Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. Apparatus
2.1.2. Procedures for Synthesizing L1 and L4
2.1.3. Procedures for Synthesizing L2, L3, and L5
2.2. Circular Dichroism (CD) Spectroscopy
2.3. DNA Photocleavage Activity
2.4. DNA Binding Study
2.5. Cancer Cell Viability
2.6. Cell Fluorescence Staining
2.6.1. Reactive Oxygen Species (ROS)
2.6.2. γH2AX
2.6.3. Apoptosis
3. Results and Discussion
3.1. Preparation
3.2. DNA Photocleavage Activity
3.3. Analysis of Interactions with DNA
3.4. Anticancer Activity
3.4.1. Cell Proliferation
3.4.2. Cell Fluorescence Staining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fragkos, M.; Ganier, O.; Coulombe, P.; Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 2015, 16, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Hanawalt, P.; Spivak, G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Yang, W. Nucleases: Diversity of structure, function and mechanism. Q. Rev. Biophys. 2011, 44, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Boch, J. TALEs of genome targeting. Nat. Biotechnol. 2011, 29, 135–136. [Google Scholar] [CrossRef]
- Boissel, S.; Jarjour, J.; Astrakhan, A.; Adey, A.; Gouble, A.; Duchateau, P.; Shendure, J.; Stoddard, B.L.; Certo, M.T.; Baker, D.; et al. megaTALs: A rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. 2014, 42, 2591–2601. [Google Scholar] [CrossRef]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef]
- Jinek, M.; Jiang, F.; Taylor, D.W.; Sternberg, S.H.; Kaya, E.; Ma, E.; Anders, C.; Hauer, M.; Zhou, K.; Lin, S.; et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997. [Google Scholar] [CrossRef]
- Gupta, R.M.; Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 2014, 124, 4154–4161. [Google Scholar] [CrossRef]
- Zhen, Y.; Cowan, J.A. Metal complexes promoting catalytic cleavage of nucleic acids-biochemical tools and therapeutics. Curr. Opin. Chem. Biol. 2018, 43, 37–42. [Google Scholar] [CrossRef]
- Shahraki, S. Schiff base compounds as artificial metalloenzymes. Colloids Surf. B Biointerfaces 2022, 218, 112727. [Google Scholar] [CrossRef] [PubMed]
- Helleday, T.; Petermann, E.; Lundin, C.; Hdgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Torgovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Groelly, F.J.; Fawkes, M.; Dagg, R.A.; Blackford, A.N.; Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 2023, 23, 78–94. [Google Scholar] [CrossRef]
- Chitrapriya, N.; Shin, J.H.; Hwang, I.H.; Kim, Y.; Kim, C.; Kim, S.K. Synthesis, DNA binding profile and DNA cleavage pathway of divalent metal complexes. RSC Adv. 2015, 5, 68067–68075. [Google Scholar] [CrossRef]
- Corral, E.; Hotze, A.C.G.; den Dulk, H.; Leczkowska, A.; Rodger, A.; Hannon, M.J.; Reedijk, J. Ruthenium polypyridyl complexes and their modes of interaction with DNA: Is there a correlation between these interactions and the antitumor activity of the compounds? J. Biol. Inorg. Chem. 2009, 14, 439–448. [Google Scholar] [CrossRef]
- Neves, A.P.; Pereira, M.X.G.; Peterson, E.J.; Kipping, R.; Vargas, M.D.; Silva, F.P., Jr.; Carneiro, J.W.M.; Farrell, N.P. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases and their platinum(II) complexes. J. Inorg. Biochem. 2013, 119, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Cowan, J.A. Magnesium activation of nuclease enzymes—The importance of water. Inorganica Chim. Acta. 1998, 275–276, 24–27. [Google Scholar] [CrossRef]
- Miller, M.D.; Cai, J.; Krause, K.L. The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J. Mol. Biol. 1999, 288, 975–987. [Google Scholar] [CrossRef]
- Gill, M.R.; Harun, S.N.; Halder, S.; Boghozian, R.A.; Ramadan, K.; Ahmad, H.; Vallis, K.A. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition. Sci. Rep. 2016, 6, 31973. [Google Scholar] [CrossRef]
- Gabr, M.T.; Pigge, F.C. Expanding the toolbox for label-free enzyme assays: A dinuclear platinum(II) complex/DNA ensemble with switchable near-IR emission. Molecules 2019, 24, 4390. [Google Scholar] [CrossRef]
- Mancin, F.; Scrimina, P.; Tecilla, P. Progress in artificial metallonucleases. Chem. Commun. 2012, 48, 5545–5559. [Google Scholar] [CrossRef] [PubMed]
- Xhafa, S.; Nicola, C.D.; Tombesi, A.; Pettinari, R.; Pettinari, C.; Scarpelli, F.; Crispini, A.; Deda, M.L.; Candreva, A.; Garufi, A.; et al. Pyrazolone-based Zn(II) complexes display antitumor effects in mutant p53-carrying cancer cells. J. Med. Chem. 2024, 67, 15676–15690. [Google Scholar] [CrossRef]
- Nejdl, L.; Ruttkay-Nedecky, B.; Kudr, J.; Krizkova, S.; Smerkova, K.; Dostalova, S.; Vaculovicova, M.; Kopel, P.; Zehnalek, J.; Trnkova, L.; et al. DNA interaction with zinc(II) ions. Int. J. Biol. Macromol. 2014, 64, 281–287. [Google Scholar] [CrossRef]
- Pellei, M.; Bello, F.D.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev. 2021, 445, 214088. [Google Scholar] [CrossRef]
- Mohammadlou, F.; Mansouri-Torshizi, H.; Dehghanian, E.; Eslami-Moghadam, M.; Dusek, M.; Eigner, V. A new zinc(II) complex of 2-benzoimidazoledisulfide ligand: Synthesis, X-ray crystallographic structure, investigation of CT-DNA and BSA interaction by spectroscopic techniques and molecular docking. J. Photochem. Photobiol. A Chem. 2023, 443, 114830. [Google Scholar] [CrossRef]
- Kaya, B.; Yılmaz, Z.K.; Şahin, O.; Aslim, B.; Ülküseven, B. Structural characterization of new zinc(ii) complexes with N2O2 chelating thiosemicarbazidato ligands; investigation of the relationship between their DNA interaction and in vitro antiproliferative activity towards human cancer cells. New J. Chem. 2020, 44, 9313–9320. [Google Scholar] [CrossRef]
- Parveen, S.; Arjmand, F.; Mohapatra, D.K. Zinc(II) complexes of Pro-Gly and Pro-Leu dipeptides: Synthesis, characterization, in vitro DNA binding and cleavage studies. J. Photoch. Photob. B Bio. 2013, 126, 78–86. [Google Scholar] [CrossRef]
- Ichimaru, Y.; Kato, K.; Okuno, Y.; Yamaguchi, Y.; Jin, W.; Fujita, M.; Otsuka, M.; Imai, M.; Kurosaki, H. Design and synthesis of an anthranyl bridged optically active dinuclear iron(II)-ligand and evaluation of DNA-cleaving activity. Bioorg. Med. Chem. Lett. 2021, 35, 127782. [Google Scholar] [CrossRef]
- Kato, K.; Ichimaru, Y.; Okuno, Y.; Yamaguchi, Y.; Jin, W.; Fujita, M.; Otsuka, M.; Imai, M.; Kurosaki, H. DNA-cleavage activity of the iron(II) complex with optically active ligands, meta- and para-xylyl-linked N′,N′-dipyridylmethyl-cyclohexane-1,2-diamine. Bioorg. Med. Chem. Lett. 2021, 36, 127834. [Google Scholar] [CrossRef]
- Ichimaru, Y.; Kato, K.; Nakatani, R.; Isomura, R.; Sugiura, K.; Yamaguchi, Y.; Jin, W.; Mizutani, H.; Imai, M.; Kurihara, M.; et al. Structural characterization of zinc(II)/cobalt(II) complexes of chiral N-(anthracen-9-yl)methyl-N,N-bis(2-picolyl)amine and evaluation of DNA photocleavage activity. Chem. Pharm. Bull. 2023, 71, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Röthlisberger, P.; Levi-Acobas, F.; Leumann, C.J.; Hollenstei, M. Enzymatic synthesis of biphenyl-DNA oligonucleotides. Bioorg. Med. Chem. 2020, 28, 115487. [Google Scholar] [CrossRef]
- Du, Y.; Kanamori, T.; Yaginuma, Y.; Yoshida, N.; Kaneko, S.; Yuasa, H. Diffusion of 1O2 along the PNA backbone diminishes the efficiency of photooxidation of PNA/DNA duplexes by biphenyl photosensitizer. Bioorg. Med. Chem. Lett. 2024, 114, 129988. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, T.; Kaneko, S.; Hamamoto, K.; Yuasa, H. Mapping the diffusion pattern of 1O2 along DNA duplex by guanine photooxidation with an appended biphenyl photosensitizer. Sci. Rep. 2023, 13, 288. [Google Scholar] [CrossRef]
- Vardanyan, R.; Hruby, V. Synthesis of Best-Seller Drugs; Vardanyan, R., Hruby, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 22; pp. 329–356. [Google Scholar] [CrossRef]
- Hansa, R.K.; Khan, M.M.K.; Frangie, M.M.; Gilmore, D.F.; Shelton, R.S.; Savenka, A.V.; Basnakian, A.G.; Shuttleworth, S.L.; Smeltzer, M.S.; Alam, M.A. 4-4-(Anilinomethyl)-3-[4-(trifluoromethyl)phenyl] -1H-pyrazol-1-ylbenzoic acid derivatives as potent anti-gram-positive bacterial agents. Eur. J. Med. Chem. 2021, 219, 113402. [Google Scholar] [CrossRef] [PubMed]
- Goforth, S.K.; Walroth, R.C.; Brannaka, J.A.; Angerhofer, A.; McElwee-White, L. Heterobimetallic complexes of polypyridyl ligands containing paramagnetic centers: Synthesis and characterization by IR and EPR. Inorg. Chem. 2013, 52, 14116–14123. [Google Scholar] [CrossRef]
- Movahedi, E.; Rezvan, A.R. New silver(I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies. J. Mol. Struct. 2017, 1139, 407–417. [Google Scholar] [CrossRef]
- Pinchaipat, B.; Chotima, R.; Promkatkaew, M.; Kitjaruwankul, S.; Chainok, K.; Khudkham, T. Experimental and theoretical studies on DNA binding and anticancer activity of nickel(II) and zinc(II) complexes with N–(8–quinolyl) salicylaldimine Schiff base ligands. Chemistry 2024, 6, 618–639. [Google Scholar] [CrossRef]
- Wolfe, A.; Shimer, G.H.; Meehan, T., Jr. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987, 26, 6392–6396. [Google Scholar] [CrossRef]
- Tabrizi, L.; Talaie, F.; Chiniforoshan, H. Copper(II), cobalt(II) and nickel(II) complexes of lapachol: Synthesis, DNA interaction, and cytotoxicity. J. Biomol. Struct. Dyn. 2016, 35, 3330–3341. [Google Scholar] [CrossRef]
- Bittel, D.; Dalton, T.; Samson, S.L.-A.; Gedamu, L.; Andrews, G.K. The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in Vitro by zinc, but not by other transition metals. J. Biol. Chem. 1998, 273, 7127–7133. [Google Scholar] [CrossRef] [PubMed]
- Safiarian, M.S.; Sawoo, S.; Mapp, C.T.; Williams, D.E.; Gude, L.; Fernández, M.-J.; Lorente, A.; Grant, K.B. Aminomethylanthracene dyes as high-ionic-strength DNA-photocleaving agents: Two rings are better than one. ChemistrySelect 2018, 3, 4897–4910. [Google Scholar] [CrossRef]
- Li, Z.; Hitomi, N.; Tanaka, H.; Ohmagari, H.; Nakamura, K.; Hasegawa, M.; Kobayashi, N. Induced chiroptical properties of helical Eu(iii) complex by electrostatic interaction with DNA. Mater. Adv. 2024, 5, 1897–1902. [Google Scholar] [CrossRef]
- Qian, J.; Wang, L.-P.; Gu, W.; Liu, X.; Tian, J.-L.; Yan, S.-P. Synthesis, crystal structure, DNA binding, and DNA cleavage of a zinc complex containing N,N-bis(2-pyridylmethyl)amine. J. Coord. Chem. 2011, 64, 2480–2488. [Google Scholar] [CrossRef]
- Lepecq, J.-B.; Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical—Chemical characterization. J. Mol. Biol. 1967, 27, 87–106. [Google Scholar] [CrossRef]
- Garai, A.; Pant, I.; Kondaiah, P.; Chakravarty, A.R. Iron(III) salicylates of dipicolylamine bases showing photo-induced anticancer activity and cytosolic localization. Polyhedron 2015, 102, 668–676. [Google Scholar] [CrossRef]
- Voytik-Harbin, S.L.; Brightman, A.O.; Waisner, B.; Lamar, C.H.; Badylak, S.F. Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts. In Vitro Cell. Dev. Biol. Anim. 1998, 34, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Umene, K.; Yamasaki, J.; Suina, K.; Otsuki, Y.; Yoshikawa, M.; Minami, Y.; Masuko, T.; Kawaguchi, S.; Nakayama, H.; et al. Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma. Cancer Sci. 2019, 110, 3453–3463. [Google Scholar] [CrossRef]
- Mah, L.-J.; El-Osta, A.; Karagiannis, T.C. gammaH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia. 2010, 24, 679–686. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef] [PubMed]
Complexes | Kb (M−1) |
---|---|
ZnII-chelated L1 | 1.22 × 106 |
ZnII-chelated L2 | 3.00 × 105 |
ZnII-chelated L3 | 3.55 × 105 |
ZnII-chelated L4 | 7.06 × 104 |
ZnII-chelated L5 | 8.33 × 105 |
IC50 Values (μM) | L1 | L1 + ZnII | ZnII |
---|---|---|---|
UV (+) | 47.8 | 14.2 | - |
UV (−) | 49.9 | 22.9 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichimaru, Y.; Kato, K.; Sogawa, K.; Egawa, D.; Kato, H.; Katakawa, K.; Jin, W.; Kurihara, M.; Kurosaki, H. Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer. Chemistry 2025, 7, 41. https://doi.org/10.3390/chemistry7020041
Ichimaru Y, Kato K, Sogawa K, Egawa D, Kato H, Katakawa K, Jin W, Kurihara M, Kurosaki H. Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer. Chemistry. 2025; 7(2):41. https://doi.org/10.3390/chemistry7020041
Chicago/Turabian StyleIchimaru, Yoshimi, Koichi Kato, Koushirou Sogawa, Daichi Egawa, Hideaki Kato, Kazuaki Katakawa, Wanchun Jin, Masaaki Kurihara, and Hiromasa Kurosaki. 2025. "Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer" Chemistry 7, no. 2: 41. https://doi.org/10.3390/chemistry7020041
APA StyleIchimaru, Y., Kato, K., Sogawa, K., Egawa, D., Kato, H., Katakawa, K., Jin, W., Kurihara, M., & Kurosaki, H. (2025). Synthesis and Anticancer Activity of Bis(2-picolyl)amine Derivatives with a Biaryl Moiety as a Photosensitizer. Chemistry, 7(2), 41. https://doi.org/10.3390/chemistry7020041