Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = barley β-glucans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3888 KiB  
Article
Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods
by Amare Assefa Bogale, Zoltan Kende, István Balla, Péter Mikó, Boglárka Bozóki and Attila Percze
Agriculture 2025, 15(15), 1668; https://doi.org/10.3390/agriculture15151668 - 1 Aug 2025
Viewed by 234
Abstract
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the [...] Read more.
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the Hungarian University of Agriculture and Life Sciences in Gödöllő in the 2023 and 2024 growing seasons. The study aimed to assess the effects of foliar nutrient supply and soil tillage methods on the grain nutritional composition and mineral content of winter barley. Employing a split-plot design with three replications, the experiment included four nutrient treatments (control, bio-cereal, bio-algae, and MgSMnZn blend) and two soil tillage types (i.e., plowing and cultivator). The results indicated that while protein content was not influenced by the main effects of nutrients and tillage, the levels of β-glucan, starch, crude ash, and moisture content were significantly (p < 0.05) affected by the nutrient treatments and by growing year, treated as a random factor. Notably, bio-algae and bio-cereal nutrients, combined with cultivator tillage, enhanced β-glucan content. All applied nutrient treatments increased the level of starch compared to the control. With regard to grain mineral content, the iron and zinc content responded to the nutrient supply, tillage, and growing year. However, applying a multiple-nutrient composition-based treatment did not increase iron and zinc levels, suggesting that individual applications may be more effective for increasing the content of these minerals in grains. Cultivator tillage improved iron and zinc levels. Moreover, manganese (Mn) and copper (Cu) were predominantly affected by nutrient availability and by growing seasons as a random factor. Therefore, to improve grain quality, this study emphasizes the significance of proper nutrient and tillage methods by focusing on the intricate relationships between agronomic techniques and environmental factors that shape barley’s nutritional profile. Full article
Show Figures

Figure 1

20 pages, 10909 KiB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 179
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

20 pages, 3868 KiB  
Article
Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
by Qiang Yang, Jean-Philippe Ral, Qiantao Jiang and Zhongyi Li
Foods 2025, 14(13), 2319; https://doi.org/10.3390/foods14132319 - 30 Jun 2025
Viewed by 308
Abstract
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes [...] Read more.
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes inactivated in the genome-edited offspring of targeted mutagenesis of starch synthetic genes using multiplex genome editing. The grain compositions and starch properties of the ssIIa/ssIIIa/sbeIIa/sbeIIb mutant were analysed and compared with the corresponding parameters of ssIIa, ssIIIa, sbeIIa/sbeIIb, ssIIa/sbeIIa/sbeIIb, and non-genome-edited lines (NE), respectively. ssIIa/ssIIIa/sbeIIa/sbeIIb exhibited the highest contents of β-glucan and amylose content among all mutants and NE, but not the most prominent in resistant starch, fructan, and fibre contents. The loss of SSIIa, SSIIIa, SBEIIa, and SBEIIb genes also resulted in significant changes in starch properties. This study enriched the genotypes of healthy barley and provided a theoretical basis for improving barley quality. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 2690 KiB  
Article
Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys
by Yanrong Pang, Yuping Yang, Kaifeng Zheng, Xiaozhuo Wu, Yanfen Zhang, Jinyuan Chen, Guigong Geng, Feng Qiao and Shengcheng Han
Plants 2025, 14(13), 1946; https://doi.org/10.3390/plants14131946 - 25 Jun 2025
Viewed by 419
Abstract
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and [...] Read more.
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and compare the differences in quality among three different varieties, Dulihuang, Kunlun 14, and Heilaoya. A total of 728 metabolites and 4864 proteins were identified. We first found that both the metabolite and protein profiles were more closely associated with the grain developmental stage in each cultivar than across different stages in a single cultivar. Next, we focused on the energy metabolism and biosynthesis pathways of key quality components, such as flavonoids, starch, and β-glucans in qingke grains. Quantitative analysis revealed significant variation in the abundance of cellulose synthase-like enzyme (CslF) among the three cultivars. Notably, Heilaoya displayed substantially lower CslF6 levels at 36 and 42 DAF than Kunlun 14 and Dulihuang did. These observed differences in CslF6 abundance may represent a key regulatory mechanism underlying the distinct β-glucan biosynthesis patterns among the three cultivars. Collectively, our results enhance the understanding of metabolic networks involved in qingke grain development and serve as a foundation for advancing breeding studies. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

23 pages, 881 KiB  
Review
Comparative Characteristics of Various Cereals in Terms of Fodder Value, Antinutrients and Use for Poultry Feeding
by Olena V. Gaviley, Oleg O. Katerynych, Igor A. Ionov, Darren K. Griffin, Olena O. Dekhtiarova and Michael N. Romanov
Encyclopedia 2025, 5(2), 63; https://doi.org/10.3390/encyclopedia5020063 - 12 May 2025
Viewed by 1818
Abstract
The primary ingredients in poultry feed, cereals, are among the most widely used crops in worldwide agriculture, with principal staples being wheat, rice, corn (maize), sorghum, barley, oat and millet. The scope of this review is to provide a detailed comparative analysis of [...] Read more.
The primary ingredients in poultry feed, cereals, are among the most widely used crops in worldwide agriculture, with principal staples being wheat, rice, corn (maize), sorghum, barley, oat and millet. The scope of this review is to provide a detailed comparative analysis of the nutritive values of cereal crops, and the antinutrients they contain, with reference specifically to their use for feeding poultry. These cereal crops range in biological value from 55 to 77.7%, in protein digestibility from 77 to 99.7%, and in net protein utilization from 50 to 73.8%. Most essential amino acids, including lysine, are found in cereal grains, whereas the nutritional value of cereals is impacted by antinutritional elements. These include non-starch polysaccharides (NSPs), such as pentosans (arabinoxylans) and β-glucan, as well as alkylresorcinols. Around 100 g/kg of pentosans are found in rye, 50–80 g/kg in wheat and 68–92 g/kg in triticale. There are strategies to reduce NSPs and other antinutrients and maximize the effectiveness of utilizing grains in compound feed for poultry. These include the application of enzyme preparations, along with dry and wet extrusion methods, for processing grains. By restricting our narrative to a direct comparison of all major staples for poultry feed, we conclude that further research is required specifically in the area of determining how economically viable it is to feed adult and young chickens with compound feeds containing various cereal crops. Furthermore, we speculate on the utility of employing enzyme preparations and extrudates to maximize feed efficiency. Full article
(This article belongs to the Section Biology & Life Sciences)
Show Figures

Figure 1

18 pages, 1704 KiB  
Article
Effects of Barley (Hordeum vulgare L.) on Antioxidant Activities of Maillard Reaction Products and Consumer Acceptance of Barley Nurungji, Traditional Korean Snack
by Yerim Jeong and Il Sook Choi
Foods 2025, 14(4), 655; https://doi.org/10.3390/foods14040655 - 15 Feb 2025
Viewed by 745
Abstract
This study evaluated the physicochemical characteristics, antioxidant properties, and consumer acceptance of a traditional Korean snack nurungji blended with barley (Hordeum vulgare L.). The antioxidant activity of β-glucan was identified in barley using a model Maillard reaction products (MRPs) system. Nurungji [...] Read more.
This study evaluated the physicochemical characteristics, antioxidant properties, and consumer acceptance of a traditional Korean snack nurungji blended with barley (Hordeum vulgare L.). The antioxidant activity of β-glucan was identified in barley using a model Maillard reaction products (MRPs) system. Nurungji samples were analyzed based on barley cultivars (waxy and hulled), barley blending ratios (0, 25, 50, 75, and 100), and cooking equipment (electric and electric pressure rice cooker). Nurungji blended with waxy barley and cooked using an electric pressure rice cooker showed a significant increase in antioxidant properties, such as 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, ferric reducing antioxidant power, and reducing power. The antioxidant activity of the model MRP solutions increased according to heating time and the addition of β-glucan. In the consumer acceptance test, nurungji blended with 50% barley showed a significantly higher acceptance rate in terms of overall evaluation, aroma, taste, texture, aftertaste, and purchase intents. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 881 KiB  
Article
A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content
by Seda Beyaz, Buket Cetiner, Kubra Ozkan, Osman Sagdic, Francesco Sestili and Hamit Koksel
Foods 2025, 14(3), 482; https://doi.org/10.3390/foods14030482 - 3 Feb 2025
Viewed by 1181
Abstract
This study focused on developing a functional bazlama with a lower glycemic index (GI) that is high in β-glucan and rich in plant-based protein. Functional bazlama samples were produced by supplementing bread wheat flour with high β-glucan content hull-less barley flour and high [...] Read more.
This study focused on developing a functional bazlama with a lower glycemic index (GI) that is high in β-glucan and rich in plant-based protein. Functional bazlama samples were produced by supplementing bread wheat flour with high β-glucan content hull-less barley flour and high protein content lentil flour (15%, 30%, and 45%). Additionally, mixed bazlama samples (Mix1, Mix2, Mix3, and Mix4) were produced by supplementing them with both barley and lentil flours. The results showed that 3 g of β-glucan could be provided from the bazlama sample and supplemented with 45% barley flour, which meets the threshold to carry health claims. Supplementing with 30% and 45% lentil flour increased the protein content of the bazlama samples to a level qualifying them as a “high protein”. The control bazlama had a high GI, while samples supplemented with 30% and 45% barley or lentil flour and all mixed bazlama samples had medium GI values, and Mix2 had the lowest GI value among all bazlama samples. Also, as the supplementation levels of barley and lentil flour increased, the phenolic contents and antioxidant capacities of the bazlama samples increased. The results of the present study indicate that barley and lentils can be used as an ingredient in traditional flatbreads to obtain products with better functional and nutritional properties. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 8294 KiB  
Article
Effects of Substituting Wheat with Waxy Barley Bran Flour on Physical Properties, Health Functionality, and Sensory Characteristics of Noodles
by Yoko Tsurunaga, Ayane Uno, Tetsuya Takahashi and Tsugumi Furuichi
Foods 2025, 14(3), 436; https://doi.org/10.3390/foods14030436 - 28 Jan 2025
Viewed by 1210
Abstract
When waxy barley (WB) is milled, 40% of the weight is typically discarded as bran. To utilize WB bran resources and improve health functionality, flours prepared from inner bran (IB) and outer bran (OB) layers were used to substitute partially wheat all-purpose flour [...] Read more.
When waxy barley (WB) is milled, 40% of the weight is typically discarded as bran. To utilize WB bran resources and improve health functionality, flours prepared from inner bran (IB) and outer bran (OB) layers were used to substitute partially wheat all-purpose flour (APF) for noodle preparation. The dough and noodle qualities were investigated based on analytical tests and sensory evaluations. Both methods revealed considerable darkening of the doughs and noodles upon OB substitution. Boiled noodles with 30% and 50% IB substitution had considerably lower total energy and breaking stress, whereas those with OB substitution had higher breaking stress at all substitution rates. Texture differences between sample groups were observed using analytical tests, but not via sensory evaluation. In addition, the boiled noodles with 50% OB demonstrated considerably lower taste preference in the sensory evaluation than the APF noodles. The comprehensive evaluation score was considerably lower for the boiled noodles with 30% or 50% OB than that of the APF noodles. The β-glucan and antioxidant contents increased with the IB or OB substitution rates. These findings show that APF can be substituted with IB at a substitution rate of 50%, while the substitution of OBF is limited to ≤10%. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

14 pages, 1792 KiB  
Article
High β-Glucan Whole Grain Barley Reduces Postprandial Glycemic Response in Healthy Adults—Part One of a Randomized Controlled Trial
by Julianne A. Kellogg, Pablo Monsivais, Kevin M. Murphy and Martine M. Perrigue
Nutrients 2025, 17(3), 430; https://doi.org/10.3390/nu17030430 - 24 Jan 2025
Cited by 2 | Viewed by 2643
Abstract
Background/Objectives: The effects of sweetened and unsweetened high β-glucan whole grain barley on postprandial blood glucose response in normoglycemic human subjects were evaluated in a randomized, controlled, crossover clinical trial. Methods: Sixteen healthy, over-night fasted participants were studied on four or eight separate [...] Read more.
Background/Objectives: The effects of sweetened and unsweetened high β-glucan whole grain barley on postprandial blood glucose response in normoglycemic human subjects were evaluated in a randomized, controlled, crossover clinical trial. Methods: Sixteen healthy, over-night fasted participants were studied on four or eight separate occasions. Participants consumed an unsweetened preload condition (n = 16): white glutinous rice (WR; 0 g β-glucan), low β-glucan barley (LB; ~4 g), medium β-glucan barley (MB; ~5 g), or high β-glucan barley (HB; ~6 g); or a sweetened condition with high fructose corn syrup (HFCS; n = 8): WR + 50 g HFCS, LB + 50 g HFCS, MB + 50 g HFCS, or HB + 50 g HFCS. After consuming the preload as a breakfast food, participants self-administered blood glucose tests every 15 min for four hours. Results: In both sweetened and unsweetened conditions, higher β-glucan content was associated with lower blood glucose peak response and incremental area under the curve estimates (iAUC). In comparison to the unsweetened conditions, the sweetened conditions resulted in less prominent decreases in mean blood glucose response and iAUC blood glucose as β-glucan content increased. Conclusions: By attenuating postprandial glycemic response, high β-glucan whole grain barley foods could play a role in helping to control blood glucose. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 4988 KiB  
Article
Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color
by Ping Yu, Xuemin Kang, Pengfei Liu, Zhengzong Wu, Yue Cheng, Bo Cui and Wei Gao
Foods 2025, 14(2), 316; https://doi.org/10.3390/foods14020316 - 18 Jan 2025
Cited by 1 | Viewed by 1610
Abstract
Herein, β-glucan (BG) was extracted from different colored varieties of highland barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a [...] Read more.
Herein, β-glucan (BG) was extracted from different colored varieties of highland barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a series of technical methods. The high-performance anion-exchange chromatography (HPAEC) results indicated the extracted BBG, LBG, and WBG mainly comprised glucose regardless of color. The molecular weight (Mw) of BBG, LBG, and WBG were 55.87 kDa, 65.19 kDa, and 81.59 kDa, respectively. 4-Glc(p), 3-Glc(p), and t-Glc(p) accounted for a larger proportion (>90%) of the total methylated residues according to gas chromatography–mass spectrometry (GC-MS) analysis. Additionally, Fourier transform infrared (FT-IR) spectroscopy revealed that the β-linkage of LBG had a greater capacity to develop stronger hydrogen bonds, due to the absence of 3,4-Glc(p). Among them, LBG had a low particle size distribution and a high shear viscosity, showing obvious round aggregates on its surface. Meanwhile, BBG presented a high peak viscosity (PV) and thermal stability. Based on the differences in their molecular structure, it could be concluded that there were different physicochemical properties among BBG, LBG, and WBG. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

21 pages, 1296 KiB  
Article
Screening of Nutritionally Important Components in Standard and Ancient Cereals
by Vesna Dragičević, Milena Simić, Vesna Kandić Raftery, Jelena Vukadinović, Margarita Dodevska, Sanja Đurović and Milan Brankov
Foods 2024, 13(24), 4116; https://doi.org/10.3390/foods13244116 - 19 Dec 2024
Cited by 2 | Viewed by 1102
Abstract
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, [...] Read more.
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.10–15.00%), as well as prebiotic fiber (β-glucan and arabinoxylan, ranging 0.11–4.59% and 0.51–6.47%, respectively), essential elements, and various antioxidants. Ancient grains can be considered as a source of highly available essential elements. Special attention should be given to the Cimmyt spelt 1, which is high in yellow pigment (5.01 μg·g−1) and has a capacity to reduce DPPH radicals (186.2 µmol TE·g−1), particularly Zn (70.25 mg·kg−1). The presence of phenolics, dihydro-p-coumaric acid, naringin, quercetin, epicatechin in grains of oats (Sopot), as well as catechin in barley grains (Apolon and Osvit) underline their unique chemical profile, making them a desirable genetic pool for breeding genotypes. This research provides a comprehensive assessment of different nutritional aspects of various cereals (some of which are commonly used, while the others are rarely used in diet), indicating their importance as nutraceuticals. It also provides a genetic background that could be translated the genotypes with even more profound effects on human health. Full article
Show Figures

Figure 1

21 pages, 5695 KiB  
Article
Physical Properties, Health Functionality, and Sensory Evaluation of Bread with the Unused Parts of Waxy Barley
by Tsugumi Furuichi, Ayane Uno and Yoko Tsurunaga
Appl. Sci. 2024, 14(24), 11730; https://doi.org/10.3390/app142411730 - 16 Dec 2024
Viewed by 1292
Abstract
In Japan, rising demand for waxy barley has led to concerns over bran waste. We investigated the effects of replacing wheat flour with different proportions of the waxy variety ‘Kirarimochi’ barley bran on the physical properties and health functionality of the bread. We [...] Read more.
In Japan, rising demand for waxy barley has led to concerns over bran waste. We investigated the effects of replacing wheat flour with different proportions of the waxy variety ‘Kirarimochi’ barley bran on the physical properties and health functionality of the bread. We used both the inner bran layer (IBLP) and outer bran layer (OBLP) of waxy barley as replacement sources and tested their effects on the appearance, height, specific volume, β-glucan, antioxidant properties, physical and sensory properties of bread. Bread with a 10% IBLP replacement group showed significantly increased height, specific volume, and softness compared to the control, indicating that IBLP at this level serves as an effective enhancer of bread volume and texture. At higher replacement levels (30–50% IBLP), the breads exhibited increased β-glucan content and enhanced antioxidant properties. Sensory evaluation revealed a stronger aroma, increased moistness, and stickiness of bread with 50% IBLP substitutions. OBLP was not suitable for sensory evaluation. These results show that IBLP can improve the specific volume and texture of bread and enhance its health functional components by adjusting the ratio. It also provides a clue to solving the problem of bran disposal. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

11 pages, 2492 KiB  
Article
Lichenase and Cellobiohydrolase Activities of a Novel Bi-Functional β-Glucanase from the Marine Bacterium Streptomyces sp. J103
by Youngdeuk Lee, Eunyoung Jo, Yeon-Ju Lee, Min Jin Kim, Navindu Dinara Gajanayaka, Mahanama De Zoysa, Gun-Hoo Park and Chulhong Oh
Mar. Drugs 2024, 22(12), 558; https://doi.org/10.3390/md22120558 - 13 Dec 2024
Viewed by 1455
Abstract
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium Streptomyces sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity [...] Read more.
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium Streptomyces sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity in the presence of Na+ and EDTA. Spg103 displays both lichenase and cellobiohydrolase activity. Despite possessing a GH5 cellulase domain, FN3 and CBM3 domains characteristic of cellulases and CBHs, biochemical assays showed that rSpg103 exhibited higher activity towards mixed β-1,3-1,4-glucan such as barley β-glucan and lichenan than towards beta-1,4-linkages. The endolytic activity of the enzyme was confirmed by TLC and UPLC-MS analyses, which identified cellotriose as the main hydrolysis product. In addition, Spg103 exhibited an exo-type activity, selectively releasing cellobiose units from cellooligosaccharides, which is characteristic of cellobiohydrolases. These results demonstrate the potential of Spg103 for a variety of biotechnological applications, particularly those requiring tailor-made enzymatic degradation of mixed-linked β-glucans. This study provides a basis for further structural and functional investigations of the bifunctional enzyme and highlights Spg103 as a promising candidate for industrial applications. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Graphical abstract

15 pages, 3399 KiB  
Article
Effect of Barley on Postprandial Blood Glucose Response and Appetite in Healthy Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial
by In-Sook Kim, Soo-yeon Park, Min Ju Park, Kyeong Jin Kim and Ji Yeon Kim
Nutrients 2024, 16(22), 3899; https://doi.org/10.3390/nu16223899 - 15 Nov 2024
Cited by 3 | Viewed by 3384
Abstract
Background/Objectives: Barley dietary fiber (BDF), particularly β-glucan, has shown potential in modulating postprandial glycemic responses and improving metabolic health. This study aimed to assess the effects of Saechalssalbori (Hordeum vulgare L.), a glutinous barley variety rich in β-glucan, on postprandial blood glucose, [...] Read more.
Background/Objectives: Barley dietary fiber (BDF), particularly β-glucan, has shown potential in modulating postprandial glycemic responses and improving metabolic health. This study aimed to assess the effects of Saechalssalbori (Hordeum vulgare L.), a glutinous barley variety rich in β-glucan, on postprandial blood glucose, insulin, glucagon, triglycerides, and appetite-related hormones in healthy adults. Methods: In this randomized, double-blind, placebo-controlled, crossover trial, healthy adults (n = 67) with fasting blood glucose levels below 126 mg/dL were assigned to consume either BDF or placebo (rice flour). Fasting and postprandial blood samples were collected at 30, 60, 120, and 180 min after consumption. Blood glucose, insulin, glucagon, triglycerides, and appetite-related hormones (ghrelin, PYY) were measured, and appetite was assessed using the visual analog scale (VAS). The study was approved by the Institutional Review Board (CHAMC 2022-08-040-007) and registered (KCT0009166). Results: BDF consumption significantly delayed the postprandial increase in blood glucose compared with placebo, reduced insulin secretion, and slightly increased glucagon and triglycerides. BDF also lowered hunger and increased satiety, with associated increases in ghrelin and PYY levels. Conclusions: BDF consumption, particularly from β-glucan-rich barley, may improve postprandial glycemic control and suppress appetite, making it a promising dietary intervention for managing metabolic conditions such as diabetes. Further studies are needed to explore its long-term impact on glycemic variability. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

14 pages, 1215 KiB  
Article
Beta-Glucans Improve the Mammary Innate Immune Response to Endotoxin Challenge in Dairy Ewes
by Santiago A. Guamán, Abdelaali Elhadi, Ahmed A. K. Salama, Carmen L. Manuelian, Gerardo Caja and Elena Albanell
Animals 2024, 14(20), 3023; https://doi.org/10.3390/ani14203023 - 18 Oct 2024
Cited by 1 | Viewed by 1116
Abstract
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). [...] Read more.
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). Then, ewes were assigned into three experimental groups: (1) Control (CON), the same previous diet (13.3 g BG/d); (2) high β-glucans barley (HBG), new barley (cv. Annapurna) containing 10% BG (35 g BG/d); (3) intraperitoneally injected (INP) with a 1.4% BG solution dose (2 g BG/ewe). At d 9, all ewes were infused with an E. coli LPS or saline solution in each udder half. After the challenge, rectal temperature (RT), milk yield and composition, somatic cell count (SCC), and plasma interleukins (IL-1α and IL-1β) were monitored daily. The INP treatment revealed a transitory increase in RT and decreased milk yield by 38%. Milk fat, protein, and SCC increased in LPS-treated udders but not by BG treatment. The IL-1α plasma concentration was similar among groups but INP ewes showed a lower IL-1β concentration suggesting a lower inflammatory response. The BG administration appears more effective intraperitoneally than orally, which needs additional study. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

Back to TopTop