Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Experimental Design, Treatments, and Procedure
2.3. Grain Quality Analysis
2.4. Statistical Data Analysis
3. Results
3.1. Effect of Nutrient and Tillage on Winter Barley β-Glucan Across Years
3.1.1. Synergistic Effects of Tillage and Nutrient Treatments on β-Glucan Content in Winter Barley
3.1.2. Interaction Effects of Nutrient Treatment and Growing Year on β-Glucan Content in Winter Barley
3.2. Effect of Nutrient and Tillage on Starch Content in Winter Barley Across Growing Years
3.2.1. Nutrient × Growing Year Interaction Effect on Starch Content in Winter Barley
3.2.2. Effects of Tillage and Growing Year on Starch Content in Winter Barley
3.3. Effects of Nutrient and Tillage Treatments on Protein and Moisture Content of Winter Barley Across Growing Years
3.3.1. Interaction Effects of Tillage and Nutrient Treatments on Protein Content in Winter Barley
3.4. Effect of Nutrient and Tillage Treatment on Crude Fat and Crude Ash Content of Winter Barley
3.5. Effect of Nutrient and Tillage on Grain Micronutrient Content of Winter Barley Across Growing Years
3.5.1. Interaction Effect of Nutrient Supply and Growing Year on Mn, Zn, and Fe Concentrations in Winter Barley
3.5.2. Effect of Interaction Between Tillage and Growing Year on Copper and Zinc Accumulation in Winter Barley
3.5.3. The Combined Effect of Nutrient Treatment, Tillage Type, and Growing Year on the Copper Levels in Winter Barley
3.5.4. The Synergetic Effect of Nutrient Treatment and Tillage Type on Zinc (Zn) Levels in Winter Barley
3.5.5. The Interactive Effects of Nutrient Management, Tillage Practice, and Growing Season on Zinc (Zn) Concentration in Winter Barley
3.5.6. The Synergistic Effect of Nutrient Treatment and Tillage Type on the Iron (Fe) Content in Winter Barley
4. Discussions
4.1. Influence of Nutrient Treatment, Tillage Type, and Growing Year on β-Glucan Levels in Winter Barley
4.2. The Impact of the Interaction Between Nutrient and Growing Year on Winter Barley Starch Content
4.3. The Effect of Nutrient Treatment, Tillage Type, and Growing Year on the Grain Micronutrient Content of Winter Barley
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulualem, T.; Bekeko, Z. Diversity and conservation of wild crop relatives for source of resistance to major biotic stress: Experiences in Ethiopia. J. Genet. Environ. Resour. Conserv. 2014, 3, 331–348. [Google Scholar]
- Liliana, V.; Eugen, P.; Alexandrina, S. Winter Barley grain weight stability under different Management practices at Nardi Fundulea. Rom. Agric. Res. 2020, 37, 1222–4227. Available online: https://www.incda-fundulea.ro (accessed on 10 December 2024).
- Food and Agriculture Organization of the United Nations (FAO). Production: Crops and Livestock Products; FAOSTAT: Rome, Italy, 2023; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 January 2025).
- Guedes, J.D.; Manning, S.W.; Bocinsky, R.K. A 5500-year model of changing crop niches on the tibetan plateau. Curr. Anthropol. 2016, 57, 517–522. [Google Scholar] [CrossRef]
- Grando, S.; Macpherson, H.G. Food barley: Importance, uses and local knowledge. In Proceedings of the International Workshop on Food Barley Improvement, International Center for Agricultural Research in the Dry Areas (ICARDA), Hammamet, Tunisia, 14–17 January 2002. [Google Scholar]
- Lakew, B.F.; Caproni, L.; Kassaw, S.A.; Miculan, M.; Ahmed, J.S.; Grazioli, S.; Kidane, Y.G.; Fadda, C.; Pè, M.E.; Dell’Acqua, M. The genomic and bioclimatic characterization of Ethiopian barley (Hordeum vulgare L.) unveils challenges and opportunities to adapt to a changing climate. bioRxiv 2022, 2022, 492093. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.H.; Yang, C.; Zhang, X.; Jin, G.; Chen, G.; Wang, Y.; Holford, P.; Nevo, E.; Zhang, G.; et al. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the tabigha evolution slope. Proc. Natl. Acad. Sci. USA 2018, 115, 5223–5228. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Ahmed, M. Barley: Production, improvement, and uses. Crop Sci. 2012, 52, 2852–2854. [Google Scholar] [CrossRef]
- Shu, X.; Rasmussen, S.K. Quantification of amylose, amylopectin, and î2-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front. Plant Sci. 2014, 5, 197. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.; Titgemeier, B.; Kirkpatrick, K.; Golubić, M.; Roizen, M.F. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients 2013, 5, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, M.S.; Yang, T.; Yang, J. Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxidative Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef] [PubMed]
- Idehen, E.O.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bin, D.; Fan, M. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the qinghai-tibet plateau. Molecules 2018, 23, 879. [Google Scholar] [CrossRef]
- Arendt, E.K.; Zannini, E. Barley. In Cereal Grains for the Food and Beverage Industries; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 155–201e. [Google Scholar] [CrossRef]
- Geng, L.; Li, M.; Zhang, G.; Ye, L. Barley: A potential cereal for producing healthy and functional foods. Food Qual. Saf. 2022, 6, fyac012. [Google Scholar] [CrossRef]
- Sakellariou, M.A.; Mylona, P.V. New uses for traditional crops: The case of barley biofortification. Agronomy 2020, 10, 1964. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Micronutrient Deficiency-Iron Deficiency Anaemia; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Rosegrant, M.W.; Koo, J.; Cenacchi, N.; Ringler, C.; Robertson, R.D.; Fisher, M.; Cox, C.M.; Garrett, K.; Perez, N.D.; Sabbagh, P. Food Security in a World of Natural Resource Scarcity: The Role of Agricultural Technologies; International Food Policy Research Institute: Washington, DC, USA, 2014. [Google Scholar]
- Musker, R.; Schaap, B. Global Open Data in Agriculture and Nutrition (GODAN) initiative partner network analysis. F1000Research 2018, 7, 47. [Google Scholar] [CrossRef]
- Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna. Soil Biol. Biochem. 2011, 43, 1474–1481. [Google Scholar] [CrossRef]
- Aćin, V.; Mirosavljević, M.; Živančev, D.; Jocković, B.; Brbaklić, L.; Jaćimović, G. Field management practices to produce nutritional and healthier main crops. In Developing Sustainable and Health Promoting Cereals and Pseudocereals; Academic Press: Cambridge, MA, USA, 2023; pp. 137–173. [Google Scholar]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage in temperate organic farming: Effects on soil nutrients, nutrient content and yield of barley, rye and associated weeds. Renew. Agric. Food Syst. 2015, 30, 270–279. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Vasundhara, D.; Chhabra, V. Foliar nutrition in cereals: A review. Pharma Innov. J. 2021, 10, 1247–1254. [Google Scholar]
- Ishfaq, M.; Kiran, A.; ur Rehman, H.; Farooq, M.; Ijaz, N.H.; Nadeem, F.; Azeem, I.; Li, X.; Wakeel, A. Foliar nutrition: Potential and challenges under multifaceted agriculture. Environ. Exp. Bot. 2022, 200, 104909. [Google Scholar] [CrossRef]
- Türkay, C.; Karaman, R. Research on Mineral Content of Barley as a Result of Biogas Waste Treatment. Türkiye Tarımsal Araştırmalar Derg. 2024, 11, 276–286. [Google Scholar] [CrossRef]
- Barczak, B.; Jastrzębska, M.; Kostrzewska, M.K. Biofortification of spring barley grain with microelements through sulfur fertilization. J. Chem. 2019, 2019, 8214298. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Badiri, Z.; Al-Juthery, H. Effect of spraying some bio and nano stimulants fortified with potassium on some qualitative traits and active substances in rice grain. AIP Conf. Proc. 2024, 3079, 020013. [Google Scholar] [CrossRef]
- Jin, K.; White, P.J.; Whalley, W.R.; Shen, J.; Shi, L. Shaping an optimal soil by root–soil interaction. Trends Plant Sci. 2017, 22, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Wasaya, A.; Yasir, T.A.; Ijaz, M.; Ahmad, S. Tillage effects on agronomic crop production. In Agronomic Crops: Volume 2: Management Practices; Springer: Singapore, 2019; pp. 73–99. [Google Scholar]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- MSZ 6830-19:1979; Animal Feeding Stuffs. Determination of Nutritive Value. Determination of Crude Fat Content. Hexane Extract Method. Hungarian Standards Institution (MSZT): Budapest, Hungary, 1979.
- MSZ 5984:1992; Animal Feeding Stuffs. Determination of Crude Ash. Hungarian Standards Institution (MSZT): Budapest, Hungary, 1992.
- MSZ EN ISO 6869:2001; Animal Feeding Stuffs. Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. Method Using Atomic Absorption Spectrometry. Hungarian Standards Institution (MSZT): Budapest, Hungary, 2001.
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52. [Google Scholar] [CrossRef]
- Güler, M. Barley grain β-glucan content as affected by nitrogen and irrigation. Field Crops Res. 2003, 84, 335–340. [Google Scholar] [CrossRef]
- Paynter, B.H.; Harasymow, S.E. Variation in grain β-glucan due to site, cultivar and nitrogen fertilizer in Western Australia. Crop Pasture Sci. 2010, 61, 1017–1026. [Google Scholar] [CrossRef]
- Dvoncova, D.; Havrlentova, M.; Hlinkova, A.; Hozlar, P. Effect of fertilization and variety on the beta-glucan content in the grain of oats. Żywność Nauka Technol. Jakość 2010, 17, 108–116. [Google Scholar]
- Havrlentová, M.; Hlinková, A.; Žofajová, A.; Kováčik, P.; Dvončová, D.; Deáková, Ľ. Effect of Fertilization on ß-D-Glucan Content in Oat Grain (Avena sativa L.). Agric. Pol’nohospodárstvo 2013, 59, 111–119. [Google Scholar] [CrossRef]
- Khaleghdoust, B.; Esmaeilzadeh-Salestani, K.; Korge, M.; Alaru, M.; Möll, K.; Värnik, R.; Koppel, R.; Tamm, Ü.; Kurg, M.; Altosaar, I.; et al. Barley and wheat beta-glucan content influenced by weather, fertilization, and genotype. Front. Sustain. Food Syst. 2024, 7, 1326716. [Google Scholar] [CrossRef]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Andersson, A.A.; Börjesdotter, D. Effects of environment and variety on content and molecular weight of β-glucan in oats. J. Cereal Sci. 2011, 54, 122–128. [Google Scholar] [CrossRef]
- Chappell, A.; Scott, K.P.; Griffiths, I.A.; Cowan, A.A.; Hawes, C.; Wishart, J.; Martin, P. The agronomic performance and nutritional content of oat and barley varieties grown in a northern maritime environment depends on variety and growing conditions. J. Cereal Sci. 2017, 74, 1–10. [Google Scholar] [CrossRef]
- Beckles, D.M.; Thitisaksakul, M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch—Stärke 2014, 66, 58–71. [Google Scholar] [CrossRef]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019, 443, 1–26. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K. Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality. Adv. Agron. 2022, 173, 1–78. [Google Scholar]
- Rogers, C.W.; Dari, B.; Hu, G.; Mikkelsen, R. Dry matter production, nutrient accumulation, and nutrient partitioning of barley. J. Plant Nutr. Soil Sci. 2019, 182, 367–373. [Google Scholar] [CrossRef]
- Bogale, A.A.; Kende, Z.; Tarnawa, A.; Miko, P.; Birkás, M.; Kovács, G.P.; Percze, A. Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission. Agronomy 2025, 15, 2. [Google Scholar] [CrossRef]
- Das, P.; Khan, S.; Chaudhary, A.K.; AbdulQuadir, M.; Thaher, M.I.; Al-Jabri, H. Potential applications of algae-based bio-fertilizer. Biofertil. Sustain. Agric. Environ. 2019, 55, 41–65. [Google Scholar]
- Singh, D.; Lenka, S.; Lenka, N.; Trivedi, S.; Bhattacharjya, S.; Sahoo, S.; Saha, J.; Patra, A. Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertosols of Central India. Sustainability 2020, 12, 6608. [Google Scholar] [CrossRef]
- Tiecher, T.; Calegari, A.; Caner, L.; Rheinheimer, D. Soil fertility and nutrient budget after 23-years of different soil tillage systems and winter cover crops in a subtropical Oxisol. Geoderma 2017, 308, 78–85. [Google Scholar] [CrossRef]
- Jayaraman, S.; Sinha, N.; Mohanty, M.; Hati, K.; Chaudhary, R.; Shukla, A.; Shirale, A.; Neenu, S.; Naorem, A.; Rashmi, I.; et al. Conservation Tillage, Residue Management, and Crop Rotation Effects on Soil Major and Micro-nutrients in Semi-arid Vertisols of India. J. Soil Sci. Plant Nutr. 2020, 21, 523–535. [Google Scholar] [CrossRef]
- Lal, M.; Sharma, K.; Indoria, A.; Reddy, K.; Charry, G.; Srinivas, K.; Prabhakar, M.; Parmar, B.; Chandrika, D.; Vasavi, M.; et al. Long-term effects of soil management practices on soil Zn chemical fractions and their availability to grain sorghum {Sorghum vulgare (L.)} grown in a yearly rotation with castor (Ricinus communis) in rainfed red Alfisol soils. Commun. Soil Sci. Plant Anal. 2020, 51, 276–287. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant nutrition under climate change and soil carbon sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Chandel, G.; Banerjee, S.; See, S.; Meena, R.; Sharma, D.J.; Verulkar, S.B. Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci. 2010, 17, 213–227. [Google Scholar] [CrossRef]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, C.; Pinton, R.; Zocchi, G.; Cesco, S. Rhizospheric organic compounds in the soil–microorganism–plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, H.; Ning, F.; Zhang, Y.; Dong, Z.; Wen, P.; Wang, R.; Wang, X.; Li, J. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. Agric. For. Meteorol. 2018, 263, 107–117. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
Source of Variation | β-Glucan (g/100 g) | Starch (%) | Protein (%) | Moisture (%) | Crude Fat (%) | Crude Ash (%) |
---|---|---|---|---|---|---|
Tillage (T) | 0.3987583 ns | 0.1841464 ns | 0.89325 ns | 0.5528798 ns | 0.040984 * | 0.4795 ns |
Nutrient (N) | 0.0001811 *** | 6.797 × 10−5 *** | 0.13073 ns | 0.0005514 *** | 0.011969 * | 5.381 × 10−9 *** |
Year (Y) | <2.2 × 10−16 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** | 4.646 × 10−11 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** |
T × N | 0.0452424 * | 0.3047401 ns | 0.02354 * | 0.0269202 * | 3.733 × 10−5 *** | 0.0401 * |
T × Y | 0.2411686 ns | 0.0048194 ** | 0.02831 * | 6.312 × 10−8 *** | 0.768490 ns | 1.0000 ns |
N × Y | 0.0048579 ** | 0.0008103 *** | 0.16290 ns | 0.3064728 ns | 6.343 × 10−7 *** | 1.790 × 10−5 *** |
T × N × Y | 0.9933526 ns | 0.8669421 ns | 0.22096 ns | 0.3565744 ns | 0.223370 ns | 3.657 × 10−7 *** |
Treatments | Studied Parameters | |||
---|---|---|---|---|
β-Glucan (g/100 g) | Starch (%) | Protein (%) | Moisture (%) | |
Nutrient | ||||
Control | 3.3558 ± 0.57821 b | 50.708 ± 2.0052 b | 11.1025 ± 1.99404 a | 12.525 ± 0.4384 b |
Bio-cereal | 3.6133 ± 0.55068 a | 51.633 ± 1.6906 a | 11.0883 ± 2.15677 a | 12.692 ± 0.4582 ab |
Bio-algae | 3.5800 ± 0.69909 a | 51.175 ± 1.5897 ab | 11.3567 ± 2.10229 a | 12.683 ± 0.539 ab |
MgMnSZn blend | 3.5083 ± 0.54375 ab | 51.508 ± 1.2664 a | 10.9442 ± 1.82866 a | 12.908 ± 0.5212 a |
Tillage | ||||
Plowing | 3.4962 ± 0.57141 a | 51.354 ± 1.4561 a | 11.1146 ± 2.13644 a | 12.683 ± 0.5230 a |
Cultivator | 3.5325 ± 0.62746 a | 51.158 ± 1.8835 a | 11.1313 ± 1.88693 a | 12.721 ± 0.4890 a |
Year | ||||
1 | 3.0079 ± 0.24323 b | 52.404 ± 1.0068 a | 9.3667 ± 0.43996 b | 12.475 ± 0.4961 b |
2 | 4.0208 ± 0.37615 a | 50.108 ± 1.4146 b | 12.8792 ± 1.2945 a | 12.929 ± 0.4033 a |
CV | 7.31 | 1.72 | 6.69 | 2.98 |
Treatments | Studied Parameters | |
---|---|---|
Crude Fat (%) | Crude Ash (%) | |
Nutrient | ||
Control | 2.083 ± 0.1978 b | 2.408 ± 0.1461 a |
Bio-cereal | 2.083 ± 2.083 b | 2.317 ± 0.1159 b |
Bio-algae | 2.100 ± 0.2484 ab | 2.408 ± 0.1826 a |
MgMnSZn blend | 2.142 ± 0. 2852 a | 2.417 ± 0.1748 a |
Tillage | ||
Plowing | 2.117 ± 0.2338 a | 2.392 ± 0. 1508 a |
Cultivator | 2.088 ± 0.2313 b | 2.383 ± 0. 1712 a |
CV | 4.03 | 2.95 |
Source of Variation | Mn (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Fe (mg/kg) |
---|---|---|---|---|
Tillage (T) | 0.071601 ns | 0.16751 ns | 1.254 × 10−5 *** | 1.361 × 10−6 *** |
Nutrient (N) | 1.068 × 10−6 *** | 0.01324 * | 2.122 × 10−6 *** | 0.004253 ** |
Year (Y) | 0.000405 *** | <2 × 10−16 *** | 0.0017426 ** | <2.2 × 10−16 *** |
T × N | 0.489187 ns | 0.47833 ns | 0.0230934 * | 0.020387 * |
T × Y | 0.754595 ns | 0.03279 * | 5.671 × 10−5 *** | 0.466580 ns |
N × Y | 5.983 × 10−7 *** | 0.09140 ns | 3.314 × 10−5 *** | 6.154 × 10−5 *** |
T × N × Y | 0.328556 ns | 0.01096 * | 0.0001064 *** | 0.204462 ns |
Treatments | Studied Parameters | |||
---|---|---|---|---|
Mn (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | |
Nutrient | ||||
Control | 13.058 ± 1.5594 b | 4.1908 ± 0.34518 b | 24.458 ± 1.6744 ab | 44.533 ± 3.0629 a |
Bio-cereal | 13.800 ± 0.8596 a | 4.1925 ± 0.45456 b | 22.942 ± 2.2815 c | 43.267 ± 4.3344 ab |
Bio-algae | 13.967 ± 1.0526 a | 4.2442 ± 0.36356 ab | 23.842 ± 1.474 b | 42.725 ± 2.6242 b |
MgMnSZn blend | 13.175 ± 1.0109 b | 4.3817 ± 0.54463 a | 24.733 ± 2.0021 a | 42.383 ± 4.7322 b |
Tillage | ||||
Plowing | 13.621 ± 1.1904 a | 4.2846 ± 0.42819 a | 23.446 ± 1.8353 b | 42.112 ± 3.7752 b |
Cultivator | 13.379 ± 1.2143 a | 4.2200 ± 0.44379 a | 24.542 ± 1.9944 a | 44.342 ± 3.5920 a |
Year | ||||
1 | 13.742 ± 1.2480 a | 3.9371 ± 0.22700 b | 24.379 ± 1.7683 a | 41.096 ± 3.7536 b |
2 | 13.258 ± 1.1160 b | 4.5675 ± 0.36219 a | 23.608 ± 2.1277 b | 45.358 ± 3.8384 a |
CV | 5.91 | 6.56 | 6.02 | 6.10 |
Nutrient Treatment | Mn (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | |||
---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Control | 13.900 a | 12.216 c | 24.533 ab | 24.383 b | 42.166 c | 46.9 a |
Bio-cereal | 13.733 a | 13.866 a | 22.566 c | 23.316 bc | 41.033 cd | 45.5 ab |
Bio-algae | 13.800 a | 14.133 a | 24.416 b | 23.266 bc | 42.266 c | 43.183 bc |
MgMnZnS blend | 13.533 ab | 12.816 bc | 26 a | 23.466 bc | 38.916 d | 45.85 ab |
CV (%) | 5.91 | 6.02 | 6.10 |
Tillage Treatment | Cu (mg/kg) | Zn (mg/kg) | ||
---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | |
Plowing | 3.955 b | 4.65 a | 24.3333 a | 22.55833 b |
Cultivator | 3.92 b | 4.485 a | 24.425 a | 24.65833 a |
CV (%) | 6.56 | 6.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogale, A.A.; Kende, Z.; Balla, I.; Mikó, P.; Bozóki, B.; Percze, A. Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods. Agriculture 2025, 15, 1668. https://doi.org/10.3390/agriculture15151668
Bogale AA, Kende Z, Balla I, Mikó P, Bozóki B, Percze A. Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods. Agriculture. 2025; 15(15):1668. https://doi.org/10.3390/agriculture15151668
Chicago/Turabian StyleBogale, Amare Assefa, Zoltan Kende, István Balla, Péter Mikó, Boglárka Bozóki, and Attila Percze. 2025. "Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods" Agriculture 15, no. 15: 1668. https://doi.org/10.3390/agriculture15151668
APA StyleBogale, A. A., Kende, Z., Balla, I., Mikó, P., Bozóki, B., & Percze, A. (2025). Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods. Agriculture, 15(15), 1668. https://doi.org/10.3390/agriculture15151668