Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = biaryl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3599 KiB  
Review
Recent Advances in Borylation and Suzuki-Type Cross-Coupling—One-Pot Miyaura-Type CX and CH BorylationSuzuki Coupling Sequence
by Nouhaila Bahyoune, Mohammed Eddahmi, Perikleia Diamantopoulou, Ioannis D. Kostas and Latifa Bouissane
Catalysts 2025, 15(8), 738; https://doi.org/10.3390/catal15080738 (registering DOI) - 1 Aug 2025
Abstract
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last [...] Read more.
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last decade in transition metal-catalyzed C–X borylation and direct C–H borylation, with emphasis on nickel-catalyzed C–H borylation, as effective and affordable protocols for the borylation of aryl substrates. In addition, Suzuki-type cross-coupling by activation of C–H, C–C, or C–N bonds is also reported. This study then offers an overview of recent advances for the synthesis of bi- and multi-aryls found in synthetic molecular complexes and natural products using the transition metal-catalyzed one-pot Miyaura-type C–X and C–H borylation–Suzuki coupling sequence. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 1698 KiB  
Review
Enantioselective Iodination and Bromination for the Atroposelective Construction of Axially Chiral Compounds
by Xilong Wang, Shunwei Zhao, Yao Zhang, Dongya Bai, Fengbo Qu, Zhiyi Song, Hui Chen and Tingting Liu
Catalysts 2025, 15(7), 679; https://doi.org/10.3390/catal15070679 - 12 Jul 2025
Viewed by 633
Abstract
Axially chiral compounds play a pivotal role in organic synthesis, materials science, and pharmaceutical development. Among the various strategies for their construction, enantioselective iodination and bromination have emerged as powerful and versatile approaches, enabling the introduction of halogen functionalities that serve as valuable [...] Read more.
Axially chiral compounds play a pivotal role in organic synthesis, materials science, and pharmaceutical development. Among the various strategies for their construction, enantioselective iodination and bromination have emerged as powerful and versatile approaches, enabling the introduction of halogen functionalities that serve as valuable synthetic handles for further transformations. This review highlights recent advances in atroposelective iodination and bromination, with a particular focus on the synthesis of axially chiral biaryl and heterobiaryl frameworks. Key catalytic systems are discussed, including transition metal complexes, small-molecule organocatalysts, and high-valent metal catalysts in combination with chiral ligands or transient directing groups. Representative case studies are presented to elucidate mechanistic pathways, stereochemical induction models, and synthetic applications. Despite notable progress, challenges remain, such as expanding substrate scope, improving atom economy, and achieving high levels of regio- and stereocontrol in complex molecular settings. This review aims to provide a comprehensive overview of these halogenation strategies and offers insights to guide future research in the atroposelective synthesis of axially chiral molecules. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Scheme 1

15 pages, 779 KiB  
Article
Balancing Yields and Sustainability: An Eco-Friendly Approach to Losartan Synthesis Using Green Palladium Nanoparticles
by Edith M. Antunes, Yusuf A. Adegoke, Sinazo Mgwigwi, John J. Bolton, Sarel F. Malan and Denzil R. Beukes
Molecules 2025, 30(11), 2314; https://doi.org/10.3390/molecules30112314 - 25 May 2025
Viewed by 726
Abstract
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield [...] Read more.
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield (98%) via Suzuki–Miyaura coupling between 2-bromobenzonitrile and 4-methylphenylboronic acid, catalyzed using bio-derived PdNPs under mild conditions. Subsequent bromination using N-bromosuccinimide (NBS) under LED light, followed by imidazole coupling and tetrazole ring formation, allowed for the production of losartan with an overall yield of 27%. The PdNP catalyst exhibited high stability and recyclability, as well as strong catalytic activity, even at lower loadings, and nitrosamine formation was not detected. While the overall yield was lower than that of traditional industrial methods, this was due to the deliberate avoidance of the use of toxic reagents, hazardous solvents, and protection/deprotection steps commonly used in conventional routes. This trade-off marks a shift in pharmaceutical process development, where environmental and safety considerations are increasingly prioritized in line with green chemistry and regulatory frameworks. This study provides a foundation for green scaling up strategies, incorporating sustainability principles into drug synthesis. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

15 pages, 4074 KiB  
Article
Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer
by Yoshimi Ichimaru, Koichi Kato, Koushirou Sogawa, Daichi Egawa, Hideaki Kato, Kazuaki Katakawa, Wanchun Jin, Masaaki Kurihara and Hiromasa Kurosaki
Chemistry 2025, 7(2), 41; https://doi.org/10.3390/chemistry7020041 - 15 Mar 2025
Viewed by 640
Abstract
Metal complexes have potential applications in drug discovery due to their unique properties. For example, zinc(II) ions (ZnII) exhibit a high affinity for DNA and have been used as active centers in artificial protein/small-molecule metallonucleases. In this study, we designed a [...] Read more.
Metal complexes have potential applications in drug discovery due to their unique properties. For example, zinc(II) ions (ZnII) exhibit a high affinity for DNA and have been used as active centers in artificial protein/small-molecule metallonucleases. In this study, we designed a series of ligands containing a biaryl moiety as a photosensitizer to synthesize ZnII complexes with enhanced DNA affinity for use as DNA photocleavage reagents. The DNA photocleavage activity of these complexes was evaluated using the pUC19 plasmid, revealing that the ZnII complex bearing the 4′-biphenyl-bpa (bpa = bis(2-picolyl)amine) ligand L1 exhibited the strongest DNA photocleavage activity. Further analysis of the biological activity of the ZnII complex of L1 in the human pancreatic cancer cell line MIA PaCa-II demonstrated that its cytotoxic activity increased in a UV irradiation time-dependent manner, with an IC50 value of 14.2 μM. Fluorescence staining revealed that the ZnII complex of L1 generates reactive oxygen species in cells, leading to DNA double-strand breaks upon UV irradiation and ultimately resulting in necrotic cell death. These findings highlight the potential of the ZnII complex of L1 as a photochemotherapeutic agent for pancreatic cancer. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

8 pages, 1269 KiB  
Communication
Synthesis and Characterization of Benzo[1,2-b:4,3-b’]dithiophene-Based Biaryls
by Valentina Pelliccioli, Luca Ferrari, Francesco Fagnani, Alessia Colombo and Silvia Cauteruccio
Molbank 2025, 2025(1), M1963; https://doi.org/10.3390/M1963 - 5 Feb 2025
Viewed by 1026
Abstract
The synthesis of three biaryl systems containing the benzo[1,2-b:4,3-b’] framework was accomplished through the Suzuki–Miyaura cross-coupling reaction between 1-bromobenzo[1,2-b:4,3-b’]dithiophene and easily available polycyclic aromatic hydrocarbon boronic acid pinacol esters containing pyrene, fluorene, and fluorenone. The [...] Read more.
The synthesis of three biaryl systems containing the benzo[1,2-b:4,3-b’] framework was accomplished through the Suzuki–Miyaura cross-coupling reaction between 1-bromobenzo[1,2-b:4,3-b’]dithiophene and easily available polycyclic aromatic hydrocarbon boronic acid pinacol esters containing pyrene, fluorene, and fluorenone. The spectroscopic characterization of these molecules was carried out by means of NMR experiments and high-resolution mass spectrometry. UV-vis absorption measurements at different concentrations of the newly synthesized compounds were also performed. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

14 pages, 2438 KiB  
Article
(aS)-Glucosciadopitysin, a New Biflavonoid Glycoside from the Leaves of Ginkgo biloba and Osteogenic Activity of Bioflavonoids
by Se Yun Jeong, Kwang Ho Lee, Seon Hee Kim, Min Hye Yang, Gakyung Lee and Ki Hyun Kim
Plants 2025, 14(2), 261; https://doi.org/10.3390/plants14020261 - 17 Jan 2025
Viewed by 1115
Abstract
The leaves of Ginkgo biloba have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance [...] Read more.
The leaves of Ginkgo biloba have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from G. biloba have not been fully identified. Phytochemical investigation of the MeOH extract of G. biloba leaves led to the isolation and identification of a new biflavonoid glycoside, (aS)-glucosciadopitysin (1), along with five flavonoids (26), through LC/MS-guided isolation approach. The structure of the new compound 1 was elucidated by the spectroscopic methods, including 1D and 2D NMR analysis, as well as HR-ESIMS. The absolute configuration of sugar moiety was established through acid hydrolysis, followed by chemical derivatization reaction and the axial chirality arising from the biaryl system with substituents was determined by electronic circular dichroism (ECD) calculations. The isolated flavonoids (16) were tested for their effects on mesenchymal stem cell (MSC) differentiation at 20 μM using Oil Red O and alkaline phosphatase (ALP) staining. Ginkgetin (2) was further evaluated for osteogenic activity on C3H10T1/2 cells at concentrations of 1, 2.5, 5, and 10 μM for 10 days. ALP staining and RT-PCR assessed the gene expression of osteogenic markers ALP and osteopontin (OPN). Ginkgetin (2) demonstrated the strongest osteogenic activity, significantly increasing the expression of ALP (12.5-fold) and OPN (4.0-fold) at 10 μM, comparable to the positive control, oryzativol A. Ginkgetin (2) shows potential as a therapeutic agent for osteopenia by promoting osteogenesis in MSCs, suggesting its promising role in treating osteoporosis. Full article
(This article belongs to the Special Issue Medicinal Plants: Phytochemistry and Pharmacology Studies)
Show Figures

Graphical abstract

11 pages, 1461 KiB  
Article
Solid-State Photoluminescence of Diphenylnaphthalenes Studied by Photophysical Measurements and Crystallographic Analysis
by Minoru Yamaji, Toshiki Mutai, Isao Yoshikawa, Hirohiko Houjou and Hideki Okamoto
Molecules 2024, 29(24), 5941; https://doi.org/10.3390/molecules29245941 - 16 Dec 2024
Viewed by 831
Abstract
Thanks to recent developments in spectrophotometric instruments, the spectra, quantum yields (Φf), and lifetimes (τf) of photoluminescence from organic and inorganic compounds can be readily determined not only in solution but also in the solid state. It is [...] Read more.
Thanks to recent developments in spectrophotometric instruments, the spectra, quantum yields (Φf), and lifetimes (τf) of photoluminescence from organic and inorganic compounds can be readily determined not only in solution but also in the solid state. It is known that naphthalene emits fluorescence in solution, but not in the solid state. In a previous paper, we reported that solid-state emission can be seen from biaryl compounds comprised of chromophores that show no emission in the solid state. In this work, we prepared diphenylnaphthalenes (DPNs), and the spectra and the Φf and τf values of fluorescence were determined in solution and the solid state, as well as the crystallographic features. The 2,6-Diphenylnphthalene (26DPN) showed solid-state emission in the wavelength region for longer than those in solution, while the emission spectra of the others in the solid state were similar to those in solution. The crystal structure of 26DPN belonged to a herringbone motif, whereas those of the others were column-stacked structures. Based on these spectroscopic and crystallographic facts, the relationship between the crystal motif and the emission features in the solid state is discussed. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Graphical abstract

20 pages, 4666 KiB  
Article
CuI-Zeolite Catalysis for Biaryl Synthesis via Homocoupling Reactions of Phenols or Aryl Boronic Acids
by Xiaohui Di, Tony Garnier, Arnaud Clerc, Eliott Jung, Christian Lherbet, Valérie Bénéteau, Patrick Pale and Stefan Chassaing
Molecules 2024, 29(23), 5552; https://doi.org/10.3390/molecules29235552 - 25 Nov 2024
Cited by 1 | Viewed by 1727
Abstract
Due to the importance of biaryls as natural products, drugs, agrochemicals, dyes, or organic electronic materials, a green alternative biaryl synthesis has been developed based on easy-to-prepare and cheap copper(I)-exchanged zeolite catalysts. CuI-USY proved to efficiently catalyze the direct homocoupling of [...] Read more.
Due to the importance of biaryls as natural products, drugs, agrochemicals, dyes, or organic electronic materials, a green alternative biaryl synthesis has been developed based on easy-to-prepare and cheap copper(I)-exchanged zeolite catalysts. CuI-USY proved to efficiently catalyze the direct homocoupling of either phenols or aryl boronic acids under simple and practical conditions. The CuI-USY-catalyzed oxidative homocoupling of phenols could conveniently be performed under air either in warm methanol or water with good to high yields. In methanol, a small amount of Cs2CO3 was required, while none was necessary in water. The homocoupling of aryl boronic acids was best performed also in warm methanol, without an additive. These mild conditions showed good functional-group tolerance, leading to a variety of substituted (hetero)biaryls (28 examples). The heterogeneous CuI-USY catalyst could readily be recovered and reused. Interestingly, the homocoupling of vinyl boronic acids was successfully coupled to a Diels–Alder reaction, even in a one-pot process, allowing access to highly functionalized cyclohexenes. Full article
Show Figures

Graphical abstract

11 pages, 1836 KiB  
Article
Antibacterial and Antitumor Activities of Synthesized Sarumine Derivatives
by Fangzhou Yang, Bin Jia, Hongli Wen, Xiufang Yang and Yangmin Ma
Int. J. Mol. Sci. 2024, 25(22), 12412; https://doi.org/10.3390/ijms252212412 - 19 Nov 2024
Viewed by 941
Abstract
Our aim in this study was to explain the biological activity of the latest azafluoranthene. The natural product sarumine (12) and its derivatives (1317) were synthesized and evaluated for their antibacterial and antitumor activities. The synthesis involved [...] Read more.
Our aim in this study was to explain the biological activity of the latest azafluoranthene. The natural product sarumine (12) and its derivatives (1317) were synthesized and evaluated for their antibacterial and antitumor activities. The synthesis involved a simplified reaction pathway based on biaryl-sulfonamide-protected cyclization, and the compounds were characterized and studied using spectroscopic methods (1HNMR and 13CNMR). Most of the compounds demonstrated improved antibacterial activity. Notably, sarumine demonstrated potent activity against S. aureus and B. subtilis, with an MIC of 8 μg/mL, showing comparable inhibitory effects to the positive control. Furthermore, molecular simulation studies indicated that sarumine exhibited significant binding affinity to FabH. The inhibitory effect of Cl was superior to the others on the structure, and the antitumor activity result also suggested that the inhibitory ability in PC-3 displayed by the R1 derivatives of F and Cl substitutions was better than that of MDA-MB-231. These findings suggest that sarumine and its derivatives may represent new and promising candidates for further study. Full article
Show Figures

Figure 1

7 pages, 996 KiB  
Communication
Pd EnCat™ 30 Recycling in Suzuki Cross-Coupling Reactions
by Laura D’Andrea and Casper Steinmann
Organics 2024, 5(4), 443-449; https://doi.org/10.3390/org5040023 - 22 Oct 2024
Cited by 1 | Viewed by 1499
Abstract
Pd EnCat™ 30 is a palladium catalyst broadly used in several hydrogenation and cross-coupling reactions. It is known for its numerous beneficial features, which include high-yielding performance, easy recovery, and reusability. However, the available data regarding its recyclability in Suzuki coupling reactions are [...] Read more.
Pd EnCat™ 30 is a palladium catalyst broadly used in several hydrogenation and cross-coupling reactions. It is known for its numerous beneficial features, which include high-yielding performance, easy recovery, and reusability. However, the available data regarding its recyclability in Suzuki coupling reactions are limited to a few reaction cycles and, therefore, fail to explore its full potential. Our work focuses on investigating the extent of Pd EnCat™ 30 reusability in Suzuki cross-coupling reactions by measuring its performance according to isolated yields of product. Our findings demonstrate that Pd EnCat™ 30 can be reused over a minimum of 30 reaction cycles, which is advantageous in terms of cost reduction and more sustainable chemical production. Full article
Show Figures

Figure 1

20 pages, 7902 KiB  
Article
Analysis of the Setomimycin Biosynthetic Gene Cluster from Streptomyces nojiriensis JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations
by Kyung-A Hyun, Xuhui Liang, Yang Xu, Seung-Young Kim, Kyung-Hwan Boo, Jin-Soo Park, Won-Jae Chi and Chang-Gu Hyun
Int. J. Mol. Sci. 2024, 25(19), 10758; https://doi.org/10.3390/ijms251910758 - 6 Oct 2024
Cited by 2 | Viewed by 1900
Abstract
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with [...] Read more.
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC50 values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = −6.8 kcal·mol−1), two π–π interactions with Trp406 and Phe450, and one π–cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin’s binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy. Full article
Show Figures

Figure 1

24 pages, 6212 KiB  
Article
Anti-Diabetic Activities and Molecular Docking Studies of Aryl-Substituted Pyrazolo[3,4-b]pyridine Derivatives Synthesized via Suzuki Cross-Coupling Reaction
by Iqra Rafique, Tahir Maqbool, Floris P. J. T. Rutjes, Ali Irfan and Yousef A. Bin Jardan
Pharmaceuticals 2024, 17(10), 1326; https://doi.org/10.3390/ph17101326 - 4 Oct 2024
Cited by 1 | Viewed by 1815
Abstract
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6ai [...] Read more.
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6ai) and hydrazide (7ai) derivatives via the Suzuki cross-coupling reaction. These derivatives were subsequently screened for their therapeutic potential to inhibit the diabetic α-amylase enzyme, which is a key facet of the development of anti-diabetic agents. Initially, the ethyl 4-(4-bromophenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-6-carboxylate 4 was synthesized through a modified Doebner method under solvent-free conditions, providing an intermediate for further derivatization with a 60% yield. This intermediate 4 was subjected to Suzuki cross-coupling, reacting with electronically diverse aryl boronic acids to obtain the corresponding pyrazolo[3,4-b]pyridine ester derivatives (6ai). Following this, the biaryl ester derivatives (6ai) were converted into hydrazide derivatives (7ai) through a straightforward reaction with hydrazine monohydrate and were characterized using 1H-NMR, 13C-NMR, and LC-MS spectroscopic techniques. These derivatives were screened for their α-amylase inhibitory chemotherapeutic efficacy, and most of the biaryl ester and hydrazide derivatives demonstrated promising amylase inhibition. In the (6ai) series, the compounds 6b, 6c, 6h, and 6g exhibited excellent inhibition, with almost similar IC50 values of 5.14, 5.15, 5.56, and 5.20 μM, respectively. Similarly, in the series (7ai), the derivatives 7a, 7b, 7c, 7d, 7f, 7g, and 7h displayed excellent anti-diabetic activities of 5.21, 5.18, 5.17, 5.12, 5.10, 5.16, and 5.19 μM, respectively. These in vitro results were compared with the reference drug acarbose (IC50 = 200.1 ± 0.15 μM), demonstrating better anti-diabetic inhibitory activity in comparison to the reference drug. The in silico molecular docking study results were consistent with the experimental biological findings, thereby supporting the in vitro pharmaceutical efficacy of the synthesized derivatives. Full article
(This article belongs to the Special Issue Pyrazole and Thiazole Derivatives in Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 4325 KiB  
Article
VCD Analysis of Axial Chirality in Synthetic Stereoisomeric Biaryl-Type bis-Isochroman Heterodimers with Isolated Blocks of Central and Axial Chirality
by Zoltán Czenke, Attila Mándi, Sándor Balázs Király, Attila Kiss-Szikszai, Anita Kónya-Ábrahám, Anna Kurucz-Szabados, Krisztián Cserepes, Attila Bényei, Changsheng Zhang, Máté Kicsák and Tibor Kurtán
Int. J. Mol. Sci. 2024, 25(17), 9657; https://doi.org/10.3390/ijms25179657 - 6 Sep 2024
Viewed by 1382
Abstract
Optically active heterodimeric 5,5′-linked bis-isochromans, containing a stereogenic ortho-trisubstituted biaryl axis and up to four chirality centers, were synthesized stereoselectively by using a Suzuki–Miyaura biaryl coupling reaction of optically active isochroman and 1-arylpropan-2-ol derivatives, providing the first access to synthetic biaryl-type [...] Read more.
Optically active heterodimeric 5,5′-linked bis-isochromans, containing a stereogenic ortho-trisubstituted biaryl axis and up to four chirality centers, were synthesized stereoselectively by using a Suzuki–Miyaura biaryl coupling reaction of optically active isochroman and 1-arylpropan-2-ol derivatives, providing the first access to synthetic biaryl-type isochroman dimers. Enantiomeric pairs and stereoisomers up to seven derivatives were prepared with four different substitution patterns, which enabled us to test how OR, ECD, and VCD measurements and DFT calculations can be used to determine parallel central and axial chirality elements in three isolated blocks of chirality. In contrast to natural penicisteckins A–D and related biaryls, the ECD spectra and OR data of (aS) and (aR) atropodiastereomers did not reflect the opposite axial chirality, but they were characteristic of the central chirality. The atropodiastereomers showed consistently near-mirror-image VCD curves, allowing the determination of axial chirality with the aid of DFT calculation or by comparison of characteristic VCD transitions. Full article
(This article belongs to the Special Issue Recent Trends in Stereoselective Synthesis and Chiral Catalysis)
Show Figures

Graphical abstract

14 pages, 4311 KiB  
Article
Synthesis of Tumor Selective Indole and 8-Hydroxyquinoline Skeleton Containing Di-, or Triarylmethanes with Improved Cytotoxic Activity
by Dóra Hegedűs, Nikoletta Szemerédi, Krisztina Petrinca, Róbert Berkecz, Gabriella Spengler and István Szatmári
Molecules 2024, 29(17), 4176; https://doi.org/10.3390/molecules29174176 - 3 Sep 2024
Cited by 3 | Viewed by 1382
Abstract
The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired [...] Read more.
The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells. Full article
Show Figures

Graphical abstract

12 pages, 1146 KiB  
Article
Total Synthesis of the Racemate of Laurolitsine
by Mingyu Cao, Yiming Wang, Yong Zhang, Caiyun Zhang, Niangen Chen and Xiaopo Zhang
Molecules 2024, 29(3), 745; https://doi.org/10.3390/molecules29030745 - 5 Feb 2024
Viewed by 1828
Abstract
The total synthesis of laurolitsine was achieved for the first time. This reaction was accomplished in 14 steps with a 2.3% yield (this was calculated using 3-hydroxy-4-methoxybenzaldehyde as the starting material) starting from two simple materials, 3-hydroxy-4-methoxybenzaldehyde and 2-(3-hydroxy-4-methoxyphenyl)acetic acid, and the longest [...] Read more.
The total synthesis of laurolitsine was achieved for the first time. This reaction was accomplished in 14 steps with a 2.3% yield (this was calculated using 3-hydroxy-4-methoxybenzaldehyde as the starting material) starting from two simple materials, 3-hydroxy-4-methoxybenzaldehyde and 2-(3-hydroxy-4-methoxyphenyl)acetic acid, and the longest linear sequence consisted of 11 steps. The key steps included an electrophilic addition reaction in which a nitro group was reduced to an amino group using lithium tetrahydroaluminum and a Pd-catalyzed direct biaryl coupling reaction. In this paper, many of the experimental steps were optimized, and an innovative postprocessing method in which 2-(3-(benzyloxy)-4-methoxyphenyl)ethanamine is salted with oxalic acid was proposed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop