Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (816)

Search Parameters:
Keywords = bio-sourced products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1865 KiB  
Article
pH-Controlled Yeast Protein Precipitation from Saccharomyces cerevisiae: Acid-Induced Denaturation for Improved Emulsion Stability
by Laura Riedel, Nico Leister and Ulrike S. van der Schaaf
Foods 2025, 14(15), 2643; https://doi.org/10.3390/foods14152643 - 28 Jul 2025
Viewed by 213
Abstract
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be [...] Read more.
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be understood. In order to investigate the impact of precipitation pH on their emulsion-stabilizing properties, yeast proteins from Saccharomyces cerevisiae were isolated via precipitation at different pH (pH 3.5 to 5) after cell disruption in the high-pressure homogenizer. Emulsions containing 5 wt% oil and ~1 wt% protein were analyzed for stability based on their droplet size distribution. Proteins precipitated at pH 3.5 stabilized the smallest oil droplets and prevented partitioning of the emulsion, outperforming proteins precipitated at higher pH values. It is hypothesized that precipitation under acidic conditions induces protein denaturation and thereby exposes hydrophobic regions that enhance adsorption at the oil–water interface and the stabilization of the dispersed oil phase. To investigate the stabilization mechanism, the molecular weight of the proteins was determined using SDS-PAGE, their solubility using Bradford assay, and their aggregation behavior using static laser scattering. Proteins precipitated at pH 3.5 possessed larger molecular weights, lower solubility, and a strong tendency to aggregate. Overall, the findings highlight the potential of yeast-derived proteins as bio-surfactants and suggest that pH-controlled precipitation can tailor their functionality in food formulations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

35 pages, 1660 KiB  
Article
Efficient Assessment and Optimisation of Medium Components Influencing Extracellular Xylanase Production by Pediococcus pentosaceus G4 Using Statistical Approaches
by Noor Lutphy Ali, Hooi Ling Foo, Norhayati Ramli, Murni Halim and Karkaz M. Thalij
Int. J. Mol. Sci. 2025, 26(15), 7219; https://doi.org/10.3390/ijms26157219 - 25 Jul 2025
Viewed by 223
Abstract
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the [...] Read more.
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the safety of xylanase-producing microorganisms. The utilisation of renewable polymers for enzyme production is becoming a cost-effective alternative. Among the prospective candidates, non-pathogenic lactic acid bacteria (LAB) are promising for safe and eco-friendly applications. Our investigation revealed that Pediococcus pentosaceus G4, isolated from plant sources, is a notable producer of extracellular xylanase. Improving the production of extracellular xylanase is crucial for viable industrial applications. Therefore, the current study investigated the impact of various medium components and optimised the selected medium composition for extracellular xylanase production of P. pentosaceus G4 using Plackett–Burman Design (PBD) and Central Composite Design (CCD) statistical approaches. According to BPD analysis, 8 out of the 19 investigated factors (glucose, almond shell, peanut shell, walnut shell, malt extract, xylan, urea, and magnesium sulphate) demonstrated significant positive effects on extracellular xylanase production of P. pentosaceus G4. Among them, glucose, almond shells, peanut shells, urea, and magnesium sulphate were identified as the main medium components that significantly (p < 0.05) influenced the production of extracellular xylanase of P. pentosaceus G4. The optimal concentrations of glucose, almond shells, peanut shells, urea, and magnesium sulphate, as determined via CCD, were 26.87 g/L, 16 g/L, 30 g/L, 2.85 g/L, and 0.10 g/L, respectively. The optimised concentrations resulted in extracellular xylanase activity of 2.765 U/mg, which was similar to the predicted extracellular xylanase activity of 2.737 U/mg. The CCD-optimised medium yielded a 3.13-fold enhancement in specific extracellular xylanase activity and a 7.99-fold decrease in production costs compared to the commercial de Man, Rogosa and Sharpe medium, implying that the CCD-optimised medium is a cost-effective medium for extracellular xylanase production of P. pentosaceus G4. Moreover, this study demonstrated a positive correlation between extracellular xylanase production, growth, lactic acid production and the amount of sugar utilised, implying the multifaceted interactions of the physiological variables affecting extracellular xylanase production in P. pentosaceus G4. In conclusion, statistical methods are effective in rapidly assessing and optimising the medium composition to enhance extracellular xylanase production of P. pentosaceus G4. Furthermore, the findings of this study highlighted the potential of using LAB as a cost-effective producer of extracellular xylanase enzymes using optimised renewable polymers, offering insights into the future use of LAB in producing hemicellulolytic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2450 KiB  
Article
Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
by James Ziemah, Matthias S. Ullrich and Nikolai Kuhnert
Foods 2025, 14(14), 2496; https://doi.org/10.3390/foods14142496 - 16 Jul 2025
Viewed by 386
Abstract
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for [...] Read more.
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for use in sustainable aerosol hygiene technology as an electrostatic bio-disinfectant. The investigation was performed through wipe tests and airborne microbial collection techniques. The upgraded coffee silverskin phytoextract demonstrated superior disinfection potential for various surfaces and airborne microbes compared to the hot trub phytoextract, with an industrial disinfectant serving as the control. Log reduction analyses revealed a more significant killing efficacy (p ≤ 0.05, using the ANOVA test) against Gram-positive organisms (Bacillus subtilis and Listeria monocytogenes) than against Gram-negative organisms (Escherichia coli and Vibrio parahaemolyticus), with the log reductions ranging from 3.08 to 5.56 and 3.72 to 5.81, respectively. Chemical characterization by LC-ESI-QTOF-MS, 1H NMR, and FTIR showed that CGAs and chalcones are the most bioactive compounds in CSS and HT, respectively. The innovation in this work involves an integrated approach that combines waste-derived phytoextracts, advanced chemical profiling, and scalable aerosol disinfection. Furthermore, this research offers a greener, cost-effective, and industrially relevant alternative to synthetic chemical disinfectants. The interdisciplinary approach contributes to the development of bio-based disinfectants for use in the food industry, hospitals, and public health settings. This investigation supports a paradigm shift toward sustainable disinfection practices, thereby improving food and environmental safety. Full article
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 831
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 2989 KiB  
Article
Photoautotrophic Batch Cultivation of Limnospira (Spirulina) platensis: Optimizing Biomass Productivity and Bioactive Compound Synthesis Through Salinity and pH Modulation
by Matteo Rizzoli, Giovanni Antonio Lutzu, Luca Usai, Giacomo Fais, Debora Dessì, Robinson Soto-Ramirez, Bartolomeo Cosenza and Alessandro Concas
Mar. Drugs 2025, 23(7), 281; https://doi.org/10.3390/md23070281 - 5 Jul 2025
Viewed by 582
Abstract
This study investigates the effects of salinity and pH modulation on the growth, biochemical composition, and bioactive compound production of Limnospira platensis under photoautotrophic batch cultivation. Cultures were grown in cylindrical photobioreactors using modified Jourdan medium, with controlled variations in NaCl concentrations (0.2–10 [...] Read more.
This study investigates the effects of salinity and pH modulation on the growth, biochemical composition, and bioactive compound production of Limnospira platensis under photoautotrophic batch cultivation. Cultures were grown in cylindrical photobioreactors using modified Jourdan medium, with controlled variations in NaCl concentrations (0.2–10 g L−1) and pH levels (9–11) to simulate moderate environmental stress. Maximum biomass productivity (1.596 g L−1) was achieved at pH 11 with 10 g L−1 NaCl, indicating that L. platensis can tolerate elevated stress conditions. Phycocyanin (PC) content peaked at 9.54 g 100 g−1 dry weight (DW) at pH 10 and 5 g L−1 NaCl, triple the value at pH 9, highlighting optimal physiological conditions for pigment synthesis. Protein fraction dominated biomass composition (40–60%), while total lipid content increased significantly under high pH and salinity. Polyphenol content reached 19.5 mg gallic acid equivalents (GAE) gDW−1 at pH 10 with 0.2 g L−1 NaCl, correlating with the highest antioxidant activity (Trolox equivalent antioxidant capacity). These findings underscore the potential of L. platensis as a valuable source of proteins, pigments, and antioxidants, and emphasize the utility of moderate environmental stress in enhancing biomass quality, defined by protein, pigment, and antioxidant enrichment. While this study focused on physiological responses, future research will apply omics approaches to elucidate stress-response mechanisms. This study provides insights into optimizing cultivation strategies for large-scale production exploitable in food, pharmaceutical, and bio-based industries. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 1839 KiB  
Article
South African Consumer Attitudes Towards Plant Breeding Innovation
by Mohammed Naweed Mohamed, Magdeleen Cilliers, Jhill Johns and Jan-Hendrik Groenewald
Sustainability 2025, 17(13), 6089; https://doi.org/10.3390/su17136089 - 3 Jul 2025
Viewed by 429
Abstract
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly [...] Read more.
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly new breeding techniques (NBTs), remain underexplored. This study examines South African consumer attitudes towards plant breeding innovations, using a mixed-methods approach. The initial focus group interviews informed the development of a structured quantitative survey examining familiarity, perceptions, and acceptance of plant breeding technologies. Consumer awareness of plant breeding principles was found to be limited, with 67–68% of respondents unfamiliar with both conventional and modern plant breeding procedures. Despite this information gap, consumers expressed conditional support for modern breeding techniques, especially when associated with actual benefits like increased nutritional value, environmental sustainability, and crop resilience. When favourable effects were outlined, support for general investment in modern breeding practices climbed from 45% to 74%. Consumer purchase decisions emphasised price, product quality, and convenience over manufacturing techniques, with sustainability ranked last among the assessed factors. Trust in the sources of food safety information varied greatly, with medical experts and scientists being ranked highly, while government sources were viewed more sceptically. The results further suggest that targeted education could improve customer confidence, as there is a significant positive association (R2 = 0.938) between familiarity and acceptance. These findings emphasise the significance of open communication strategies and focused consumer education in increasing the adoption of plant breeding breakthroughs. The study offers useful insights for policymakers, researchers, and industry stakeholders working on engagement strategies to facilitate the ethical growth and application of agricultural biotechnology in support of food security and quality in South Africa. This study contributes to a better understanding of South African consumers’ perceptions of plant breeding innovations and food safety. The research findings offer valuable insights for policymakers, researchers, and industry stakeholders in developing effective engagement and communication strategies that address consumer concerns and promote the adoption of products derived from diverse plant breeding technologies. Full article
Show Figures

Figure 1

22 pages, 3232 KiB  
Systematic Review
Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit
by Nonso E. Nnolim and Uchechukwu U. Nwodo
Sustainability 2025, 17(13), 5955; https://doi.org/10.3390/su17135955 - 28 Jun 2025
Viewed by 719
Abstract
The global biobased plastics market is on an upward trajectory due to the quest for a clean/sustainable environment and the growing concerns over climate change. This study used a meta-analysis approach to investigate the global trend in the research evolution and development of [...] Read more.
The global biobased plastics market is on an upward trajectory due to the quest for a clean/sustainable environment and the growing concerns over climate change. This study used a meta-analysis approach to investigate the global trend in the research evolution and development of bio-based plastics research from 1990 to 2023. The publication records of 2742 articles were retrieved from the Web of Science data collection using the following key terms: “bioplastic* or biodegradable plastic* or biobased plastic* or biodegradable polyester* or biobased polyester* or biodegradable polyethylene* or biobased polyethylene*”. The analysis showed that scientific productivity generally increased across the spectrum of the survey timelines, with the highest publication of 331 articles recorded in 2023. The articles were published in 863 sources by 10,408 authors, with an annual growth rate of 13.55%. China demonstrated the highest number of publications recorded, with 404 articles within the survey period, followed by the United States, with 303 articles. The international collaboration was recorded at 20.86%, while the average citation per article was 27.99. The swift advancement in biodegradable plastic research, as indicated by relevant metrics, highlights the current research trends and underscores the importance of bio-based plastics in promoting a sustainable environment and a circular economy. Full article
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Viewed by 491
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

18 pages, 2726 KiB  
Article
Decarbonisation of Earthenware Ceramic Production Using Bivalve Shell Waste
by Inês Silveirinha Vilarinho, Miguel Ferreira, Claúdia Miranda, José Silva, Sofia Batista, Maria Clara Gonçalves and Maria Paula Seabra
Ceramics 2025, 8(2), 76; https://doi.org/10.3390/ceramics8020076 - 19 Jun 2025
Viewed by 449
Abstract
To mitigate CO2 emissions from raw material decomposition and reduce the consumption of natural resources, this study investigated the use of mussel and oyster shell waste as secondary raw materials in earthenware production. Mineralogical, chemical and thermal analyses confirmed their suitability as [...] Read more.
To mitigate CO2 emissions from raw material decomposition and reduce the consumption of natural resources, this study investigated the use of mussel and oyster shell waste as secondary raw materials in earthenware production. Mineralogical, chemical and thermal analyses confirmed their suitability as sources of bio-calcite. Specimens incorporating various replacement levels (0–100%) showed no significant differences in key properties. Plates produced with mussel-derived bio-calcite in a pilot plant exhibited comparable properties to standard ceramics, demonstrating their industrial viability. CO2 emissions were reduced by 14% and 10% in mussel and oyster shell-based ceramics, respectively, potentially saving up to 53 kgCO2eq/t under the European Emissions Trading System, if the shells are classified as by-products. These findings demonstrated that bivalve shell waste can effectively replace mineral calcite in earthenware products, reducing CO2 emissions and virgin raw material consumption, diverting waste from landfills and promoting sustainability in the ceramic industry. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Overview of Agricultural Machinery Automation Technology for Sustainable Agriculture
by Li Jiang, Boyan Xu, Naveed Husnain and Qi Wang
Agronomy 2025, 15(6), 1471; https://doi.org/10.3390/agronomy15061471 - 16 Jun 2025
Cited by 2 | Viewed by 1754
Abstract
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired [...] Read more.
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired algorithms, and AI-driven data analytics for resource optimization. These technological advancements manifest in significant applications: autonomous field machinery achieving lateral navigation errors below 6 cm, UAVs enabling targeted agrochemical application, reducing pesticide usage by 40%, and smart greenhouses regulating microclimates with ±0.1 °C precision. Collectively, these innovations enhance productivity, optimize resource utilization (water, fertilizers, energy), and mitigate critical labor shortages. However, persistent challenges include technological heterogeneity across diverse agricultural environments, high implementation costs, limitations in adaptability to dynamic field conditions, and adoption barriers, particularly in developing regions. Future progress necessitates prioritizing the development of lightweight edge computing solutions, multi-energy complementary systems (integrating solar, wind, hydropower), distributed collaborative control frameworks, and AI-optimized swarm operations. To democratize these technologies globally, this review synthesizes the evolution of technology and interdisciplinary synergies, concluding with prioritized strategies for advancing agricultural intelligence to align with the Sustainable Development Goals (SDGs) for zero hunger and responsible production. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

28 pages, 1381 KiB  
Review
Bacillus Species: Evolving Roles in Bio-Based Detergents
by Vu-Mai-Linh Nguyen, Adama Ndao, Eric Charles Peterson, Jean-François Blais and Kokou Adjallé
Processes 2025, 13(6), 1885; https://doi.org/10.3390/pr13061885 - 13 Jun 2025
Viewed by 1424
Abstract
Enzymes and biosurfactants, often referred to as “green chemicals,” play pivotal roles in enhancing the washing performance of bio-based detergents—a growing trend driven by environmentally conscious consumers. However, the widespread adoption of such bio-based detergents faces challenges, including high costs, limited efficiency, and [...] Read more.
Enzymes and biosurfactants, often referred to as “green chemicals,” play pivotal roles in enhancing the washing performance of bio-based detergents—a growing trend driven by environmentally conscious consumers. However, the widespread adoption of such bio-based detergents faces challenges, including high costs, limited efficiency, and the need for ongoing innovations. Bacillus species have long been universally acknowledged and exploited for industrial applications, and Bacillus spp. are largely differentiated from other microorganisms for their enzymatic applications, particularly in detergent production. Recent developments in bio-surfactant production by Bacillus sp. support the adoption of green detergents, and these bacterial biosurfactants are a promising source for detergent manufacturing. This article provides an overview of the current understanding of promising Bacillus species and their potential to advance and accelerate the production of bio-based detergents. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

12 pages, 2399 KiB  
Article
Towards Self-Assembling 3D-Printed Shapes Through Βiomimetic Μechanical Interlocking
by Tino Marte, Savvas Koltsakidis, Thomas Profitiliotis, Emmanouil Tzimtzimis and Dimitrios Tzetzis
Biomimetics 2025, 10(6), 400; https://doi.org/10.3390/biomimetics10060400 - 13 Jun 2025
Viewed by 1764
Abstract
While early studies on macroscopic self-assembly peaked in the late 20th century, recent research continues to explore and expand the field’s potential through innovative materials and external control strategies. To harness this potential, a unit cell was designed and 3D-printed that could form [...] Read more.
While early studies on macroscopic self-assembly peaked in the late 20th century, recent research continues to explore and expand the field’s potential through innovative materials and external control strategies. To harness this potential, a unit cell was designed and 3D-printed that could form a face-centered cubic lattice and stabilize it through a biomimetic mechanism for mechanical interlocking. The wing coupling structures of the brown marmorated stink bug were examined under a scanning electron microscope to be used as a source of bio-inspiration for the interlocking mechanism. A total of 20 unit cells were studied in five different self-assembly processes and in different compression scenarios. A maximum average of 34% of unit cells remained stable, and 20% were mechanically interlocked after self-assembly tests. The compression tests performed on a single unit cell revealed that the cell can withstand forces up to 1000 N without any plastic deformation. Pyramid configurations from 5-unit cells were manually assembled and assessed in compression tests. They showed an average compression force of 294 N. As the first study focused on self-assembly through mechanical interlocking, further studies that change the unit cell production and self-assembly processes are expected to improve upon these results. Full article
Show Figures

Figure 1

19 pages, 301 KiB  
Review
Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
by Luis A. Trujillo-Cayado, Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández and Jenifer Santos
Appl. Sci. 2025, 15(12), 6555; https://doi.org/10.3390/app15126555 - 11 Jun 2025
Viewed by 743
Abstract
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A [...] Read more.
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A comprehensive review of the extant literature, technical reports, and policy documents published between 2015 and 2025 was conducted, with a particular focus on environmental, nutritional, and techno-economic metrics. In addition, precision agriculture datasets, gene-editing breakthroughs, and circular biorefinery case studies were extracted and compared. As demonstrated in this study, the use of green resources, such as legumes, oilseeds, and edible insects, results in a significant reduction in greenhouse gas emissions, land use, and water footprints compared with conventional livestock production. In addition, these alternative protein sources offer substantial benefits in terms of bioactive lipids. Blue resources, centered on micro- and macroalgae, furnish additional proteins, long-chain polyunsaturated fatty acids, and antioxidant pigments and sequester carbon on non-arable or wastewater substrates. The transition to bio-based resources is facilitated by technological innovations, such as gene editing and advanced extraction methods, which promote the efficient valorization of agricultural residues. In conclusion, the study strongly suggests that policy support be expedited and that research into bioeconomy technologies be increased to ensure the sustainable meeting of future food demands. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 401
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

16 pages, 1970 KiB  
Article
Extraction of Rare Earth Elements from Idaho-Sourced Soil Through Phytomining: A Case Study in Central Idaho, USA
by Kathryn Richardson, Amin Mirkouei, Kasia Duellman, Anthony Aylward, David Zirker, Eliezer Schwarz and Ying Sun
Sustainability 2025, 17(11), 5118; https://doi.org/10.3390/su17115118 - 3 Jun 2025
Cited by 2 | Viewed by 901
Abstract
Environmentally friendly and low-emission extraction methods are needed to meet worldwide rare earth element (REE) demand. Within a greenhouse setting, this study aims to investigate the REE hyperaccumulation ability of four plant species (e.g., Phalaris arundinacea, Solanum nigrum, Phytolacca americana, [...] Read more.
Environmentally friendly and low-emission extraction methods are needed to meet worldwide rare earth element (REE) demand. Within a greenhouse setting, this study aims to investigate the REE hyperaccumulation ability of four plant species (e.g., Phalaris arundinacea, Solanum nigrum, Phytolacca americana, and Brassica juncea) and the impact of amending REE-rich soil with biochar or fertilizer and watering with citric acid solution. Harvested samples were pyrolyzed, and the resulting bio-ores were acid-digested and underwent elemental analysis to determine REE content. Amending soil with fertilizer and biochar increased bio-ore production, while plant species explained the most variation in bioaccumulation factor. The results indicate that Phalaris arundinacea achieved the highest average REE concentration of 27,940 µg/g for the targeted REEs (comprising cerium, lanthanum, neodymium, praseodymium, and yttrium) and 37,844 µg/g for total REEs. It is also found that soil amendment and plant species are critical parameters in the design and implementation of Idaho-based REE phytomining operations. The life cycle assessment study estimated that the electricity demand of the greenhouse contributed the most to GHG emissions during the greenhouse study. Within the field study, electricity demand of the pyrolysis reactor was determined to be the largest producer of GHGs. The techno-economic analysis estimated that the total cost of growing P. arundinacea for six weeks on a one-acre field area is USD 6213, including 39%, 22%, 21%, and 18% of that cost derived from cultivation, biomass processing, soil treatment with fertilizer, and pyrolysis, respectively. It is concluded that the proposed low-emission extraction pathway, which combines phytomining, drying, and pyrolysis, is a promising sustainable approach for REE extraction, especially from REE-rich soil sourced in Idaho. Full article
Show Figures

Graphical abstract

Back to TopTop