Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys
Abstract
1. Introduction
2. Results
2.1. Metabolic Profiles of Qingke with Different Developmental Stages
2.1.1. Metabolite Identification and Analysis
2.1.2. Differentially Accumulated Metabolites in Qingke Seed Fractions
2.1.3. Cluster Analysis of the Accumulation Patterns of Shared DAMs in Dulihuang, Kunlun 14, and Heilaoya
2.2. Proteomic Profiles of Qingke with Different Developmental Stages
2.2.1. Protein Identification and Analysis
2.2.2. Differentially Expressed Proteins in Qingke Seed Fractions
2.2.3. PPI Network Construction of the DEPs
2.2.4. Cluster Analysis of Proteins with Shared Expression Patterns in Dulihuang, Kunlun 14, and Heilaoya
2.2.5. Cluster Analysis of Proteins with Pairwise-Shared Expression Profiles in Dulihuang, Kunlun 14, and Heilaoya
3. Discussion
3.1. Metabolites and Proteins Involved in Energy Metabolism and Carbohydrate Metabolism
3.2. Metabolites and Proteins Involved in Flavonoid Biosynthesis
4. Materials and Methods
4.1. Plant Materials
4.2. Metabolomic Analysis
4.3. Proteomic Analysis
4.4. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Pan, Z.; Liu, J.; Deng, G.; Long, H.; Zhang, H.; Liang, J.; Zeng, X.; Tang, Y.; Tashi, N.; et al. A Mutation in Waxy Gene Affects Amylose Content, Starch Granules and Kernel Characteristics of Barley (Hordeum vulgare). Plant Breed. 2019, 138, 513–523. [Google Scholar] [CrossRef]
- Saqib, A.; Scheller, H.V.; Fredslund, F.; Welner, D.H. Molecular Characteristics of Plant UDP-Arabinopyranose Mutases. Glycobiology 2019, 29, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Qi, Y.; Xu, B. Highland Barley Starch (Qingke): Structures, Properties, Modifications, and Applications. Int. J. Biol. Macromol. 2021, 185, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, G.; Zeng, X.; Xu, Q.; Wang, Y.; Yuan, H.; Zhang, Y.; Nyima, T. Quantitative Proteome Profiling Provides Insight into the Proteins Associated with β-Glucan Accumulation in Hull-Less Barley Grains. J. Agric. Food Chem. 2021, 69, 568–583. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Radchuk, R.; Weschke, W.; Wobus, U.; Weber, H. Seed Development and Differentiation: A Role for Metabolic Regulation. Plant Biol. 2004, 6, 375–386. [Google Scholar] [CrossRef]
- Wobus, U.; Sreenivasulu, N.; Borisjuk, L.; Rolletschek, H.; Panitz, R.; Gubatz, S.; Weschke, W. Molecular Physiology and Genomics of Developing Barley Grains. Recent Res. Dev. Plant Mol. Biol. 2005, 2, 37. [Google Scholar]
- Bian, J.; Deng, P.; Zhan, H.; Wu, X.; Nishantha, M.D.L.C.; Yan, Z.; Du, X.; Nie, X.; Song, W. Transcriptional Dynamics of Grain Development in Barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2019, 20, 962. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Lan, Y.; Zhang, J.; Zheng, W.; Wu, J.; Zhang, C.; Dang, B. An Investigation into the Effects of Various Processing Methods on the Characteristic Compounds of Highland Barley Using a Widely Targeted Metabolomics Approach. Food Res. Int. 2024, 180, 114061. [Google Scholar] [CrossRef]
- Obadi, M.; Sun, J.; Xu, B. Highland Barley: Chemical Composition, Bioactive Compounds, Health Effects, and Applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Lu, M.; Lu, M.Y.; Bu Gong, J.D.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D.T. Correlations of Molecular Weights of β-Glucans from Qingke (Tibetan Hulless Barley) to Their Multiple Bioactivities. Molecules 2018, 23, 1710. [Google Scholar] [CrossRef]
- Guo, H.; Lin, S.; Lu, M.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Lin, D.R.; Qin, W.; Wu, D.T. Characterization, in Vitro Binding Properties, and Inhibitory Activity on Pancreatic Lipase of β-Glucans from Different Qingke (Tibetan Hulless Barley) Cultivars. Int. J. Biol. Macromol. 2018, 120, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Eid, O.; Elkady, W.M.; Ezzat, S.; El Sayed, A.; Abd Elsattar, E. Comprehensive Overview: The Effect of Using Different Solvents for Barley Extraction with Its Anti-Inflammatory and Antioxidant Activity. Chem. Biodivers. 2023, 20, e202200935. [Google Scholar] [CrossRef]
- Hong, Q.; Chen, G.; Wang, Z.; Chen, X.; Kan, J. Effects of Different Thermal Processing Methods on Bioactive Components, Phenolic Compounds, and Antioxidant Activities of Qingke (Highland Hull-Less Barley). Food Sci. Hum. Wellness 2022, 12, 119–129. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, X.; Wang, Y.; Bai, L.; Xu, Q.; Wei, Z.; Yuan, H.; Nyima, T. Transcriptomics Analysis of Hulless Barley during Grain Development with a Focus on Starch Biosynthesis. Funct. Integr. Genom. 2017, 17, 107–117. [Google Scholar] [CrossRef]
- Chen, H.; Guo, Z.; Wang, Z.; Yang, B.; Chen, X.; Wen, L.; Yang, Q.; Kan, J. Structural and Physicochemical Properties of the Different Ultrasound Frequency Modified Qingke Protein. Ultrason. Sonochem. 2023, 94, 106338. [Google Scholar] [CrossRef]
- Guo, B.; Li, D.; Lin, S.; Li, Y.; Wang, S.; Lv, C.; Xu, R. Regulation of Nitrogen Availability Results in Changes in Grain Protein Content and Grain Storage Subproteomes in Barley (Hordeum vulgare L.). PLoS ONE 2019, 14, e0223831. [Google Scholar] [CrossRef]
- Zenga, X.; Long, H.; Wang, Z.; Zhao, S.; Tang, Y.; Huang, Z.; Wang, Y.; Xu, Q.; Mao, L.; Deng, G.; et al. The Draft Genome of Tibetan Hulless Barley Reveals Adaptive Patterns to the High Stressful Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 1095–1100. [Google Scholar] [CrossRef]
- Yao, X.; Yao, Y.; An, L.; Li, X.; Bai, Y.; Cui, Y.; Wu, K. Accumulation and Regulation of Anthocyanins in White and Purple Tibetan Hulless Barley (Hordeum vulgare L. Var. Nudum Hook. f.) Revealed by Combined de Novo Transcriptomics and Metabolomics. BMC Plant Biol. 2022, 22, 391. [Google Scholar] [CrossRef]
- Xu, C.; Abbas, H.M.K.; Zhan, C.; Huang, Y.; Huang, S.; Yang, H.; Wang, Y.; Yuan, H.; Luo, J.; Zeng, X. Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanisms of Tibetan Hulless Barley Grain Coloration. Front. Plant Sci. 2022, 13, 1038625. [Google Scholar] [CrossRef]
- Luo, J. Metabolite-Based Genome-Wide Association Studies in Plants. Curr. Opin. Plant Biol. 2015, 24, 31–38. [Google Scholar] [CrossRef]
- Brandizzi, F. Adding to the Understanding of Grain Filling Processes through Multiomics: High-Throughput Proteome and Metabolome Come into Play. Plant J. 2021, 107, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.A.; Hardoim, P.; Ferreira, P.C.G.; Nunes-Nesi, A.; Hemerly, A.S. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants. Trends Plant Sci. 2018, 23, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fernie, A.R. The Role of TCA Cycle Enzymes in Plants. Adv. Biol. 2023, 7, 2200238. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Ye, J.; Yang, X.; Li, S.; Zhang, L.; Song, X. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat. Int. J. Mol. Sci. 2018, 19, 324. [Google Scholar] [CrossRef]
- Bancel, E.; Rogniaux, H.; Debiton, C.; Chambon, C.; Branlard, G. Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J. Proteome Res. 2010, 9, 3299–3310. [Google Scholar] [CrossRef]
- Li, C.; Gilbert, R.G. Progress in Controlling Starch Structure by Modifying Starch-Branching Enzymes. Planta 2016, 243, 13–22. [Google Scholar] [CrossRef]
- Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch Biosynthesis in Cereal Endosperms: An Updated Review over the Last Decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef]
- Fan, L.; Ye, Q.; Lu, W.; Chen, D.; Zhang, C.; Xiao, L.; Meng, X.; Lee, Y.C.; Wang, H.M.D.; Xiao, C. The Properties and Preparation of Functional Starch: A Review. Food Rev. Int. 2023, 39, 3984–4008. [Google Scholar] [CrossRef]
- Schreiber, M.; Wright, F.; MacKenzie, K.; Hedley, P.E.; Schwerdt, J.G.; Little, A.; Burton, R.A.; Fincher, G.B.; Marshall, D.; Waugh, R.; et al. The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family. PLoS ONE 2014, 9, e90888. [Google Scholar] [CrossRef]
- Nemeth, C.; Freeman, J.; Jones, H.D.; Sparks, C.; Pellny, T.K.; Wilkinson, M.D.; Dunwell, J.; Andersson, A.A.M.; Åman, P.; Guillon, F.; et al. Down-Regulation of the CSLF6 Gene Results in Decreased (1,3;1,4)-β-D-Glucan in Endosperm of Wheat. Plant Physiol. 2010, 152, 1209–1218. [Google Scholar] [CrossRef]
- Vega-Sánchez, M.E.; Verhertbruggen, Y.; Christensen, U.; Chen, X.; Sharma, V.; Varanasi, P.; Jobling, S.A.; Talbot, M.; White, R.G.; Joo, M.; et al. Loss of Cellulose Synthase-like F6 Function Affects Mixed-Linkage Glucan Deposition, Cell Wall Mechanical Properties, and Defense Responses in Vegetative Tissues of Ricespi. Plant Physiol. 2012, 159, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cui, C.; Li, C.; Yu, Y.; Zeng, Q.; Li, X.; Zhao, W.; Dong, J.; Gao, X.; Xiang, J.; et al. Cytology, Metabolomics, and Proteomics Reveal the Grain Filling Process and Quality Difference of Wheat. Food Chem. 2024, 457, 140130. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yuan, H.; Dong, X.; Peng, M.; Jing, X.; Xu, Q.; Tang, T.; Wang, Y.; Zha, S.; Gao, M.; et al. Genome-Wide Dissection of Co-Selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke. Mol. Plant 2020, 13, 112–127. [Google Scholar] [CrossRef]
- Casati, P.; Morrow, D.J.; Fernandes, J.F.; Walbot, V. UV-B Signaling in Maize: Transcriptomic and Metabolomic Studies at Different Irradiation Times. Plant Signal Behav. 2011, 6, 1926–1931. [Google Scholar] [CrossRef]
- Davies, K.M.; Andre, C.M.; Kulshrestha, S.; Zhou, Y.; Schwinn, K.E.; Albert, N.W.; Chagné, D.; van Klink, J.W.; Landi, M.; Bowman, J.L. The Evolution of Flavonoid Biosynthesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2024, 379, 20230361. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Dooner, H.K.; Robbins, T.P.; Jorgensen, R.A. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 1991, 25, 173–199. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Yu, K.; Song, Y.; Lin, J.; Dixon, R.A. The Complexities of Proanthocyanidin Biosynthesis and Its Regulation in Plants. Plant Commun. 2023, 4, 100498. [Google Scholar] [CrossRef]
- Yang, T.; Li, J.; Wang, H.X.; Zeng, Y. A Geraniol-Synthase Gene from Cinnamomum Tenuipilum. Phytochemistry 2005, 66, 285–293. [Google Scholar] [CrossRef]
- Marles, M.A.S.; Ray, H.; Gruber, M.Y. New Perspectives on Proanthocyanidin Biochemistry and Molecular Regulation. Phytochemistry 2003, 64, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Hyun, J.N.; Kim, J.A.; Park, J.C.; Kim, M.Y.; Kim, J.G.; Lee, S.J.; Chun, S.C.; Chung, I.M. Relationship between Phenolic Compounds, Anthocyanins Content and Antioxidant Activity in Colored Barley Germplasm. J. Agric. Food Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Murr, D.B.; Fenrse, D.G.; Bnrxra, C.; Acnbson4, R.M. Anthocyanins and anthocyanidins of the barley pericarp and aleurone tissues. Can. J. Plant Sci. 1958, 38, 445–456. [Google Scholar]
- Kohyama, N.; Ono, H.; Yanagisawa, T. Changes in Anthocyanins in the Grains of Purple Waxy Hull-Less Barley during Seed Maturation and after Harvest. J. Agric. Food Chem. 2008, 56, 5770–5774. [Google Scholar] [CrossRef]
- Jin, H.M.; Dang, B.; Zhang, W.G.; Zheng, W.C.; Yang, X.J. Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors. Molecules 2022, 27, 3411. [Google Scholar] [CrossRef]
- Hu, C.; Li, Q.; Shen, X.; Quan, S.; Lin, H.; Duan, L.; Wang, Y.; Luo, Q.; Qu, G.; Han, Q.; et al. Characterization of Factors Underlying the Metabolic Shifts in Developing Kernels of Colored Maize. Sci. Rep. 2016, 6, 35479. [Google Scholar] [CrossRef]
- Wan, L.; Lei, Y.; Yan, L.; Liu, Y.; Pandey, M.K.; Wan, X.; Varshney, R.K.; Fang, J.; Liao, B. Transcriptome and Metabolome Reveal Redirection of Flavonoids in a White Testa Peanut Mutant. BMC Plant Biol. 2020, 20, 161. [Google Scholar] [CrossRef]
- Bishara, A.J.; Hittner, J.B. Testing the Significance of a Correlation with Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches. Psychol. Methods 2012, 17, 399–417. [Google Scholar] [CrossRef]
- Liu, T.; Wang, P.; Chen, Y.; Sun, B.; Li, Q.; Wan, H.; Yang, W.; Ma, P.; Zhang, D.; Dong, G.; et al. LC–MS and MALDI–MSI-Based Metabolomic Approaches Provide Insights into the Spatial–Temporal Metabolite Profiles of Tartary Buckwheat Achene Development. Food Chem. 2024, 449, 139183. [Google Scholar] [CrossRef]
- Lu, L.; Wang, L.; Liu, R.; Zhang, Y.; Zheng, X.; Lu, J.; Wang, X.; Ye, J. An Efficient Artificial Intelligence Algorithm for Predicting the Sensory Quality of Green and Black Teas Based on the Key Chemical Indices. Food Chem. 2024, 441, 138341. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Du, L.; Qu, Z.; Wang, H.; Dong, S.; Li, X.; Zhao, H. Integrated Metabolomics and Proteomics Analysis to Study the Changes in Scutellaria Baicalensis at Different Growth Stages. Food Chem. 2023, 419, 136043. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Yang, Y.; Zheng, K.; Wu, X.; Zhang, Y.; Chen, J.; Geng, G.; Qiao, F.; Han, S. Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys. Plants 2025, 14, 1946. https://doi.org/10.3390/plants14131946
Pang Y, Yang Y, Zheng K, Wu X, Zhang Y, Chen J, Geng G, Qiao F, Han S. Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys. Plants. 2025; 14(13):1946. https://doi.org/10.3390/plants14131946
Chicago/Turabian StylePang, Yanrong, Yuping Yang, Kaifeng Zheng, Xiaozhuo Wu, Yanfen Zhang, Jinyuan Chen, Guigong Geng, Feng Qiao, and Shengcheng Han. 2025. "Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys" Plants 14, no. 13: 1946. https://doi.org/10.3390/plants14131946
APA StylePang, Y., Yang, Y., Zheng, K., Wu, X., Zhang, Y., Chen, J., Geng, G., Qiao, F., & Han, S. (2025). Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys. Plants, 14(13), 1946. https://doi.org/10.3390/plants14131946