Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = binder bond strength test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 17008 KB  
Article
Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers
by A. H. M. Javed Hossain Talukdar, Muge Belek Fialho Teixeira, Sabrina Fawzia, Tatheer Zahra, Mohammad Eyni Kangavar and Nor Hafizah Ramli Sulong
Buildings 2026, 16(1), 230; https://doi.org/10.3390/buildings16010230 - 4 Jan 2026
Viewed by 369
Abstract
The use of recycled materials and locally sourced alternative binders in 3D concrete printing (3DCP) has significant potential to reduce carbon emissions in concrete construction. This study examines the effect of sugarcane bagasse ash (SCBA), a byproducts from the sugarcane industry, as a [...] Read more.
The use of recycled materials and locally sourced alternative binders in 3D concrete printing (3DCP) has significant potential to reduce carbon emissions in concrete construction. This study examines the effect of sugarcane bagasse ash (SCBA), a byproducts from the sugarcane industry, as a sustainable binder in 3DCP. SCBA was oven-dried at 105 °C, sieved to 250 µm, and used to replace up to 25% of the total binder by weight in a supplementary cementitious material (SCM) blended system. The impact of polypropylene (PP) and steel (ST) microfibres on SCBA-based mixes was also investigated. The fresh properties of the mortar were evaluated using the flow table, Vicat needle, shape retention, buildability, and rheometer tests. The mortar was 3D printed using a small-scale robotic setup with a RAM extruder. Mechanical properties were then tested, including compressive and flexural strengths, and interlayer bonding, along with microstructure analysis. The results showed that increasing the SCBA content led to greater slump and improved flowability, as well as a slower rate of static yield stress development, with up to a 90 percent reduction compared to the control mix. The addition of PP fibres doubled the static yield stress in the mixes containing 20 percent SCBA. The 10 percent SCBA mix achieved the highest mechanical strength, both in compression and flexure, due to its denser microstructure and enhanced pozzolanic reaction. Full article
(This article belongs to the Special Issue 3D-Printed Technology in Buildings)
Show Figures

Figure 1

20 pages, 2947 KB  
Article
Influence of Nano-Silica and Porosity on the Strength and Permeability of Permeable Concrete: An Experimental Study
by Jinping Fu, Lu Jiang, Mingjian Yang, Desun Yu, Minghao Shen and Yanjie Wang
Buildings 2026, 16(1), 148; https://doi.org/10.3390/buildings16010148 - 29 Dec 2025
Viewed by 168
Abstract
Strength and the permeability coefficient are recognized as the two main design parameters for permeable concrete. Although adding an appropriate amount of nano-silica (NS) can enhance the slurry strength and enhance the bond between the aggregate and cementitious material, research on the combined [...] Read more.
Strength and the permeability coefficient are recognized as the two main design parameters for permeable concrete. Although adding an appropriate amount of nano-silica (NS) can enhance the slurry strength and enhance the bond between the aggregate and cementitious material, research on the combined effects of porosity and NS on the behavior of permeable concrete is limited. An experimental program was carried out to demonstrate the impact of NS on the permeability (K) and strength (fc) of permeable concrete. The tested variables included the NS content (0, 0.5, 1.0, 1.5, 2.0, and 2.5%) and the porosity (p = 15, 20, and 25%), following the identification of an optimal water-to-binder (w/b) ratio of 0.3. It was found that the addition of NS alters the failure mechanism by transferring the critical failure location from the cementitious matrix to aggregate particles. An additive of 1% NS shows the most significant enhancement in the concrete strength, with improvement efficacy increasing substantially with the porosity. Specifically, the 28-day strength of permeable concrete modified with 1% NS increased by 6.4%, 16.1%, and 38.5% for mixes with 15%, 20%, and 25% porosity, respectively. Meanwhile, NS improves the permeability with 0.5% dosage, providing the most effective enhancement. Finally, an empirical expression between permeability and porosity was developed based on the test results, which allows engineers to calculate the required porosity (e.g., p ≈ 17% for K = 1.0 cm/s) to meet specific permeability in pavement applications. Full article
Show Figures

Figure 1

18 pages, 3855 KB  
Article
Effect of Bonding Characteristics on Rutting Resistance and Moisture Susceptibility of Rubberized Reclaimed Asphalt Pavement
by Ling Xu, Zifeng Zhao, Yuanwen Lai, Yan Yuan, Shuyi Wang, Junjie Lin, Laura Moretti and Giuseppe Loprencipe
Infrastructures 2025, 10(12), 336; https://doi.org/10.3390/infrastructures10120336 - 7 Dec 2025
Viewed by 322
Abstract
Asphalt pavements incorporating recycled and sustainable materials have become a widely adopted strategy in road construction, particularly with the use of reclaimed asphalt pavement (RAP) and crumb rubber (CR) derived from waste tires. However, the adhesion and cohesion characteristics of rubberized RAP mixtures [...] Read more.
Asphalt pavements incorporating recycled and sustainable materials have become a widely adopted strategy in road construction, particularly with the use of reclaimed asphalt pavement (RAP) and crumb rubber (CR) derived from waste tires. However, the adhesion and cohesion characteristics of rubberized RAP mixtures remain insufficiently understood. This study investigates how interfacial bonding affects the rutting resistance and moisture susceptibility of rubberized RAP asphalt mixtures. Two RAP sources with different aging levels and two CR particle sizes (250 μm and 380 μm) were evaluated. Binder bond strength (BBS) tests showed that pull-off strength increased with the use of smaller CR particles and more highly aged RAP, while rotational viscosity and penetration tests confirmed the corresponding increase in binder stiffness. Hamburg wheel track (HWT) tests with high-temperature viscoplastic deformation analysis demonstrated improved rutting resistance in the tested mixtures. Furthermore, boiling tests supported by image analysis revealed reductions in stripping ratios, indicating enhanced moisture resistance. ANOVA results (p < 0.05) confirmed that CR content had a significant effect on bonding characteristics, whereas RAP aging and CR particle size jointly influenced rutting performance. Overall, mixtures incorporating 10% CR and 25% RAP achieved the best balance between adhesion, cohesion, and durability. These findings provide a quantitative understanding of how interfacial bonding governs the mechanical performance and moisture resistance of rubberized RAP mixtures. Full article
Show Figures

Figure 1

30 pages, 6939 KB  
Article
Geopolymerization of Kaolin Clay with Hemp Fibers for Sustainable Soil Stabilization
by Bilge Aksu Alcan, Halil Oğuzhan Kara and Mehmet Uğur Yılmazoğlu
Polymers 2025, 17(23), 3216; https://doi.org/10.3390/polym17233216 - 2 Dec 2025
Viewed by 491
Abstract
In this study, the aim was to improve the mechanical and durability properties of kaolin clay (KC)-based soil by stabilizing it with geopolymer and natural fiber. In the production of the geopolymer, rice husk ash (RHA) was used as a binder, sodium metasilicate [...] Read more.
In this study, the aim was to improve the mechanical and durability properties of kaolin clay (KC)-based soil by stabilizing it with geopolymer and natural fiber. In the production of the geopolymer, rice husk ash (RHA) was used as a binder, sodium metasilicate (SMS) as an activator, and another hemp fiber (HF)was used for soil stabilization. Within the scope of the presented study, RHA and SMS were used at three different rates (5%, 7.5%, and 10%), while HF was used in six different volumes (0.5%, 1%, 1.5%, 2%, 2.5%, and 3%) and two different lengths (6 and 12 mm). The study also examined how much water was in the combinations, which was measured at the optimum level and at −5, +5, and +10 compared to the optimum level. The unconfined compressive strength (UCS) was used to check the mechanical qualities of the test specimens and 5- and 10-cycle freeze–thaw (F-T) tests to check the durability properties. The test results indicated that the mixed formulation with 5% RHA, 10% SMS, 2.5% HF, and the optimum water content resulted in the best results for both the UCS and F-T tests. The SEM investigation for this mix found that the microstructural properties for the specimen were directly related to the dense gel phases and the strong fiber–matrix bonding. According to the carbon emissions (CO2-e) and carbon index (CI) analysis from the mix component analyses, it was found that the HF-strengthened geopolymer is a sustainable solution for soil stabilization. The optimum mixture achieved a UCS of 1202 kPa (4.5 times higher than untreated soil), while the strength losses after 10 freeze–thaw cycles were reduced to below 10% in optimized compositions. The carbon index (CI) decreased by up to 65%, demonstrating the strong sustainability benefits of the proposed system. The novelty of this study lies in the combined use of hemp fiber (HF) and rice husk ash (RHA)–sodium metasilicate (SMS)-based geopolymer for kaolin clay stabilization, which has not been comprehensively investigated in previous research. Unlike traditional studies focusing on either geopolymer or natural fiber reinforcement alone, this work simultaneously evaluates the mechanical performance, freeze–thaw durability, microstructural evolution, and carbon footprint to develop a fully sustainable soil improvement framework. Full article
Show Figures

Graphical abstract

13 pages, 2190 KB  
Article
Microwave-Crosslinked Polymer Binder MA-AANa/D Biodegradable in an Aqueous Environment–Selected Own Research
by Beata Grabowska, Artur Bobrowski, Mateusz Skrzyński, Grzegorz Grabowski, Wojciech Żyłka and Barbara Pilch-Pitera
Materials 2025, 18(23), 5379; https://doi.org/10.3390/ma18235379 - 28 Nov 2025
Viewed by 305
Abstract
The article presents a series of studies on a new polymer binder in the form of an aqueous composition of MA-AANa/D in the aspect of its reusability in the casting process and its safe storage in landfills. FT-IR analysis confirmed that microwave radiation [...] Read more.
The article presents a series of studies on a new polymer binder in the form of an aqueous composition of MA-AANa/D in the aspect of its reusability in the casting process and its safe storage in landfills. FT-IR analysis confirmed that microwave radiation induces crosslinking of both the MA-AANa/D binder and the moulding sand containing it. It was found that after simple treatment of the microwave-cured binder, its original binding properties can be restored, as the hydrogen-bond networks formed under microwave irradiation are reversible. The bending strength (Rgu) tests of both fresh and regenerated moulding sands bonded with MA-AANa/D confirmed that the achieved curing degree meets the requirements for mould and core production. In addition, the biodegradability of the MA-AANa/D binder was evaluated using the Zahn-Wellens test. The progressive biodegradation was monitored through chemical oxygen demand (UV-Vis) measurements and the corresponding biodegradation degree (Rt). The results confirmed that MA-AANa/D is fully biodegradable in aqueous environments, as evidenced by an Rt value of 63.5% after 28 days of testing. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Graphical abstract

20 pages, 2584 KB  
Article
Effect of Resin Reactivity and Storage Conditions on the Properties of Foundry Cores Based on Phenolic Resole Binders
by Faustyna Woźniak and Artur Bobrowski
Appl. Sci. 2025, 15(22), 12256; https://doi.org/10.3390/app152212256 - 18 Nov 2025
Viewed by 664
Abstract
This study investigates the influence of binder reactivity and storage conditions on the mechanical and technological properties of foundry cores made with two phenol–formaldehyde resole resins differing in reactivity. Cylindrical specimens were produced using the Alpha-Set process and tested for tensile and splitting [...] Read more.
This study investigates the influence of binder reactivity and storage conditions on the mechanical and technological properties of foundry cores made with two phenol–formaldehyde resole resins differing in reactivity. Cylindrical specimens were produced using the Alpha-Set process and tested for tensile and splitting strength, gas permeability, abrasion resistance, and thermal deformation after 1 h of curing and 24 h of storage under three climatic conditions (temperature (°C) and relative humidity (RH) are given using standard notation): A (25 °C, 90% RH), B (0 °C, 10% RH), and C (15 °C, 50% RH). The bench life of the mixtures ranged from 6.5 min for the high-reactivity resin to 8.0 min for the low-reactivity resin, indicating that higher reactivity shortens the technological window but enables faster strength development. After 48 h of curing under moderate conditions (C), cores made with the high-reactivity resin achieved a tensile strength of 0.51 MPa, compared with 0.35 MPa for the low-reactivity binder. Under high humidity (A), this trend reversed—the less reactive resin reached a higher splitting strength (4.27 MPa vs. 2.95 MPa) and exhibited lower friability (0.9% vs. 3.0%), confirming greater resistance to moisture-induced plasticization. The high-reactivity resin, however, showed smaller maximum thermal deformation (≈−2 mm vs. ≈−5.5 mm), although the onset of instability occurred earlier during heating. In cold and dry conditions (B), the low-reactivity resin provided higher tensile strength (0.23 MPa vs. 0.12 MPa) and lower friability, whereas the high-reactivity resin exhibited lower thermal distortion. Binder selection should therefore reflect the prioritized property—dimensional stability or mechanical strength and abrasion resistance. A comparative evaluation of all measured parameters indicated that the most balanced performance was obtained under moderate storage conditions (15 °C, 50% RH), representing the optimal processing route for phenolic resin-bonded cores. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 5848 KB  
Article
Porous Refractories Synthesized Using Rice Husk and Rice Husk Processing Products
by Svetlana Yefremova, Sergey Yermishin, Askhat Kablanbekov, Baimakhan Satbaev, Nurgali Shalabaev and Serik Satbaev
Materials 2025, 18(21), 5063; https://doi.org/10.3390/ma18215063 - 6 Nov 2025
Viewed by 923
Abstract
In recent years, research in the field of the sustainable production of refractory ceramics has become topical. Significant attention has been paid to the use of secondary raw materials for obtaining high-quality materials. The purpose of the current study was to develop new [...] Read more.
In recent years, research in the field of the sustainable production of refractory ceramics has become topical. Significant attention has been paid to the use of secondary raw materials for obtaining high-quality materials. The purpose of the current study was to develop new high-temperature porous materials based on the magnesium sulfate-refractory clay–chamotte–aluminum system using environmentally friendly raw components. To synthesize porous refractories, rice husk and the by-products of its thermal processing were used as substitutes for ingredients usually introduced into the composition of high-temperature materials. Ground rice husk was used as both a burnout additive and a silica source. It was added to the mixture instead of chamotte. An organic condensate from rice husk pyrolysis was used as a binder. A sodium silicate solution, after activating pyrolyzed rice husk with alkali, was also tested as a binder. These liquid ingredients served as replacements for lignosulfonate and liquid glass. The new raw material components and the porous refractories obtained with their use were studied using methods of chemical analysis, XRD, GC-MS, TA, SEM, and EDS. Standard methods for studying the properties of refractories were used to evaluate the physicomechanical and thermal characteristics of the experimental materials. The sample with the maximum content of rice husk (14.4 wt.%) and organic condensate from its pyrolysis (10.5 wt.%) demonstrated promising properties as a light porous refractory: an apparent porosity of 44%, a volumetric weight of 1.1 g·cm−3, compressive strength of 2.1 MPa, tensile strength in bending of 4.5 MPa, bond strength of 0.01 MPa, thermal shock resistance of 155 thermal cycles, and thermal conductivity of 0.05 W (m·K)−1. It can be used as a prospective thermal insulating material. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

20 pages, 2856 KB  
Review
Overview of Cement Bond Evaluation Methods in Carbon Capture, Utilisation, and Storage (CCUS) Projects—A Review
by Paulus Tangke Allo, Reza Rezaee and Michael B. Clennell
Eng 2025, 6(11), 303; https://doi.org/10.3390/eng6110303 - 1 Nov 2025
Cited by 1 | Viewed by 858
Abstract
Cement bond evaluation helps check wellbore integrity and zonal isolation in carbon capture, utilisation, and storage (CCUS) projects. This overview describes various cement bond evaluation methods, focusing on acoustic logging and ultrasonic imaging tools supplemented by emerging data-driven interpretation techniques. Their advantages, limitations, [...] Read more.
Cement bond evaluation helps check wellbore integrity and zonal isolation in carbon capture, utilisation, and storage (CCUS) projects. This overview describes various cement bond evaluation methods, focusing on acoustic logging and ultrasonic imaging tools supplemented by emerging data-driven interpretation techniques. Their advantages, limitations, and recent advancements are described with illustrative example on ultrasonic-image-based machine learning classifier that detect microannulus. Key research gaps remain in field-scale validation of long-term cement behaviour and in establishing comprehensive 3-D bond-strength benchmarks. To address these gaps, this review recommends (i) creating an open, standardised ML dataset for CCUS well logs, (ii) adopting best-practice pressure-monitoring protocols during and after injection, and (iii) integrating ML analytics with advanced modelling while exploring alternative binder systems. The next step is to test these ML models on real CO2-storage well data, paving the way toward more reliable cement-bond integrity assessments in future CCUS projects. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 10369 KB  
Article
Properties of Green Foam-Type Composites Made from Recycled Paper and Cardboard
by Mohammad Hassan Mazaherifar, Antonela Lungu, Maria Cristina Timar, Sergiu Valeriu Georgescu, Mihai Ispas and Camelia Cosereanu
Recycling 2025, 10(6), 196; https://doi.org/10.3390/recycling10060196 - 22 Oct 2025
Viewed by 1269
Abstract
This study developed sustainable foam-type composites from recycled paper (P), corrugated cardboard (C), and their 1:1 mixture (PC) for use in thermal and acoustic insulation. The materials were produced by water-assisted defibration, gas foaming with sodium bicarbonate and yeast, and oven curing, resulting [...] Read more.
This study developed sustainable foam-type composites from recycled paper (P), corrugated cardboard (C), and their 1:1 mixture (PC) for use in thermal and acoustic insulation. The materials were produced by water-assisted defibration, gas foaming with sodium bicarbonate and yeast, and oven curing, resulting in lightweight porous panels without synthetic binders. The composites exhibited distinct density and porosity profiles that influenced moisture behavior and stability. Cardboard-based panels absorbed the most water and swelled the most, while paper-based panels were more resistant. Despite these differences, all materials showed uniformly low thermal conductivity, confirming their strong insulation capability. Acoustic performance was enhanced by perforation and multilayer assembly. Cardboard panels with a triple-layer perforated design achieved the highest sound absorption, while mixed paper–cardboard composites provided balanced broadband performance. Microscopy revealed that fiber morphology—coarse in cardboard, fine in paper, and interlaced in mixtures—shaped the porous structure and bonding. Mechanical tests indicated comparable stiffness and strength across all types, with cardboard showing the strongest internal bonding. Overall, the results demonstrate that fiber structure and porosity govern material performance. These foam composites combine effective thermal insulation, competitive sound absorption, and sufficient mechanical strength, positioning them as biodegradable, low-cost alternatives for sustainable construction and acoustic applications. Full article
Show Figures

Figure 1

19 pages, 2721 KB  
Article
Effect of Vibration Timing on Mechanical and Durability Properties of Early-Strength Cement-Based Composites for Bridge Wet Joints
by Xiaodong Li, Jianxin Li, Xiang Tian, Yafeng Pang, Bing Fu and Shuangxi Zhou
Materials 2025, 18(20), 4645; https://doi.org/10.3390/ma18204645 - 10 Oct 2025
Viewed by 574
Abstract
This study explores the influence of vibration timing on the performance of high early-strength cement-based composites used in bridge wet joints. A series of experimental techniques, including SEM, MIP, and RCM tests, were employed to evaluate microstructural evolution, mechanical properties, and durability. The [...] Read more.
This study explores the influence of vibration timing on the performance of high early-strength cement-based composites used in bridge wet joints. A series of experimental techniques, including SEM, MIP, and RCM tests, were employed to evaluate microstructural evolution, mechanical properties, and durability. The results indicate that vibration applied between the initial and final setting phases has a critical impact, significantly reducing early-age compressive, flexural, and bond strengths. This deterioration is mainly attributed to micro-crack formation and enhanced pore connectivity, as confirmed by SEM and MIP analyses. Moreover, vibration markedly increases the chloride diffusion coefficient, particularly in mixtures with higher water-to-binder ratios, thereby raising long-term durability concerns. These findings underscore the necessity of optimizing mix proportions and strictly controlling vibration timing to ensure both the mechanical performance and service life of high early-strength cement composites in bridge construction. The study provides practical insights for the design and application of durable, resilient bridge wet joints. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3652 KB  
Article
Influence of Coarse Aggregate Geometry and Mineral Composition on the Durability of Asphalt Concrete
by Hussein K. Mohammad, Amjad H. Albayati and Mazen J. Al-Kheetan
Infrastructures 2025, 10(10), 263; https://doi.org/10.3390/infrastructures10100263 - 4 Oct 2025
Viewed by 818
Abstract
The durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and [...] Read more.
The durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects. Results showed that mixtures containing higher proportions of flat and elongated particles exhibited greater void content, reduced stability, and weaker moisture resistance, with the 1:5 flat-to-elongated ratio showing the most adverse impact (TSR 73.9%, IRS 69.2%). Conversely, increasing coarse aggregate angularity (CAA) enhanced mixture performance, with TSR values rising from 63.5% at 0% angularity to 81.2% at 100% angularity, accompanied by corresponding improvements in IRS. Mineral composition analysis further demonstrated that calcite-based aggregates achieved stronger bonding with asphalt binder and superior resistance to stripping compared to quartz-based ones. These findings confirm that aggregate geometry and mineralogy exert a decisive influence on asphalt mixture durability. They also highlight the need to revise current specifications that permit the use of uncrushed coarse aggregate in asphalt base courses, particularly when such layers may serve as surface courses in suburban or low-volume roads, where long-term resistance to moisture damage is critical. Full article
Show Figures

Graphical abstract

24 pages, 3936 KB  
Article
Usability of Polyurethane Resin Binder in Road Pavement Construction
by Furkan Kinay and Abdulrezzak Bakis
Appl. Sci. 2025, 15(19), 10592; https://doi.org/10.3390/app151910592 - 30 Sep 2025
Viewed by 742
Abstract
Many transportation structures collapse or sustain severe damage as a result of natural disasters such as earthquakes, floods, wars, and similar attacks. These collapsed or severely damaged structures must be rebuilt and returned to service as quickly as possible. Water is used in [...] Read more.
Many transportation structures collapse or sustain severe damage as a result of natural disasters such as earthquakes, floods, wars, and similar attacks. These collapsed or severely damaged structures must be rebuilt and returned to service as quickly as possible. Water is used in the mix for cement-bound concrete roads. It is known that drought problems are emerging due to climate change and that water resources are rapidly depleting. Significant amounts of water are used in concrete production, further depleting water resources. In order to contribute to the elimination of these two problems, the usability of polyurethane resin binder in road pavement construction was investigated. Polyurethane resin binder road pavement is a new type of pavement that does not contain cement or bitumen as binders and does not contain water in its mixture. This new type of road pavement can be opened to traffic within 5–15 min. After determining the aggregate and binder mixture ratios, four different curing methods were applied to the created samples. After the curing, the samples were subjected to compression test, flexural test, Bohme abrasion test, freeze–thaw test, bond strength by pull-off test, ultrasonic pulse velocity (UPV) test, SEM-EDX analysis, XRD analysis, and FT-IR analysis. The new type of road pavement created within the scope of this study exhibited a compression strength of 41.22 MPa, a flexural strength of 25.32 MPa, a Bohme abrasion value of 0.99 cm3/50 cm2, a freeze–thaw test mass loss per unit area of 0.77 kg/m2, and an average bond strength by pull-off value of 4.63 MPa. It was observed that these values ensured the road pavement specification limits. Full article
(This article belongs to the Special Issue Advances in Civil Infrastructures Engineering)
Show Figures

Figure 1

14 pages, 6895 KB  
Article
The Effect of Surface Properties of Steel Sections on Bond Strength in Soil-Cement Mix
by Maciej Szczygielski and Przemysław Fiołek
Appl. Sci. 2025, 15(19), 10463; https://doi.org/10.3390/app151910463 - 26 Sep 2025
Viewed by 549
Abstract
Soil strengthening with hydraulic binders has gained popularity in recent years and provides an alternative to traditional methods, both for foundation reinforcement and for retaining walls. In many cases, columns, walls, or soil-cement mix blocks require reinforcement with steel sections. Correctly assessing the [...] Read more.
Soil strengthening with hydraulic binders has gained popularity in recent years and provides an alternative to traditional methods, both for foundation reinforcement and for retaining walls. In many cases, columns, walls, or soil-cement mix blocks require reinforcement with steel sections. Correctly assessing the load-bearing capacity of a reinforced element requires an understanding of the bonding forces between the steel and the soil-cement mix. This article presents the results of pull-out tests conducted on steel flat bars embedded in a soil-cement mix. A soil-cement mix containing sand, silt, and clay fractions was prepared. The surfaces of the flat bars were treated in three different ways, and their roughness was subsequently measured. The pull-out strength of steel flat bars embedded in a soil-cement mix with compressive strength in the range of 1–2 MPa was determined. The tests revealed a correlation between surface roughness and bond strength. The conducted tests provided the basis for developing new research directions and for formulating a new bonding model for the interaction between steel profiles and soil-cement. Full article
Show Figures

Figure 1

19 pages, 4987 KB  
Article
Development and Characterization of Sustainable Biocomposites from Wood Fibers, Spent Coffee Grounds, and Ammonium Lignosulfonate
by Viktor Savov, Petar Antov, Alexsandrina Kostadinova-Slaveva, Jansu Yusein, Viktoria Dudeva, Ekaterina Todorova and Stoyko Petrin
Polymers 2025, 17(19), 2589; https://doi.org/10.3390/polym17192589 - 24 Sep 2025
Viewed by 1037
Abstract
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% [...] Read more.
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% of the market. Although formaldehyde emissions from these resins can be mitigated through strict hygiene standards and technological measures, concerns remain due to their classification as category 1B carcinogens under EU regulations. In this study, fiber-based biocomposites were fabricated from thermomechanical wood fibers, SCGs, and ammonium lignosulfonate (ALS). SCGs and ALS were mixed in a 1:1 ratio and incorporated at 40–75% of the oven-dry fiber mass. Hot pressing was performed at 150 °C under 1.1–1.8 MPa to produce panels with a nominal density of 750 kg m−3, and we subsequently tested them for their physical properties (density, water absorption (WA), and thickness swelling (TS)), mechanical properties (modulus of elasticity (MOE), modulus of rupture (MOR), and internal bond (IB) strength), and thermal behavior and biodegradation performance. A binder content of 50% yielded MOE ≈ 2707 N mm−2 and MOR ≈ 22.6 N mm−2, comparable to UF-bonded medium-density fiberboards (MDFs) for dry-use applications. Higher binder contents resulted in reduced strength and increased WA values. Thermogravimetric analysis (TGA/DTG) revealed an inorganic residue of 2.9–8.5% and slower burning compared to the UF-bonded panels. These results demonstrate that SCGs and ALS can be co-utilized as a renewable, formaldehyde-free adhesive system for manufacturing wood fiber composites, achieving adequate performance for value-added practical applications while advancing sustainable material development. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 4319 KB  
Article
Performance Evaluation of Asphalt Concrete Incorporating Polyethylene Terephthalate-Coated Steel Slag Using Marshall Stability, Indirect Tensile Strength, and Moisture Susceptibility Tests
by Mahiman Zinnurain, Md. Kamrul Hasan Kawsar, Md. Mizanur Rahman, Md. Kamrul Islam, Md. Arifuzzaman and Mohammad Anwar Parvez
Processes 2025, 13(9), 2862; https://doi.org/10.3390/pr13092862 - 7 Sep 2025
Viewed by 4145
Abstract
This study evaluates the performance of asphalt concrete incorporating steel slag aggregates coated with recycled polyethylene terephthalate (PET). The aim was to enhance adhesion between aggregate and binder while addressing environmental concerns related to waste management. Laboratory testing was carried out to assess [...] Read more.
This study evaluates the performance of asphalt concrete incorporating steel slag aggregates coated with recycled polyethylene terephthalate (PET). The aim was to enhance adhesion between aggregate and binder while addressing environmental concerns related to waste management. Laboratory testing was carried out to assess Marshall stability, indirect tensile strength, and tensile strength ratio, which are commonly used indicators of strength and moisture resistance in asphalt mixtures. The results showed that PET coating enhanced binder-aggregate bonding, resulting in higher stability, which indicates an improved resistance to plastic deformation and moisture damage compared to uncoated slag mixtures. Among the tested combinations, the mixes containing 20% slag with 10% PET and 30% slag with 15% PET demonstrated the most balanced performance. These mixes achieved greater durability while maintaining satisfactory strength values, indicating that PET-coated slag can serve as an effective partial replacement for natural aggregates in asphalt concrete. The study also highlights that the approach can help reduce reliance on natural stone, lower construction costs, and promote recycling of industrial byproducts and plastic waste. This contributes to more sustainable pavement practices while addressing issues of waste disposal and environmental degradation. The findings suggest that PET-coated steel slag can be considered a practical and resource-efficient material for asphalt mixtures. The research not only adds technical evidence to the growing interest in waste-based construction materials but also provides guidance for adopting such methods in developing countries, where cost and sustainability are critical factors. Full article
(This article belongs to the Special Issue Advances in Modifications Processes of Bitumen and Asphalt Mixtures)
Show Figures

Figure 1

Back to TopTop