Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit
Abstract
1. Introduction
2. Methods
2.1. Data Retrieval
2.2. Data Analysis
2.3. Term Definition and Usage Clarification
3. Results
3.1. Publication Dynamics on Bio-Based Plastics Research
3.2. Prevalence and Co-Occurrence Network of Keywords Used in Bioplastics Research
3.3. The Topmost Impactful and Influential Publications in Bio-Based Plastics Research Based on Average Total Global Citation per Year
3.4. Most Productive Authors on Bioplastics Research and Their Collaboration Network
3.5. The Topmost Countries on Bioplastics Research Publication Ranked by the Corresponding Authorship
3.6. The Most Relevant Affiliations on Bio-Based Plastics Research Based on Publication Number
4. Discussion
5. Application of Bioplastics: Prospects and Challenges
5.1. Bioplastics in Packaging
5.2. Bioplastics in Agriculture
5.3. Bioplastics in Construction
6. Reduce–Reuse–Recycle and the Circular Economy for Plastics
7. Limitations and Future Perspectives
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WOS | Web of Science |
U.S.A. | United States of America |
TGC | Total Global Citation |
TLC | Total Local Citation |
ATGC/Y | Average Total Global Citation Per Year |
ATLC/Y | Average Total Local Citation Per Year |
SCP | Single-Country Publication |
MCP | Multiple-Country Publication |
CAGR | Compound Annual Growth Rate |
PHAs | Polyhydroxyalkanoates |
References
- Statista Research Department. Production Forecast of Thermoplastics Worldwide from 2025 to 2050. 2023. Available online: https://www.statista.com/statistics/664906/plastics-production-volume-forecast-worldwide/ (accessed on 2 August 2024).
- Statista Research Department. Global Plastics Industry-Statistics & Facts. 2023. Available online: https://www.statista.com/topics/5266/plastics-industry/#editorsPicks (accessed on 2 August 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Tursi, A.; Baratta, M.; Easton, T.; Chatzisymeon, E.; Chidichimo, F.; De Biase, M.; De Filpo, G. Microplastics in aquatic systems, a comprehensive review: Origination, accumulation, impact, and removal technologies. RSC Adv. 2022, 12, 28318–28340. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- van Emmerik, T.H.; González-Fernández, D.; Laufkötter, C.; Blettler, M.; Lusher, A.; Hurley, R.; Ryan, P.G. Focus on plastics from land to aquatic ecosystems. Environ. Res. Lett. 2023, 18, 040401. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.T. Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- European Bioplastics. What Are Bioplastics? Fact Sheet European Bioplastics. 2022. Available online: https://docs.european-bioplastics.org/publications/fs/EuBP_FS_What_are_bioplastics.pdf (accessed on 15 June 2025).
- Negrete-Bolagay, D.; Guerrero, V.H. Opportunities and challenges in the application of bioplastics: Perspectives from formulation, processing, and performance. Polymers 2024, 16, 2561. [Google Scholar] [CrossRef] [PubMed]
- Baur, M.; Mast, N.K.; Brahm, J.P.; Habé, R.; Morgen, T.O.; Mecking, S. High-density polyethylene with in-chain photolyzable and hydrolyzable groups enabling recycling and degradation. Angew. Chem. 2023, 135, e202310990. [Google Scholar] [CrossRef]
- Nelson, T.F.; Rothauer, D.; Sander, M.; Mecking, S. Degradable and recyclable polyesters from multiple chain length bio-and waste-sourceable monomers. Angew. Chem. 2023, 135, e202310729. [Google Scholar] [CrossRef]
- Eck, M.; Schwab, S.T.; Nelson, T.F.; Wurst, K.; Iberl, S.; Schleheck, D.; Link, C.; Battagliarin, G.; Mecking, S. Biodegradable high-density polyethylene-like material. Angew. Chem. 2023, 135, e202213438. [Google Scholar] [CrossRef]
- Döhler, N.; Wellenreuther, C.; Wolf, A. Market dynamics of biodegradable bio-based plastics: Projections and linkages to European policies. EFB Bioeconomy J. 2022, 2, 100028. [Google Scholar] [CrossRef]
- Statista Research Department. Global Bioplastics Industry-Statistics & Facts. 2023. Available online: https://www.statista.com/topics/8744/bioplastics-industry-worldwide/#topicOverview (accessed on 2 August 2024).
- Sánchez-García, E.; Martínez-Falcó, J.; Marco-Lajara, B.; Manresa-Marhuenda, E. Revolutionising the circular economy through new technologies: A new era of sustainable progress. Environ. Technol. Innov. 2024, 33, 103509. [Google Scholar] [CrossRef]
- Han, M.; Yang, F.; Sun, H. A bibliometric and visualised analysis of research progress and frontiers on health effects caused by PM2.5. Environ. Sci. Pollut. Res. 2021, 28, 30595–30612. [Google Scholar] [CrossRef]
- Xiao, P.; Wu, D.; Wang, J. Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. Environ. Sci. Pollut. Res. 2022, 29, 1491–1507. [Google Scholar] [CrossRef]
- González-Albo, B.; Bordons, M. Articles vs. proceedings papers: Do they differ in research relevance and impact? A case study in the Library and Information Science field. J. Informetr. 2011, 5, 369–381. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021, 372, n71. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Markets and Markets. Biodegradable Plastics Markets by Type (PLA, Starch Blends, PBAT, PHA, PBS), End-Use Industry (packaging, Consumer Goods, Textiles, Agriculture & Horticulture), and Region-Global Forecast to 2029. 2024. Available online: https://www.marketsandmarkets.com/Market-Reports/biodegradable-plastics-93.html?srsltid=AfmBOopUVUSHJV1nd1nIeQwzSbgvAESkQFF8VFypb6EVVbdaxC7zbTRA (accessed on 1 November 2024).
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- de Beukelaer, H.; Hilhorst, M.; Workala, Y.; Maaskant, E.; Post, W. Overview of the mechanical, thermal and barrier properties of biobased and/or biodegradable thermoplastic materials. Polym. Test. 2022, 116, 107803. [Google Scholar] [CrossRef]
- Kumar, R.; Lalnundiki, V.; Shelare, S.D.; Abhishek, G.J.; Sharma, S.; Sharma, D.; Kumar, A.; Abbas, M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. Environ. Res. 2024, 244, 117707. [Google Scholar] [CrossRef] [PubMed]
- Soheili, F.; Khasseh, A.A.; Mokhtari, H.; Sadeghi, M. Factors affecting the number of citations: A mixed method study. J. Scientometr. Res. 2022, 11, 1–14. [Google Scholar] [CrossRef]
- Teplitskiy, M.; Duede, E.; Menietti, M.; Lakhani, K.R. How status of research papers affects the way they are read and cited. Res. Policy 2022, 51, 104484. [Google Scholar] [CrossRef]
- Nansen, C.; Meikle, W.G. Journal impact factors and the influence of age and number of citations. Mol. Plant Pathol. 2014, 15, 223. [Google Scholar] [CrossRef] [PubMed]
- Mutka, M.C.; Alkhouri, N.B.; O’Riordan, M.; Molloy, E.J.; Bearer, C. Factors that influence citations to articles published in Pediatric Research. Pediatr. Res. 2022, 92, 614–617. [Google Scholar] [CrossRef]
- Triggle, C.R.; MacDonald, R.; Triggle, D.J.; Grierson, D. Requiem for impact factors and high publication charges. Account. Res. 2022, 29, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Thomas, A.P.; Kasa, V.P.; Dubey, B.K.; Sen, R.; Sarmah, A.K. Synthesis and commercialisation of bioplastics: Organic waste as a sustainable feedstock. Sci. Total Environ. 2023, 904, 167243. [Google Scholar] [CrossRef]
- Huang, S.; Dong, Q.; Che, S.; Li, R.; Tang, K.H. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. Sci. Total Environ. 2025, 969, 178911. [Google Scholar] [CrossRef]
- Bansal, S.; Mahendiratta, S.; Kumar, S.; Sarma, P.; Prakash, A.; Medhi, B. Collaborative research in modern era: Need and challenges. Indian J. Pharmacol. 2019, 51, 137–139. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, C.A. Who benefits from a country’s scientific research? J. Informetr. 2018, 12, 249–258. [Google Scholar] [CrossRef]
- Mou, K. Application and research of biodegradable plastics in China and the United States. Highlights Bus. Econ. Manag. 2023, 23, 339–344. [Google Scholar] [CrossRef]
- Research and Market. United States Biodegradable Plastics Market, Size, Forecast 2023–2028, Industry Trends, Growth, Impact of Inflation, Opportunity Company Analysis. 2023. Available online: https://www.researchandmarkets.com/reports/5715836/united-states-biodegradable-plastics-market?srsltid=AfmBOoplp1PbjO_nvhE_qpS8yiSQiTTRnBENLswLnjAAL5JPJ4eR9V36 (accessed on 1 November 2024).
- Wang, I. Scientists in Japan Develop Plastic that Dissolves in Seawater Within Hours. 2025. Available online: https://www.reuters.com/sustainability/climate-energy/scientists-japan-develop-plastic-that-dissolves-seawater-within-hours-2025-06-04/ (accessed on 7 June 2025).
- Mogany, T.; Bhola, V.; Bux, F. Algal-based bioplastics: Global trends in applied research, technologies, and commercialization. Environ. Sci. Pollut. Res. Int. 2024, 31, 38022–38044. [Google Scholar] [CrossRef] [PubMed]
- Arijeniwa, V.F.; Akinsemolu, A.A.; Chukwugozie, D.C.; Onawo, U.G.; Ochulor, C.E.; Nwauzoma, U.M.; Kawino, D.A.; Onyeaka, H. Closing the loop: A framework for tackling single-use plastic waste in the food and beverage industry through circular economy—A review. J. Environ. Manag. 2024, 359, 120816. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The future of bioplastics in food packaging: An industrial perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Bélard, L.; Poncin-Epaillard, F.; Dole, P.; Avérous, L. Plasma-polymer coatings onto different biodegradable polyesters surfaces. Eur. Polym. J. 2013, 49, 882–892. [Google Scholar] [CrossRef]
- Yadav, A.; Mangaraj, S.; Singh, R.M.N.K.; Kumar, N.; Arora, S. Biopolymers as packaging material in food and allied industry. Int. J. Chem. Stud. 2018, 6, 2411–2418. [Google Scholar]
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for food packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the gap for bioplastic use in food packaging: An update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Mat Yazik, M.H. Overview of bioplastic introduction and its applications in product packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Cruz, R.M.; Krauter, V.; Krauter, S.; Agriopoulou, S.; Weinrich, R.; Herbes, C.; Scholten, P.B.; Uysal-Unalan, I.; Sogut, E.; Kopacic, S.; et al. Bioplastics for food packaging: Environmental impact, trends and regulatory aspects. Foods 2022, 11, 3087. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sharma, A.; Rathee, A.; Puri, V.; Chopra, H.; Nagpal, M.; Kaur, M.; Malik, T. Revolutionizing packaging: Bioplastics for superior food and pharmaceutical solutions. Polym. Polym. Compos. 2024, 32, 09673911241305184. [Google Scholar] [CrossRef]
- Riggi, E.; Santagata, G.; Malinconico, M. Bio-based and biodegradable plastics for use in crop production. Recent Pat. Food Nutr. Agric. 2011, 3, 49–63. [Google Scholar] [CrossRef]
- Merino, D. Embracing nature’s clockwork: Crafting plastics for degradation in plant agricultural systems. ACS Mater. Au 2024, 4, 450–458. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.M.; Dong, T.; Anderson, A.; et al. Sustainable bioplastics derived from renewable natural resources for food packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Guerrini, S.; Borreani, G.; Voojis, H. Biodegradable Materials in Agriculture: Case Histories and Perspectives. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 35–65. [Google Scholar] [CrossRef]
- Dada, O.I.; Liyanage, T.U.H.; Chi, T.; Yu, L.; DeVetter, L.W.; Chen, S. Towards Sustainable Agroecosystems: A Life Cycle Assessment Review of Soil-biodegradable and Traditional Plastic Mulch Films. Environ. Sci. Ecotechnol. 2025, 24, 100541. [Google Scholar] [CrossRef] [PubMed]
- Martín-Closas, L.; Costa, J.; Pelacho, A.M. Agronomic Effects of Biodegradable Films on Crop and Field Environment. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 67–104. [Google Scholar] [CrossRef]
- Peñalva, C.; Pérez, M.; Braca, F.; Redondo, D. Reducing the effects of plastic waste in agricultural applications by developing new ok soil biodegradable plastics. Detritus 2020, 13, 67–77. [Google Scholar] [CrossRef]
- Oberti, I.; Paciello, A. Bioplastic as a substitute for plastic in construction industry. Encyclopedia 2022, 2, 1408–1420. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V. Construction Biotechnological Plastics. In Construction Biotechnology; Green Energy and Technology; Springer: Singapore, 2017; pp. 51–75. [Google Scholar] [CrossRef]
- Safin, R.; Galyavetdinov, N.; Salimgaraeva, R.; Ilalova, G.; Saerova, K. Use of filled bioplastics in construction. E3S Web Conf. 2021, 274, 04013. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V.; Ahmed, Z.; Dobrenko, S.; Saliuk, A. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int. J. Environ. Sci. Technol. 2015, 12, 725–738. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl. Bio Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef]
- Burelo, M.; Gaytán, I.; Gutiérrez, S.; Cruz-Morales, J.A.; Treviño-Quintanilla, C.D.; Stringer, T.; Ramírez-Melgarejo, M. Recent advances in sustainable degradation processes of elastomers: A comprehensive review. Rev. Environ. Sci. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Yeh, N.H.; Yang, C.H. Exploring the circular solutions for plastic reduction: Case studies of new transition journey. J. Serv. Sci. Manag. 2024, 17, 118–136. [Google Scholar] [CrossRef]
- Johansen, M.R.; Christensen, T.B.; Ramos, T.M.; Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 2022, 302, 113975. [Google Scholar] [CrossRef] [PubMed]
- Burelo, M.; Martínez, A.; Hernández-Varela, J.D.; Stringer, T.; Ramírez-Melgarejo, M.; Yau, A.Y.; Luna-Bárcenas, G.; Treviño-Quintanilla, C.D. Recent developments in synthesis, properties, applications and recycling of bio-based elastomers. Molecules 2024, 29, 387. [Google Scholar] [CrossRef] [PubMed]
- Burelo, M.; Hernández-Varela, J.D.; Medina, D.I.; Trevino-Quintanilla, C.D. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon 2023, 9, e21374. [Google Scholar] [CrossRef]
- Sitadewi, D.; Yudoko, G.; Okdinawati, L. Bibliographic mapping of post-consumer plastic waste based on hierarchical circular principles across the system perspective. Heliyon 2021, 7, e07154. [Google Scholar] [CrossRef]
- Schirmeister, C.G.; Mülhaupt, R. Closing the carbon loop in the circular plastics economy. Macromol. Rapid Commun. 2022, 43, 2200247. [Google Scholar] [CrossRef]
- Shamsuddoha, M.; Kashem, M.A. Zero Plastic Drive: A Comprehensive review on unveiling innovative sustainable solutions for a circular plastics economy. Sustainability 2024, 16, 10329. [Google Scholar] [CrossRef]
Bibliographic Information | Output |
---|---|
Publication timespan | 1990–2023 |
Sources | 863 |
Documents | 2742 |
Annual growth rate (%) | 13.55 |
Document average age | 8.67 |
Average citations per doc | 27.99 |
References | 75,376 |
Keywords plus (ID) | 4619 |
Author’s keywords (DE) | 5339 |
Authors | 10,408 |
Authors of single-authored docs | 79 |
Single-authored docs | 95 |
Average co-authors per doc | 4.93 |
International co-authorships (%) | 20.86 |
Article | 2400 |
Proceedings paper | 342 |
Hierarchy | Author Keyword (DE) | Occurrence | Hierarchy | Keyword Plus (ID) | Occurrence |
---|---|---|---|---|---|
1. | Bioplastics | 420 | 1. | Degradation | 338 |
2. | Biodegradable | 162 | 2. | Mechanical-properties | 322 |
3. | Biodegradable plastics | 145 | 3. | Films | 234 |
4. | Mechanical properties | 143 | 4. | Polymers | 232 |
5. | Biodegradation | 134 | 5. | Poly(lactic acid) | 184 |
6. | Polyesters | 114 | 6. | Blends | 179 |
7. | Biodegradable polymers | 91 | 7. | Behaviour | 168 |
8. | Biodegradability | 84 | 8. | Composites | 149 |
9. | Polylactic acid | 83 | 9. | Acid | 130 |
10. | Biopolymers | 76 | 10. | Morphology | 127 |
11. | Starch | 64 | 11. | Starch | 107 |
12. | Polyhydroxyalkanoates | 61 | 12. | Plastics | 102 |
13. | Plasticizer | 55 | 13. | Crystallisation | 94 |
14. | Degradation | 47 | 14. | Glycerol | 92 |
15. | Biodegradable polyesters | 38 | 15. | Water | 91 |
16. | Thermal properties | 36 | 16. | Polyhydroxyalkanoates | 83 |
17. | Circular economy | 35 | 17. | Performance | 77 |
18. | Glycerol | 33 | 18. | Copolymers | 75 |
19. | Polyethylene | 33 | 19. | Waste | 74 |
20. | Chitosan * | 31 | 20. | Temperature * | 72 |
Rank | Author | Paper title | Year | Source | TGC | ATGC/Y | TLC | ATLC/Y |
---|---|---|---|---|---|---|---|---|
1. | Xia et al. | A strong, biodegradable and recyclable lignocellulosic bioplastic | 2021 | Nat Sustain | 312 | 104.0 | 17 | 5.67 |
2. | Emadian et al. | Biodegradation of bioplastics in natural environments | 2017 | Waste Manage | 564 | 80.57 | 82 | 11.71 |
3. | Iwata | Biodegradable and bio-based polymers: future prospects of eco-friendly plastics | 2015 | Angew Chem Int Ed Engl | 630 | 70 | 38 | 4.33 |
4. | Shen et al. | Are biodegradable plastics a promising solution to solve the global plastic pollution? | 2020 | Environ Pollut | 268 | 67.0 | 23 | 5.75 |
5. | Martin and Avérous | Poly(lactic acid): plasticisation and properties of biodegradable multiphase systems | 2001 | Polymer | 1324 | 57.57 | 33 | 1.43 |
6. | Jiang | Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement | 2020 | Adv Funct Mater | 229 | 57.25 | 5 | 1.25 |
7. | Narancic et al. | Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution | 2018 | Environ Sci Technol | 273 | 45.50 | 28 | 4.67 |
8. | Napper et al. | Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period | 2019 | Environ Sci Technol | 223 | 44.60 | 21 | 4.2 |
9. | Xu et al. | Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex Vivo and distribution in Vivo | 2015 | ACS Nano | 400 | 44.44 | 0 | 0 |
10. | Sanyang et al. | Effect of plasticiser type and concentration on tensile, thermal, and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch | 2015 | Polymers | 300 | 33.33 | 14 | 1.56 |
11. | Song et al. | Biodegradable and compostable alternatives to conventional plastics | 2009 | Philos Trans R Soc B: Biol Sci | 479 | 31.93 | 43 | 2.87 |
12. | Dusselier et al. | Shape-selective zeolite catalysis for bioplastics production | 2015 | Science | 261 | 29.0 | 4 | 0.44 |
13. | Pohlmann et al. | Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16 | 2006 | Nat Biotechnol | 461 | 25.61 | 5 | 0.28 |
14. | Ray and Okamoto | Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites | 2003 | Macromol Rapid Comm | 373 | 17.76 | 4 | 0.19 |
15. | Kopinke et al. | Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid) | 1996 | Polym Degrad Stab | 479 | 17.11 | 9 | 0.32 |
16. | Tserki et al. | Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate) | 2006 | Polym Degrad Stab | 276 | 15.33 | 16 | 0.89 |
17. | Moreno and Moreno | Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop | 2008 | Sci Hortic | 244 | 15.25 | 29 | 1.81 |
18. | Vansoest et al. | Crystallinity in starch bioplastics | 1996 | Ind Crop Prod | 357 | 12.75 | 0 | 0 |
19. | Lim et al. | Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites | 2002 | Chem Mater | 253 | 11.50 | 6 | 0.27 |
20. | Mohanty et al. | Influence of chemical surface modification on the properties of biodegradable jute fabrics—polyester amide composites | 2000 | Compos-A: Appl Sci Manuf | 232 | 9.67 | 5 | 0.21 |
Invention Title | Product Properties | Potential Uses | Current Assignee | Patent Number | Year Filed | Weblink |
---|---|---|---|---|---|---|
Cellulose-based bioplastic, preparation method, and application | Heat resistance, water resistance, UV shielding, biodegradability, shape memory, high mechanical strength | Packaging material, transparent containers | Jiangnan University | CN118126414A | 2024 | https://patents.google.com/patent/CN118126414A/en (accessed on 15 May 2025) |
A kind of lignocellulose bioplastic based on enteromorpha and preparation method thereof | Good mechanical properties, degradable, recyclable | Packaging materials | Shandong Agricultural University | CN119241879A | 2024 | https://patents.google.com/patent/CN119241879A/en (accessed on 15 May 2025) |
Bioplastic cup-bag from renewable sources to contain/package solids and/or liquids | Flexible, transparent, or translucent | Bag-cup | Individual | ES1315056U | 2024 | https://patents.google.com/patent/ES1315056U/en (accessed on 15 May 2025) |
High-strength, high-toughness cellulose-based bioplastic, preparation method, and application | High strength, high toughness | Packaging materials, electrical appliance shells | Jiangnan University | CN119912730A | 2025 | https://patents.google.com/patent/CN119912730A/en (accessed on 15 May 2025) |
Biological environment-friendly plastic based on cockroach body waste and preparation method thereof | High tensile strength, elongation at break, biodegradability | - | Lijiang Jijifeng Fertilizer Co Ltd., Dali University | CN119799018A | 2025 | https://patents.google.com/patent/CN119799018A/en (accessed on 15 May 2025) |
A method for preparing modified polylactic acid packaging material for food | Improved oxidation resistance, biodegradable | Food packaging material | Binzhou Wanjia New Materials Co., Ltd. | CN119875175A | 2025 | https://patents.google.com/patent/CN119875175A/en (accessed on 15 May 2025) |
Waterproof starch-based biodegradable plastic and preparation method thereof | Water resistant, biodegradable | - | Dezhou University | CN116285015A | 2023 | https://patents.google.com/patent/CN116285015A/en (accessed on 15 May 2025) |
Production process for synthesizing starch-based bioplastic from citric acid epoxy soybean oil oligomer | Superior tensile strength, transparency, decreased swelling degree | - | Qingdao University of Science and Technology | CN117186499A | 2023 | https://patents.google.com/patent/CN117186499A/en (accessed on 15 May 2025) |
Biodegradable plastic composition comprising charcoal, and preparation method of biodegradable plastic using the same | Excellent physical properties, antibacterial, deodorizing, dehumidifying functions | - | White Biotech Co., Ltd. | KR20250038987A | 2023 | https://patents.google.com/patent/KR20250038987A/en (accessed on 15 May 2025) |
Biodegradable and compostable materials for semi-rigid packaging and products, and processes for preparing the same | Eco-friendly, biodegradable, industrial compostable, free of petrochemicals, flexible, liquid compatibility, durability | Packaging | Clean Filters LLC | WO2025024710A1 | 2024 | https://patents.google.com/patent/WO2025024710A1/en (accessed on 15 May 2025) |
Low-cost thermal stability, completely biodegradable plastic, and preparation method thereof | Heat resistance, high strength | - | Fujian Kanglaibao Sporting Goods Co., Ltd. | CN116694051B | 2023 | https://patents.google.com/patent/CN116694051B/en (accessed on 15 May 2025) |
Biodegradable nanocellulose–pululan–lignin food outer packaging material and preparation | Water resistance, biodegradable | Packaging, preservative films, disposable tableware, straws | Ocean University of China | CN116512687B | 2023 | https://patents.google.com/patent/CN116512687B/en (accessed on 15 May 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nnolim, N.E.; Nwodo, U.U. Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit. Sustainability 2025, 17, 5955. https://doi.org/10.3390/su17135955
Nnolim NE, Nwodo UU. Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit. Sustainability. 2025; 17(13):5955. https://doi.org/10.3390/su17135955
Chicago/Turabian StyleNnolim, Nonso E., and Uchechukwu U. Nwodo. 2025. "Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit" Sustainability 17, no. 13: 5955. https://doi.org/10.3390/su17135955
APA StyleNnolim, N. E., & Nwodo, U. U. (2025). Insight into Global Bio-Based Plastics Development: A Bibliometric Analysis-Aided Assessment of the Past Decades’ Research Exploit. Sustainability, 17(13), 5955. https://doi.org/10.3390/su17135955