Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = bearing defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 221
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

12 pages, 2989 KiB  
Article
Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model
by Thomas Colding-Rasmussen, Nanett Kvist Nikolaisen, Peter Frederik Horstmann, Michael Mørk Petersen, Daniel John Hutchinson, Michael Malkoch, Stine Jacobsen and Christian Nai En Tierp-Wong
Materials 2025, 18(14), 3359; https://doi.org/10.3390/ma18143359 - 17 Jul 2025
Viewed by 280
Abstract
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in [...] Read more.
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in vivo ovine bilateral proximal phalanx fracture model. Eight sheep underwent a midline osteotomy with a 4.5 mm circular unicortical defect in the lateral proximal phalanx of both front limbs, treated with the CPT (n = 8) or the LP (n = 8). A half-limb walking cast, or a custom off-loading hoof shoe, was used for postoperative protection. Implant stability was assessed by post-surgery X-ray evaluations and post-euthanasia (16 weeks) dual-energy X-ray absorptiometry (DXA). At week one, all CPT implants demonstrated mechanical failure, while all LPs remained overall intact. Mean BMD was 0.45 g/cm2 for CPT and 0.60 g/cm2 for LP in the fracture area (p = 0.078), and 0.37 g/cm2 vs. 0.41 g/cm2 in the distal epiphysis (p = 0.016), respectively. In conclusion, the CPT demonstrated indications of inferior stability compared to the LP in this fracture model, which may limit its clinical applicability in weight-bearing or high-load scenarios and in non-compliant patients. Full article
Show Figures

Figure 1

18 pages, 3151 KiB  
Article
Next-Generation Sequencing Analysis in Greek Patients with Predominantly Antibody Deficiencies
by Achilleas P. Galanopoulos, Sofia Raftopoulou, Styliani Sarrou, Alexia Matziri, Stamatia Papoutsopoulou, Grigorios Stratakos, Varvara A. Mouchtouri, Martin Hölzer, Christos Hadjichristodoulou, Fani Kalala and Matthaios Speletas
Immuno 2025, 5(3), 27; https://doi.org/10.3390/immuno5030027 - 16 Jul 2025
Viewed by 401
Abstract
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic [...] Read more.
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic defects associated with PADs in order to improve diagnosis and personalized care. Twenty patients (male/female: 12/8, median age of disease onset: 16.5 years, range: 1–50) were analyzed by next-generation sequencing (NGS) using a custom panel of 30 genes associated with PADs and their possible disease phenotype. The detected variants were classified according to the American College of Medical Genetics and Genomics (ACMG) guidelines and inheritance, and the penetrance patterns were evaluated by PCR–Sanger sequencing. Novel and rare mutations associated with the phenotype of common variable immunodeficiency (CVID) in genes encoding the transcription factors NFKB1, NFKB2 and IKZF1/IKAROS were identified. Alphafold3 protein structure prediction was utilized to perform a comprehensive visualization strategy and further delineate the mutation-bearing domains and elucidate their potential impact on protein function. This study highlights the value of genetic testing in PADs and will guide further research and improvement in diagnosis and treatment. Full article
Show Figures

Figure 1

19 pages, 5255 KiB  
Article
Health Status Assessment of Passenger Ropeway Bearings Based on Multi-Parameter Acoustic Emission Analysis
by Junjiao Zhang, Yongna Shen, Zhanwen Wu, Gongtian Shen, Yilin Yuan and Bin Hu
Sensors 2025, 25(14), 4403; https://doi.org/10.3390/s25144403 - 15 Jul 2025
Viewed by 229
Abstract
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that [...] Read more.
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that resonant VS150-RIC sensors outperform broadband sensors in defect detection, showing greater energy response at characteristic frequencies for inner race defects. The RMS parameter emerges as a robust diagnostic indicator, with defective bearings exhibiting periodic peaks and higher mean RMS values. Field tests reveal progressive RMS escalation preceding visible damage, enabling predictive maintenance. Furthermore, we develop a novel Paligemma LLM model for automated wear detection using AE time-domain images. The research validates the AE technology’s superiority over conventional vibration methods for low-speed bearing monitoring, providing a scientifically grounded approach for safety-critical ropeway maintenance. Full article
(This article belongs to the Special Issue Sensor-Based Condition Monitoring and Non-Destructive Testing)
Show Figures

Figure 1

29 pages, 8184 KiB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 247
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

11 pages, 1703 KiB  
Article
Influence of Electrolytic Hydrogen Charging and Effusion Aging on the Rotating Bending Fatigue Resistance of SAE 52100 Steel
by Johannes Wild, Stefan Wagner, Astrid Pundt and Stefan Guth
Corros. Mater. Degrad. 2025, 6(3), 30; https://doi.org/10.3390/cmd6030030 - 9 Jul 2025
Viewed by 217
Abstract
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel [...] Read more.
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel SAE 52100 (100Cr6) quenched and tempered at 180 °C and 400 °C were electrochemically charged with hydrogen. Charged and non-charged specimens then underwent rotating bending fatigue testing, either immediately after charging or after aging at room temperature up to 72 h. The hydrogen-charged specimens annealed at 180 °C showed a sizeable drop in fatigue limit and fatigue lifetime compared to the non-charged specimens with cracks mainly originating from near-surface non-metallic inclusions. In comparison, the specimens annealed at 400 °C exhibited a moderate drop in fatigue limit and lifetime due to hydrogen charging with cracks originating mostly from the surface. Aging had only insignificant effects on the fatigue lifetime. Notably, annealing of charged samples for 2 h at 180 °C restored their lifetime to that of non-charged specimens. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

27 pages, 4717 KiB  
Article
Prediction of Failure Pressure of Sulfur-Corrosion-Defective Pipelines Based on GABP Neural Networks
by Li Zhu, Yi Xia, Bin Jia and Jingyang Ma
Materials 2025, 18(13), 3177; https://doi.org/10.3390/ma18133177 - 4 Jul 2025
Viewed by 409
Abstract
This study systematically investigates the degradation and failure prediction of pipeline materials in sulfur-containing environments, with a particular focus on X52 pipeline steel exposed to high-sulfur environments. Through uniaxial tensile tests to assess mechanical properties, it was found that despite surface corrosion and [...] Read more.
This study systematically investigates the degradation and failure prediction of pipeline materials in sulfur-containing environments, with a particular focus on X52 pipeline steel exposed to high-sulfur environments. Through uniaxial tensile tests to assess mechanical properties, it was found that despite surface corrosion and a reduction in overall structural load-bearing capacity, the intrinsic mechanical properties of X52 steel did not exhibit significant degradation and remained within standard ranges. The Johnson–Cook constitutive model was developed to accurately capture the material’s plastic behavior. Subsequently, a genetic algorithm-optimized backpropagation (GABP) neural network was employed to predict the failure pressure of defective pipelines and the corrosion rate in acidic environments, with prediction errors controlled within 5%. By integrating the GABP model with NACE standard methods, a framework for predicting the remaining service life for in-service pipelines operating in sour environments was established. This method provides a novel and reliable approach for pipeline integrity assessment, demonstrating significantly higher accuracy than traditional empirical models and finite element analysis. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
Three-Dimensional Assessment of the Biological Periacetabular Defect Reconstruction in an Ovine Animal Model: A µ-CT Analysis
by Frank Sebastian Fröschen, Thomas Martin Randau, El-Mustapha Haddouti, Jacques Dominik Müller-Broich, Frank Alexander Schildberg, Werner Götz, Dominik John, Susanne Reimann, Dieter Christian Wirtz and Sascha Gravius
Bioengineering 2025, 12(7), 729; https://doi.org/10.3390/bioengineering12070729 - 3 Jul 2025
Viewed by 397
Abstract
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing [...] Read more.
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing area of the acetabulum were augmented with various materials in an ovine periacetabular defect model (Group 1: NanoBone® (artificial hydroxyapatite-silicate composite; Artoss GmbH, Germany); Group 2: autologous sheep cancellous bone; Group 3: Tutoplast® (processed allogeneic sheep cancellous bone; Tutogen Medical GmbH, Germany)) and bridged with an acetabular reinforcement ring of the Ganz type. Eight months after implantation, a μ-CT examination (n = 8 animals per group) was performed. A μ-CT analysis of the contralateral acetabula (n = 8, randomly selected from all three groups) served as the control group. In a defined volume of interest (VOI), bone volume (BV), mineral volume (MV), and bone substitute volume (BSV), as well as the bone surface (BS) relative to the total volume (TV) and the surface-to-volume ratio (BS/BV), were determined. To assess the bony microarchitecture, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N), as well as connectivity density (Conn.D), the degree of anisotropy (DA), and the structure model index (SMI), were evaluated. The highest BV was observed for NanoBone® (Group 1), which also showed the highest proportion of residual bone substitute material in the defect. This resulted in a significant increase in BV/TV with a significant decrease in BS/BV. The assessment of the microstructure for Groups 2 and 3 compared to Group 1 showed a clear approximation of Tb.Th, Tb.Sp, Tb.N, and Conn.D to the microstructure of the control group. The SMI showed a significant decrease in Group 1. All materials demonstrated their suitability by supporting biological defect reconstruction. NanoBone® showed the highest rate of new bone formation; however, the microarchitecture indicated more advanced bone remodeling and an approximate restoration of the trabecular structure for both autologous and allogeneic Tutoplast® cancellous bone when using the impaction bone grafting technique. Full article
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 297
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

25 pages, 5330 KiB  
Article
Time Shift Multiscale Ensemble Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
by Juntong Li, Shunrong Chen, Yuting Shi, Rou Guan, Hua Chen, Shi Yang, Jingyuan Ma, Qilin Wu and Chengjiang Zhou
Coatings 2025, 15(7), 779; https://doi.org/10.3390/coatings15070779 - 2 Jul 2025
Viewed by 476
Abstract
Accurate detection of surface defects such as wear, cracks, and flaws in metallic components is critical for equipment reliability and longevity, representing a core challenge in surface integrity engineering. To solve the information loss, low estimation accuracy and poor noise immunity associated with [...] Read more.
Accurate detection of surface defects such as wear, cracks, and flaws in metallic components is critical for equipment reliability and longevity, representing a core challenge in surface integrity engineering. To solve the information loss, low estimation accuracy and poor noise immunity associated with Multiscale Dispersion Entropy (MDE) are utilized to address the sensitivity to parameter selection and overfitting susceptibility of the Least Squares Twin Support Vector Machines (LSTSVM). A brand new fault diagnosis method which combined Time Shift Multiscale Ensemble Fuzzy Dispersion Entropy (TSMEFuDE) with binary tree LSTSVM (BT LSTSVM) was proposed. Firstly, a time shift method based on Higuchi Fractal Dimension was introduced to TSMEFuDE, resolving the continuity loss between coarse-grained levels. Second, four mapping techniques, linear, NCDF, tansig and logsig, are introduced. This synergetic combination of each advantage results in the improvement of entropy output stability. Furthermore, triangular and trapezoidal membership functions are incorporated into dispersion patterns and abolished in the round function, therefore enhancing the boundaries between the classes after signal mapping to discrete classes. Lastly, the proposed BT LSTSVM algorithm decomposes the multi-classification problem to a binary classification problem, which promotes the robustness of the algorithm. Simulation experiments maintain that TSMEFuDE has stronger adaptability, higher stability, and better noise resistance. In the fault diagnosis experiment, when compared to the Multiscale Fuzzy Dispersion Entropy (MFuDE) combined with the BT TSVM method, the TSMEFuDE combined with BT LSTSVM method improved the accuracy of bearing fault diagnosis by 5.65% and 2.82%. Full article
(This article belongs to the Special Issue Mechanical Automation Design and Intelligent Manufacturing)
Show Figures

Figure 1

19 pages, 2465 KiB  
Article
WDNET-YOLO: Enhanced Deep Learning for Structural Timber Defect Detection to Improve Building Safety and Reliability
by Xiaoxia Lin, Weihao Gong, Lin Sun, Xiaodong Yang, Chunwei Leng, Yan Li, Zhenyu Niu, Yingzhou Meng, Xinyue Xiao and Junyan Zhang
Buildings 2025, 15(13), 2281; https://doi.org/10.3390/buildings15132281 - 28 Jun 2025
Viewed by 491
Abstract
Structural timber is an important building material, but surface defects such as cracks and knots seriously affect its load-bearing capacity, dimensional stability, and long-term durability, posing a significant risk to structural safety. Conventional inspection methods are unable to address the issues of multi-scale [...] Read more.
Structural timber is an important building material, but surface defects such as cracks and knots seriously affect its load-bearing capacity, dimensional stability, and long-term durability, posing a significant risk to structural safety. Conventional inspection methods are unable to address the issues of multi-scale defect characterization, inter-class confusion, and morphological diversity, thus limiting reliable construction quality assurance. To overcome these challenges, this study proposes WDNET-YOLO: an enhanced deep learning model based on YOLOv8n for high-precision defect detection in structural wood. First, the RepVGG reparameterized backbone utilizes multi-branch training to capture critical defect features (e.g., distributed cracks and dense clusters of knots) across scales. Second, the ECA attention mechanism dynamically suppresses complex wood grain interference and enhances the discriminative feature representation between high-risk defect classes (e.g., cracks vs. knots). Finally, CARAFE up-sampling with adaptive contextual reorganization improves the sensitivity to morphologically variable defects (e.g., fine cracks and resin irregularities). The analysis results show that the mAP50 and mAP50-95 of WDNET-YOLO are improved by 3.7% and 3.5%, respectively, compared to YOLOv8n, while the parameters are increased by only 4.4%. The model provides a powerful solution for automated structural timber inspection, which directly improves building safety and reliability by preventing failures caused by defects, optimizing material utilization, and supporting compliance with building quality standards. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 1478 KiB  
Article
Reconstructive Arthrodesis for Advanced Ankle and Subtalar Joint Destruction in Neuropathic and Infected Feet
by Martin Korbel, Jaromír Šrot and Pavel Šponer
J. Clin. Med. 2025, 14(13), 4516; https://doi.org/10.3390/jcm14134516 - 25 Jun 2025
Viewed by 404
Abstract
Background/Objectives: Advanced destruction of the ankle and subtalar joints due to neuropathy, chronic infection, or inflammatory conditions presents a major surgical challenge, often resulting in limb amputation. This descriptive retrospective study aims to evaluate outcomes of reconstructive surgery in patients, in whom [...] Read more.
Background/Objectives: Advanced destruction of the ankle and subtalar joints due to neuropathy, chronic infection, or inflammatory conditions presents a major surgical challenge, often resulting in limb amputation. This descriptive retrospective study aims to evaluate outcomes of reconstructive surgery in patients, in whom limb preservation was prioritized over amputation despite significant soft tissue and osseous involvement. Methods: Between January 2013 and December 2022, 31 reconstructive procedures were performed on 29 patients (16 women and 13 men) with severe hindfoot deformities. Etiologies included Charcot arthropathy (55%), osteomyelitis (25%), combined pathology (10%), and rheumatoid deformity with skin defect (10%). Surgical procedures included tibiotalocalcaneal arthrodesis (39%), astragalectomy with tibiocalcaneal arthrodesis (32%), tibiotalar arthrodesis (23%), and multistage procedures (6%). Fixation methods varied based on the extent of deformity and infection. The union was assessed via radiographs and CT imaging, and outcomes were statistically analyzed using Fisher’s exact test. Results: Successful arthrodesis was achieved in 74% of cases (23/31). The union rate was significantly influenced by the type and level of fixation (p = 0.0199), with the lowest rate observed in tibiotalocalcaneal arthrodesis using external fixation (17%). Complications included surgical site infection or abscess in 42% of cases, requiring reoperation in 35%. Limb amputation was ultimately necessary in five patients (16%). Conclusions: Despite high complication rates, limb-preserving reconstructive surgery remains a viable alternative to amputation in selected high-risk patients with severe hindfoot pathology. Appropriate preoperative planning, tailored surgical strategy, and patient compliance are essential to achieving functional limb salvage and restoring weight-bearing capacity. Full article
(This article belongs to the Special Issue Foot and Ankle Surgery: State of the Art and Future Perspectives)
Show Figures

Figure 1

11 pages, 2021 KiB  
Case Report
Microsurgical Reconstruction of Extensive Lower Limb Defects: Latissimus Dorsi Free Flap for Circumferential Soft Tissue Loss Following High-Energy Trauma
by Edoardo Filigheddu, Federico Ziani, Giovanni Arrica, Sofia De Riso, Anna Manconi, Corrado Rubino and Emilio Trignano
J. Clin. Med. 2025, 14(13), 4424; https://doi.org/10.3390/jcm14134424 - 21 Jun 2025
Viewed by 562
Abstract
Background/Objectives: High-energy trauma to the lower limb often results in extensive soft tissue loss with exposure of critical structures, posing a serious threat to limb viability. Early and effective coverage is crucial to prevent infection, promote bone healing, and preserve function. This report [...] Read more.
Background/Objectives: High-energy trauma to the lower limb often results in extensive soft tissue loss with exposure of critical structures, posing a serious threat to limb viability. Early and effective coverage is crucial to prevent infection, promote bone healing, and preserve function. This report presents the use of a latissimus dorsi free flap for circumferential soft tissue reconstruction following a severe crush injury. Methods: We describe the case of a young female patient who sustained a high-energy crush trauma with a comminuted, displaced fracture of the middle and distal third of the tibia and complete circumferential soft tissue loss. Due to the extent and location of the defect, a latissimus dorsi free flap was selected for reconstruction. The surgical technique, microsurgical anastomosis, postoperative care, and rehabilitation protocol are detailed. Results: The latissimus dorsi flap provided reliable coverage of the entire defect, protected the underlying bone and hardware, and promoted wound healing. No major complications were observed. Functional recovery was satisfactory, with progressive weight-bearing and joint mobility achieved during follow-up. Conclusions: In complex lower limb injuries with extensive soft tissue damage, free flap transfer remains a key strategy for limb salvage. The latissimus dorsi flap, due to its size, reliability, and versatility, represents a valuable option for circumferential coverage and restoration of limb function following high-energy trauma. Full article
Show Figures

Figure 1

19 pages, 9400 KiB  
Article
Quantitative Evaluation of Mechanical Properties of Hydrogen Transmission Pipelines Based on Weak Magnetic Detection
by Siyang Wang, Xianglong Sun, Xingyuan Miao and Haimu Ye
Sensors 2025, 25(12), 3778; https://doi.org/10.3390/s25123778 - 17 Jun 2025
Viewed by 418
Abstract
With the rapid development of the hydrogen energy industry, long-distance hydrogen transportation based on natural gas pipelines has emerged as a crucial technique. However, exposure to a hydrogen environment can lead to the degradation of pipeline mechanical properties, resulting in hydrogen corrosion, which [...] Read more.
With the rapid development of the hydrogen energy industry, long-distance hydrogen transportation based on natural gas pipelines has emerged as a crucial technique. However, exposure to a hydrogen environment can lead to the degradation of pipeline mechanical properties, resulting in hydrogen corrosion, which may increase the risk of pipeline failure. Consequently, it is crucial to evaluate the mechanical properties of pipeline steel under a hydrogen environment to ensure pipeline safety. In this paper, hydrogen corrosion experiments for X80 pipeline steel are carried out with varying hydrogen charging times. Through tensile fracture experiments and weak magnetic detection technology, the effects of defects and hydrogen concentration on the stress–strain characteristics and magnetic signal characteristics of X80 steel are investigated. Based on the correlation level, the quantitative relationships between hydrogen concentration, magnetic signal characteristics, and mechanical properties are established, and the sparrow search algorithm (SSA) is utilized to modify these quantitative relationships. The results indicate that with the increase in defect depth, the magnetic signal characteristics gradually increase. With the increase in defect diameter, these parameters gradually decrease. The modified quantitative relationships provide the accurate assessment of the ultimate bearing capacity, yield strength, and ultimate tensile strength, with average relative errors of 7.91%, 3.15%, and 2.04%, respectively. This study provides a theoretical basis for ensuring the safe transportation of hydrogen transmission pipelines. Full article
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 368
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop