine and war: A front-line focus for UK defence. Npj Regen. Med. 2018, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front. Immunol. 2024, 15, 1395479. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Polychronis, A.; Liovas, D.; Schiuma, A.T.; Meretsky, C.R.; Polychronis, A.; Liovas, D.; Schiuma, A.T. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024, 16, e68872. [Google Scholar] [CrossRef] [PubMed]
- Rani Raju, N.; Silina, E.; Stupin, V.; Manturova, N.; Chidambaram, S.B.; Achar, R.R. Multifunctional and Smart Wound Dressings-A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022, 14, 1574. [Google Scholar] [CrossRef]
- Kasoju, N.; Sunilkumar, A. Convergence of tissue engineering and sustainable development goals. Biotechnol. Sustain. Mater. 2024, 1, 20. [Google Scholar] [CrossRef]
- Jeznach, O.; Tabakoglu, S.; Zaszczyńska, A.; Sajkiewicz, P. Review on machine learning application in tissue engineering: What has been done so far? Application areas, challenges, and perspectives. J. Mater. Sci. 2024, 59, 21222–21250. [Google Scholar] [CrossRef]
- Ansari, M.; Darvishi, A.; Sabzevari, A. A review of advanced hydrogels for cartilage tissue engineering. Front. Bioeng. Biotechnol. 2024, 12, 1340893. [Google Scholar] [CrossRef]
- Echeverria Molina, M.I.; Malollari, K.G.; Komvopoulos, K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141. [Google Scholar] [CrossRef]
- Archer, E.; Torretti, M.; Madbouly, S. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys. Sci. Rev. 2023, 8, 4391–4414. [Google Scholar] [CrossRef]
- Bhadran, A.; Shah, T.; Babanyinah, G.K.; Polara, H.; Taslimy, S.; Biewer, M.C.; Stefan, M.C. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023, 15, 1977. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S.; Boccaccini, A.R. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front. Chem. 2022, 9, 809676. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, C.K.; DeForest, C.A. Polymer Design and Development. In Biology and Engineering of Stem Cell Niches; Elsevier: Amsterdam, The Netherlands, 2017; pp. 295–314. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Bose, S. 3D Printing for Bone Regeneration. Curr. Osteoporos. Rep. 2020, 18, 505–514. [Google Scholar] [CrossRef]
- Kennedy, S.W.; Roy Choudhury, N.; Parthasarathy, R. 3D printing soft tissue scaffolds using Poly(caprolactone). Bioprinting 2023, 30, e00259. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Chabalala, M.B.; Mapukata, S.; Mtibe, A.; Hlekelele, L.; Cele, Z.; Mochane, M.J.; Ntsendwana, B.; Nhlapo, T.A.; Mokoena, T.P.; et al. Electrospun PCL-Based Materials for Health-Care Applications: An Overview. Macromol. Mater. Eng. 2024, 309, 2300388. [Google Scholar] [CrossRef]
- Lesko, L.; Jungova, P.; Culenova, M.; Thurzo, A.; Danisovic, L. Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review. J. Funct. Biomater. 2025, 16, 80. [Google Scholar] [CrossRef]
- Fan, L.; Dong, W.; Lu, J.; Peng, Y.; Xie, B.; Wei, P.; Jiang, M.; Chen, S. Robust Controlled Degradation of Enzyme Loaded PCL-Based Fibrous Scaffolds Toward Scarless Skin Tissue Regeneration. Adv. Sci. 2025, 12, 2501053. [Google Scholar] [CrossRef]
- Hanuman, S.; Nune, M. Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering. Regen. Eng. Transl. Med. 2022, 8, 334–344. [Google Scholar] [CrossRef]
- Pinto, S.C.; Rodrigues, A.R.; Saraiva, J.A.; Lopes-da-Silva, J.A. Catalytic activity of trypsin entrapped in electrospun poly(ϵ-caprolactone) nanofibers. Enzyme Microb. Technol. 2015, 79–80, 8–18. [Google Scholar] [CrossRef]
- Silva, T.R.; Rodrigues, D.P.; Rocha, J.M.S.; Gil, M.H.; Pinto, S.C.S.; Lopes-da-Silva, J.A.; Guiomar, A.J. Immobilization of trypsin onto poly(ethylene terephthalate)/poly(lactic acid) nonwoven nanofiber mats. Biochem. Eng. J. 2015, 104, 48–56. [Google Scholar] [CrossRef]
- Zhang, X.; Shuai, Y.; Tao, H.; Li, C.; He, L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and Its Applications. ACS Omega 2021, 6, 3675–3680. [Google Scholar] [CrossRef]
- Robinson, T.; Smith, P.; Alberts, E.R.; Colussi-Pelaez, M.; Schuster, M. Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response. mBio 2020, 11, e03090-19. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool. Data Brief 2015, 5, 13–22. [Google Scholar] [CrossRef]
- Heris, M.A.; Jahandideh, A.; Akbarzadeh, A.; Mortazavi, P. Dual-Loaded Poly(ε-caprolactone) Nanofibers for Wound Healing Applications: Co-Delivery of Clindamycin and Propolis Extract for Synergistic Therapeutic Effects. BioNanoScience 2024, 14, 4392–4405. [Google Scholar] [CrossRef]
- Deng, A.; Yang, Y.; Du, S. Tissue Engineering 3D Porous Scaffolds Prepared from Electrospun Recombinant Human Collagen (RHC) Polypeptides/Chitosan Nanofibers. Appl. Sci. 2021, 11, 5096. [Google Scholar] [CrossRef]
- Hodaei, H.; Esmaeili, Z.; Erfani, Y.; Esnaashari, S.S.; Geravand, M.; Adabi, M. Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method. Sci. Rep. 2024, 14, 23796. [Google Scholar] [CrossRef] [PubMed]
- Hanuman, S.; B, H.K.; Pai, K.S.R.; Nune, M. Surface-Conjugated Galactose on Electrospun Polycaprolactone Nanofibers: An Innovative Scaffold for Uterine Tissue Engineering. ACS Omega 2024, 9, 34314–34328. [Google Scholar] [CrossRef] [PubMed]
- Jesmin, T.; Margenot, A.J.; Mulvaney, R.L. A Comprehensive Method for Casein-based Assay of Soil Protease Activity. Commun. Soil Sci. Plant Anal. 2022, 53, 507–520. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Lauer-Fields, J.L.; Schmoekel, H.G.; Metters, A.T.; Weber, F.E.; Fields, G.B.; Hubbell, J.A. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 2003, 100, 5413–5418. [Google Scholar] [CrossRef] [PubMed]
- Nune, M.; Krishnan, U.M.; Sethuraman, S. Decoration of PLGA electrospun nanofibers with designer self-assembling peptides: A “Nano-on-Nano” concept. RSC Adv. 2015, 5, 88748–88757. [Google Scholar] [CrossRef]
- Yu, S.; Thoegersen, J.B.; Kragh, K.M.; Menéndez-Arias, L. Comparative study of protease hydrolysis reaction demonstrating Normalized Peptide Bond Cleavage Frequency and Protease Substrate Broadness Index. PLoS ONE 2020, 15, e0239080. [Google Scholar] [CrossRef] [PubMed]
- Freiburghaus, A.U.; Roduner, J.; Hadorn, H.B. Activation of Human Pancreatic Proteolytic Enzymes: The Role of Enteropeptidase and Trypsin. JPGN Rep. 2021, 2, e138. [Google Scholar] [CrossRef]
- Samadian, H.; Zamiri, S.; Ehterami, A.; Farzamfar, S.; Vaez, A.; Khastar, H.; Alam, M.; Ai, A.; Derakhshankhah, H.; Allahyari, Z.; et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci. Rep. 2020, 10, 8312. [Google Scholar] [CrossRef]
- Yaseri, R.; Fadaie, M.; Mirzaei, E.; Samadian, H.; Ebrahiminezhad, A. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: A comparative study on structural characteristics, mechanical properties, and cellular performance. Sci. Rep. 2023, 13, 9434. [Google Scholar] [CrossRef]
- Khan, I.; Nagarjuna, R.; Dutta, J.R.; Ganesan, R. Enzyme-Embedded Degradation of Poly(ε-caprolactone) using Lipase-Derived from Probiotic Lactobacillus plantarum. ACS Omega 2019, 4, 2844–2852. [Google Scholar] [CrossRef]
- Babu, R.; R, R.C.; Joseph, J.; Sathy, B.N.; Nair, S.V.; Varma, P.K.; Menon, D. Design, Development, and Evaluation of an Interwoven Electrospun Nanotextile Vascular Patch. Macromol. Mater. Eng. 2021, 306, 2100359. [Google Scholar] [CrossRef]
- Huang, T.; Zeng, Y.; Li, C.; Zhou, Z.; Liu, Y.; Xu, J.; Wang, L.; Yu, D.-G.; Wang, K. Preparation and Investigation of Cellulose Acetate/Gelatin Janus Nanofiber Wound Dressings Loaded with Zinc Oxide or Curcumin for Enhanced Antimicrobial Activity. Membranes 2024, 14, 95. [Google Scholar] [CrossRef]
- Agarwal, P.K. A Biophysical Perspective on Enzyme Catalysis. Biochemistry 2018, 58, 438–449. [Google Scholar] [CrossRef]
- Ledesma-Fernandez, A.; Velasco-Lozano, S.; Santiago-Arcos, J.; López-Gallego, F.; Cortajarena, A.L. Engineered repeat proteins as scaffolds to assemble multi-enzyme systems for efficient cell-free biosynthesis. Nat. Commun. 2023, 14, 2587. [Google Scholar] [CrossRef]
- Petrášek, Z.; Nidetzky, B. The Effect of Accessibility of Insoluble Substrate on the Overall Kinetics of Enzymatic Degradation. Biotechnol. Bioeng. 2025, 122, 895–907. [Google Scholar] [CrossRef]
- Zamani, A.; Khajavi, M.; Kenari, A.A.; Nazarpak, M.H.; Solouk, A.; Esmaeili, M.; Gisbert, E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals 2023, 13, 853. [Google Scholar] [CrossRef]
- Stanforth, K.J.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Zakhour, M.I.; Banecki, K.M.R.M.; Pearson, J.P. Pepsin properties, structure, and its accurate measurement: A narrative review. Ann. Esophagus 2022, 5, 31. Available online: https://aoe.amegroups.org/article/view/6128 (accessed on 1 January 2021). [CrossRef]
- Zhang, C.; Sun, Y.; Dong, X. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability. Chin. J. Chem. Eng. 2022, 47, 48–53. [Google Scholar] [CrossRef]
- Avila-Rodríguez, M.I.; Meléndez-Martínez, D.; Licona-Cassani, C.; Aguilar-Yañez, J.M.; Benavides, J.; Sánchez, M.L. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed. Rep. 2020, 13, 3–14. [Google Scholar] [CrossRef] [PubMed]
PNFs | Element | Weight % | Atomic % | Error % |
---|---|---|---|---|
PNF | C K | 66.8 | 72.8 | 9.0 |
O K | 33.2 | 27.2 | 11.8 | |
Try-PNF | C K | 58.9 | 65.3 | 9.2 |
N K | 4.4 | 4.2 | 21.1 | |
O K | 36.7 | 30.5 | 11.6 | |
Pep-PNF | C K | 61.2 | 67.3 | 9.1 |
N K | 5.1 | 4.8 | 20.1 | |
O K | 33.8 | 27.9 | 11.8 | |
Pan-PNF | C K | 59.5 | 65.8 | 9.1 |
N K | 5.0 | 4.8 | 21.7 | |
O K | 35.5 | 29.4 | 11.7 |
Nanofibrous Scaffolds | Left Angle (Θ) | Right Angle (Θ) |
---|---|---|
PNF | 87.8 ± 2.3 | 92.2 ± 1.3 |
Try-PNF | 88.0 ± 2.1 | 88.7 ± 1.8 |
Pep-PNF | 57.6 ± 2.3 | 57.9 ± 2.5 |
Pan-PNF | 67.2 ± 2.2 | 65.9 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivakumar, C.B.; Raju, N.R.; Ramu, P.G.; Vishwanath, P.M.; Silina, E.; Stupin, V.; Achar, R.R. Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering. Pharmaceutics 2025, 17, 953. https://doi.org/10.3390/pharmaceutics17080953
Shivakumar CB, Raju NR, Ramu PG, Vishwanath PM, Silina E, Stupin V, Achar RR. Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering. Pharmaceutics. 2025; 17(8):953. https://doi.org/10.3390/pharmaceutics17080953
Chicago/Turabian StyleShivakumar, Chandana B., Nithya Rani Raju, Pruthvi G. Ramu, Prashant M. Vishwanath, Ekaterina Silina, Victor Stupin, and Raghu Ram Achar. 2025. "Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering" Pharmaceutics 17, no. 8: 953. https://doi.org/10.3390/pharmaceutics17080953
APA StyleShivakumar, C. B., Raju, N. R., Ramu, P. G., Vishwanath, P. M., Silina, E., Stupin, V., & Achar, R. R. (2025). Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering. Pharmaceutics, 17(8), 953. https://doi.org/10.3390/pharmaceutics17080953