ijms-logo

Journal Browser

Journal Browser

Application of Natural Products in Biomedicine and Pharmacotherapy: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 8756

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Interests: epigenetics; chromatin; genotoxicology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue on “Application of Natural Products in Biomedicine and Pharmacotherapy”.

Natural products are made from biomolecules, compounds, and extracts from plants or animals, which humans have been using for millennia. Although most natural products possess proven positive effects on human health, the appearance of some unwanted side effects cannot be entirely excluded. Therefore, data from scientific research on natural products and their applications at the molecular, cellular, and organismal levels are extremely useful.

This Special Issue aims to represent high-quality, modern research and the acquired knowledge on the application of natural products.

This Special Issue calls for researchers to contribute reviews and original research reports of their recent work on the topic of the properties of natural products as studied at the molecular, cellular, or organismal level.

Subtopics may include the following:

  • Cellular metabolism of natural products;
  • Genotoxicity and allergenicity of natural products;
  • Epigenetic influence of natural products;
  • Natural products and aging.

Prof. Dr. George Miloshev
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • biomedicine
  • genotoxicity
  • epigenetics
  • aging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1100 KB  
Article
Molecular Networking-Guided Annotation of Flavonoid Glycosides from Quercus mongolica Bee Pollen
by Yerim Joo, Eunbeen Shin, Hyunwoo Kim, Mi Kyeong Lee and Seon Beom Kim
Int. J. Mol. Sci. 2025, 26(16), 7930; https://doi.org/10.3390/ijms26167930 - 17 Aug 2025
Viewed by 569
Abstract
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae [...] Read more.
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae family. However, research focusing specifically on pollen is limited. Moreover, bee pollen chemical composition varies significantly depending on its geographical origin and cultivation conditions. In this study, the flavonoid glycosides of Q. mongolica pollen were profiled using LC–MS/MS-based molecular networking, which revealed that the largest molecular cluster corresponded to flavonoid glycosides. A total of 69 flavonoid glycosides, primarily comprising 2 kaempferol derivatives, 14 quercetin derivatives, and 46 isorhamnetin derivatives, were annotated based on MS/MS fragmentation patterns, spectral library matches in GNPS (Global Natural Products Social Molecular Networking), and comparison with previously reported data. Two primary compounds, isorhamnetin 3-O-β-D-xylopyranosyl (1→6)-β-D-glucopyranoside and isorhamnetin-3-O-neohesperidoside, were identified by comparison with reference standards. This study offers foundational insights into the flavonoid diversity of Q. mongolica pollen, contributing to a broad understanding of its secondary metabolite profile. Full article
Show Figures

Graphical abstract

18 pages, 4324 KB  
Article
Multi-Targeted Anti-Cancer Effects of Triptophenolide in Hormone-Responsive and Triple-Negative Breast Cancer Models
by Zufa Sabeel, Guangshuai Chai, Ruolan Chen, Lu Ying, Yan Liu, Wenjing Zhang, Shangyang Pan, Xiaoyang Chen, Changyuan Yu and Zhao Yang
Int. J. Mol. Sci. 2025, 26(12), 5469; https://doi.org/10.3390/ijms26125469 - 7 Jun 2025
Viewed by 659
Abstract
Breast cancer (BC) remains a significant therapeutic challenge, necessitating novel agents with multi-target efficacy. Here, we demonstrate that triptophenolide (TRI), a bioactive compound from Tripterygium wilfordii, exerts potent anti-BC activity across hormone-responsive (MCF-7) and triple-negative (MDA-MB-231) subtypes. In vitro, TRI inhibited proliferation in [...] Read more.
Breast cancer (BC) remains a significant therapeutic challenge, necessitating novel agents with multi-target efficacy. Here, we demonstrate that triptophenolide (TRI), a bioactive compound from Tripterygium wilfordii, exerts potent anti-BC activity across hormone-responsive (MCF-7) and triple-negative (MDA-MB-231) subtypes. In vitro, TRI inhibited proliferation in a concentration-dependent manner, with IC50 values decreasing from 180.3 μg/mL (24 h) to 127.2 μg/mL (48 h) in MCF-7 cells, and from 322.5 μg/mL to 262.1 μg/mL in MDA-MB-231 cells. TRI treatment induced G1-phase arrest in both breast cancer subtypes, increasing the G1 population by 22.27% in MCF-7 cells and 10.64% in MDA-MB-231 cells. Concurrently, TRI triggered apoptosis, elevating apoptotic rates from 3.36% to 9.78% in MCF-7 cells and from 7.01% to 17.02% in MDA-MB-231 cells. These effects were associated with the significant upregulation of pro-apoptotic proteins BAX, BAK1, BIM, and cytochrome c (CYCS). Notably, TRI suppressed migration by 61.5% (MCF-7) and 71.5% (MDA-MB-231). In vivo, TRI treatment inhibited MCF-7 xenograft growth and reduced tumor volume (1207.5 vs. 285 mm3) and weight (0.22 vs. 0.1 g), while extending the survival time of tumor-bearing mice from 14–20 days to 24 days. These results position TRI as a promising lead therapeutic candidate against diverse BC subtypes, with mechanistic versatility surpassing single-target agents. Full article
Show Figures

Figure 1

12 pages, 2647 KB  
Article
Decursin Suppresses Esophageal Squamous Cell Carcinoma Progression via Orchestrated Cell Cycle Deceleration, Apoptotic Activation, and Oncoprotein Degradation
by Chen Fang, Lin Wu, Xiangzhe Yang, Kai Xie, Peng Zhang, Yu Feng, Haitao Ma and Xing Tong
Int. J. Mol. Sci. 2025, 26(11), 5391; https://doi.org/10.3390/ijms26115391 - 4 Jun 2025
Viewed by 718
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a lethal malignancy with limited therapeutic options. This study investigated the antitumor efficacy and mechanisms of decursin, a natural pyranocoumarin derivative, against ESCC. In vitro analyses demonstrated that decursin selectively inhibited ESCC cell viability (IC50: 14.62 ± [...] Read more.
Esophageal squamous cell carcinoma (ESCC) remains a lethal malignancy with limited therapeutic options. This study investigated the antitumor efficacy and mechanisms of decursin, a natural pyranocoumarin derivative, against ESCC. In vitro analyses demonstrated that decursin selectively inhibited ESCC cell viability (IC50: 14.62 ± 0.61–26.20 ± 2.11 μM across TE-1, KYSE-30, and KYSE-150 cell lines) without affecting normal esophageal epithelial cells (Het-1A). Decursin (10 μM) suppressed colony formation, impaired wound healing (p < 0.001 at 48 h), and reduced Transwell migration/invasion in KYSE-150 cells. Subcutaneous xenograft models revealed significant tumor growth inhibition (p < 0.01) with decursin treatment (10 mg/kg, intraperitoneal), accompanied by no systemic toxicity. Mechanistically, decursin induced G0/G1 cell cycle deceleration (p < 0.01) and apoptosis through ubiquitin–proteasome-mediated degradation of oncoproteins TP63 and SOX2. Time- and dose-dependent protein suppression was reversed by proteasome inhibitor MG-132, but unaffected by lysosomal inhibition. These findings establish decursin as a promising therapeutic agent for ESCC, functioning via proteasomal degradation of key oncogenic drivers, and provide a rationale for decursin’s further development as a targeted monotherapy or chemosensitizer in multimodal regimens. Full article
Show Figures

Figure 1

11 pages, 1836 KB  
Article
Antibacterial and Antitumor Activities of Synthesized Sarumine Derivatives
by Fangzhou Yang, Bin Jia, Hongli Wen, Xiufang Yang and Yangmin Ma
Int. J. Mol. Sci. 2024, 25(22), 12412; https://doi.org/10.3390/ijms252212412 - 19 Nov 2024
Viewed by 1024
Abstract
Our aim in this study was to explain the biological activity of the latest azafluoranthene. The natural product sarumine (12) and its derivatives (1317) were synthesized and evaluated for their antibacterial and antitumor activities. The synthesis involved [...] Read more.
Our aim in this study was to explain the biological activity of the latest azafluoranthene. The natural product sarumine (12) and its derivatives (1317) were synthesized and evaluated for their antibacterial and antitumor activities. The synthesis involved a simplified reaction pathway based on biaryl-sulfonamide-protected cyclization, and the compounds were characterized and studied using spectroscopic methods (1HNMR and 13CNMR). Most of the compounds demonstrated improved antibacterial activity. Notably, sarumine demonstrated potent activity against S. aureus and B. subtilis, with an MIC of 8 μg/mL, showing comparable inhibitory effects to the positive control. Furthermore, molecular simulation studies indicated that sarumine exhibited significant binding affinity to FabH. The inhibitory effect of Cl was superior to the others on the structure, and the antitumor activity result also suggested that the inhibitory ability in PC-3 displayed by the R1 derivatives of F and Cl substitutions was better than that of MDA-MB-231. These findings suggest that sarumine and its derivatives may represent new and promising candidates for further study. Full article
Show Figures

Figure 1

18 pages, 7639 KB  
Article
Therapeutic Effects of Proanthocyanidins on Diabetic Erectile Dysfunction in Rats
by Xiaoyan Zeng, Lanlan Li and Li Tong
Int. J. Mol. Sci. 2024, 25(20), 11004; https://doi.org/10.3390/ijms252011004 - 13 Oct 2024
Cited by 1 | Viewed by 1886
Abstract
The rising occurrence of erectile dysfunction related to diabetes mellitus (DMED) has led to the creation of new medications. Proanthocyanidins (PROs) is a potential agent for DMED. In this study, the DMED rat model was established using streptozotocin (STZ) and erectile function was [...] Read more.
The rising occurrence of erectile dysfunction related to diabetes mellitus (DMED) has led to the creation of new medications. Proanthocyanidins (PROs) is a potential agent for DMED. In this study, the DMED rat model was established using streptozotocin (STZ) and erectile function was assessed using apomorphine (APO) in rats. Following this, the rats were subjected to oral treatment with PRO. Then, we evaluated the influence of PROs on DMED rats. The findings suggest that PROs significantly enhance erectile function in DMED rats. PROs modulated glucose and lipid metabolism in DMED rats by decreasing blood glucose and lipid levels while increasing liver glycogen and serum insulin levels. Furthermore, PROs enhanced vascular endothelial function in DMED rats by augmenting nitric oxide (NO) levels and reducing the levels of endothelin-1 (ET-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Additionally, PROs have been shown to elevate testosterone (T) levels, mitigate pathological testicular damage, and enhance sperm concentration and survival rates. Finally, the core targets were screened using network pharmacology, followed by validation through molecular docking, enzyme-linked immunoassay (ELISA), and real-time PCR methodologies. Our findings imply that PROs may treat DMED by elevating AKT1 levels while concurrently diminishing CASP3 levels, thereby effectively regulating the PI3K-Akt signaling pathway. Overall, these results support using PROs as a potential candidate for the treatment of DMED. Full article
Show Figures

Figure 1

17 pages, 4156 KB  
Article
Effect of Torilis japonica Fruit Extract for Endothelium-Independent Vasorelaxation and Blood Pressure Lowering in Rats
by Junkyu Park, Sujin Shin, Youngmin Kim, Youngmin Bu, Ho-Young Choi and Kyungjin Lee
Int. J. Mol. Sci. 2024, 25(15), 8101; https://doi.org/10.3390/ijms25158101 - 25 Jul 2024
Cited by 2 | Viewed by 1301
Abstract
Torilis japonica (TJ) fruit, is a herb that is traditionally used for erectile dysfunction (ED). Given the shared mechanisms of ED and hypertension through vascular smooth muscle, we hypothesized that TJ would be effective in vasodilation and blood pressure reduction. This study confirmed [...] Read more.
Torilis japonica (TJ) fruit, is a herb that is traditionally used for erectile dysfunction (ED). Given the shared mechanisms of ED and hypertension through vascular smooth muscle, we hypothesized that TJ would be effective in vasodilation and blood pressure reduction. This study confirmed the authenticity of TJ samples via DNA barcoding and quantified the main active compound, torilin, using HPLC. TJ was extracted with distilled water (TJW) and 50% ethanol (TJE), yielding torilin contents of 0.35 ± 0.01% and 2.84 ± 0.02%, respectively. Ex vivo tests on thoracic aortic rings from Sprague–Dawley rats showed that TJE (3–300 µg/mL) induced endothelium-independent, concentration-dependent vasodilation, unlike TJW. Torilin caused concentration-dependent relaxation with an EC50 of 210 ± 1.07 µM. TJE’s effects were blocked by a voltage-dependent K+ channel blocker and alleviated contractions induced by CaCl2 and angiotensin II. TJE inhibited vascular contraction induced by phenylephrine or KCl via extracellular CaCl2 and enhanced inhibition with nifedipine, indicating involvement of voltage-dependent and receptor-operated Ca2+ channels. Oral administration of TJE (1000 mg/kg) significantly reduced blood pressure in spontaneously hypertensive rats. These findings suggest TJ extract’s potential for hypertension treatment through vasorelaxant mechanisms, though further research is needed to confirm its efficacy and safety. Full article
Show Figures

Figure 1

Review

Jump to: Research

77 pages, 22207 KB  
Review
Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors
by Hongqiao Tian, Junlin Lu, Fangrong Liang, Haiyan Ding and Chaojiang Xiao
Int. J. Mol. Sci. 2025, 26(7), 3136; https://doi.org/10.3390/ijms26073136 - 28 Mar 2025
Viewed by 1348
Abstract
In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in [...] Read more.
In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in lichens are not found in other organisms, making lichen-derived compounds a promising resource for the development of new drugs, particularly against drug-resistant microorganisms, due to their distinctive chemical structures and biological activities. This article aims to explore in depth the lichen species exhibiting antimicrobial activity and their antimicrobial metabolites and focus on unique compounds such as divaricatic acid, usnic acid, vulpinic acid, salazinic acid, and rhizocarpic acid, which demonstrate significant antimicrobial effects against various resistant microorganisms, including methicillin-resistant Staphylococcus aureus, drug-resistant Mycobacterium tuberculosis, and Candida albicans and other drug-resistant microorganisms. Meanwhile, this paper discusses the potential applications and challenges associated with the use of lichens in medicine, agriculture, and food industry, aiming to elucidate these mysterious organisms for lichen researchers and enthusiasts while promoting further research and applications in the field of antimicrobials. Full article
Show Figures

Figure 1

Back to TopTop