Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = aza-BODIPY

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 226
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1544 KiB  
Review
Determinants of Photodynamic Therapy Resistance in Cancer Cells
by Alicja Dąbrowska, Jakub Mastalerz, Bartosz Wilczyński, Beata Osiecka and Anna Choromańska
Int. J. Mol. Sci. 2024, 25(22), 12069; https://doi.org/10.3390/ijms252212069 - 10 Nov 2024
Cited by 6 | Viewed by 1571
Abstract
Photodynamic therapy (PDT) has emerged as a promising therapeutic approach owing to its non-invasive nature and minimal toxicity. PDT involves the administration of a photosensitizing agent (PS), which, upon light activation, induces a photodynamic reaction (PDR), leading to targeted cell destruction. However, developing [...] Read more.
Photodynamic therapy (PDT) has emerged as a promising therapeutic approach owing to its non-invasive nature and minimal toxicity. PDT involves the administration of a photosensitizing agent (PS), which, upon light activation, induces a photodynamic reaction (PDR), leading to targeted cell destruction. However, developing resistance to PDT poses a significant challenge to its effectiveness. Various factors, including properties and administration of PSs, mediate this resistance. Despite the widespread use of substances like 5-aminolevulinic acid (5-ALA) and protoporphyrin, their efficacy is limited due to restricted tumor penetration and a lack of tumor targeting. To address these limitations, nano-delivery techniques and newer PSs like Aza-BODIPY and its derivatives, which offer enhanced tissue penetration, are being explored. In this paper, we provide an overview of resistance mechanisms in PDT and discuss novel methods, substances, and technologies to overcome resistance to improve clinical outcomes in tumor treatment. Full article
(This article belongs to the Special Issue The Roles of Photodynamic Therapy in Tumors and Cancers)
Show Figures

Figure 1

11 pages, 3803 KiB  
Article
Facile Synthesis of Asymmetric aza-Boron Dipyrromethene Analogues Bearing Quinoxaline Moiety
by Ru Feng, Zuoxu Chen, Yue Wang, Jianming Pan and Soji Shimizu
Molecules 2023, 28(24), 7940; https://doi.org/10.3390/molecules28247940 - 5 Dec 2023
Cited by 1 | Viewed by 1581
Abstract
An asymmetric aza-BODIPY analogue bearing quinoxaline moiety was synthesized via a titanium tetrachloride-mediated Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione and benzo[d]thiazol-2-amine. This novel aza-BODIPY analogue forms a complementary hydrogen-bonded dimer due to the quinoxaline moiety in the crystal structure. It also shows intense [...] Read more.
An asymmetric aza-BODIPY analogue bearing quinoxaline moiety was synthesized via a titanium tetrachloride-mediated Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione and benzo[d]thiazol-2-amine. This novel aza-BODIPY analogue forms a complementary hydrogen-bonded dimer due to the quinoxaline moiety in the crystal structure. It also shows intense absorption and fluorescence, with fluorescence quantum yields close to unity. The electrochemical measurements and the DFT calculations revealed the presence of the low-lying HOMO, which benefits their potential applications as an electron-transporting material. Full article
(This article belongs to the Special Issue Synthesis, Structure, and Application of Novel Pyrrolic Macrocycles)
Show Figures

Figure 1

21 pages, 9978 KiB  
Article
Multiplexed Detection of Human Papillomavirus Based on AzaBODIPY-Doped Silica-Coated Polystyrene Microparticles
by Gugu Kubheka, Estela Climent, Charlie Tobias, Knut Rurack, John Mack and Tebello Nyokong
Chemosensors 2023, 11(1), 1; https://doi.org/10.3390/chemosensors11010001 - 20 Dec 2022
Cited by 5 | Viewed by 2044
Abstract
Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and [...] Read more.
Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different concentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

4 pages, 1209 KiB  
Short Note
Aminophenyl-Aza-BODIPY
by Dmitry Merkushev, Tatyana Kokurina and Yuriy Marfin
Molbank 2022, 2022(4), M1530; https://doi.org/10.3390/M1530 - 19 Dec 2022
Cited by 2 | Viewed by 1834
Abstract
aza-BODIPYs are a promising class of IR fluorescent dyes. The introduction of specific substituents could allow these compounds to act as fluorescent sensors. In this work, a new aminophenyl-substituted aza-BODIPY was synthesized for future application as a near-IR pH probe. Full article
Show Figures

Figure 1

13 pages, 3671 KiB  
Article
Synthetic Exploration of Bis(phenolate) Aza-BODIPYs and Heavier Group 13 Chelates
by Aiden M. Lane, Ny T. C. Luong, Jordan C. Kelly, Martin J. Neal, Jeremiah Jamrom, Aaron J. Bloomfield, Paul A. Lummis, Thomas D. Montgomery and Daniel T. Chase
Molecules 2022, 27(23), 8256; https://doi.org/10.3390/molecules27238256 - 26 Nov 2022
Cited by 2 | Viewed by 3579
Abstract
A series of boron, aluminum, gallium, and indium chelates containing the underexplored bis(phenolate) aza-dipyrromethene (aza-DIPY) core were prepared. These compounds were found to possess near-infrared absorption and emission profiles in the 710 to 770 nm domain and exhibit quantum yield values up to [...] Read more.
A series of boron, aluminum, gallium, and indium chelates containing the underexplored bis(phenolate) aza-dipyrromethene (aza-DIPY) core were prepared. These compounds were found to possess near-infrared absorption and emission profiles in the 710 to 770 nm domain and exhibit quantum yield values up to 14%. X-ray diffraction analysis revealed that heavier group 13 bis(phenolate) aza-DIPY chelates possessed octahedral geometries with either THF or pyridine groups occupying the axial positions as opposed to the tetrahedral geometry of the boron chelate. Full article
(This article belongs to the Special Issue The Chemistry of BODIPY Today)
Show Figures

Graphical abstract

36 pages, 5442 KiB  
Review
On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review
by Pavel Melnikov, Alexander Bobrov and Yuriy Marfin
Polymers 2022, 14(20), 4448; https://doi.org/10.3390/polym14204448 - 21 Oct 2022
Cited by 29 | Viewed by 4703
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles [...] Read more.
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

11 pages, 2023 KiB  
Article
Asymmetric AZA-BODIPY with Optical Gain in the Near-Infrared Region
by Tersilla Virgili, Lucia Ganzer, Chiara Botta, Benedetta Maria Squeo and Mariacecilia Pasini
Molecules 2022, 27(14), 4538; https://doi.org/10.3390/molecules27144538 - 15 Jul 2022
Cited by 6 | Viewed by 2585
Abstract
In recent years, there has been a lot of interest in the development of organic compounds emitting in the near-infrared (NIR) region due to their stimulating applications, such as biosensing and light detection and ranging (LiDAR). Moreover, a lot of effort has been [...] Read more.
In recent years, there has been a lot of interest in the development of organic compounds emitting in the near-infrared (NIR) region due to their stimulating applications, such as biosensing and light detection and ranging (LiDAR). Moreover, a lot of effort has been devoted to finding organic emitters with optical gain in the NIR region for lasing applications. In this paper, we present the ultrafast spectroscopy of an asymmetric AZA-BODIPY molecule that shows relevant photophysical changes moving from a diluted solution to a concentrated solution and to a spin-coated film. The diluted solution and the spin-coated film show a bleaching band and a stimulated emission band in the visible region, while the very concentrated solution displays a broad (150 nm) and long-living (more than 400 ps) optical gain band in the NIR region, centered at 900 nm. Our results pave the way for a new organic laser system in a near-infrared spectral region. Full article
Show Figures

Figure 1

12 pages, 5179 KiB  
Article
Enhancement of Two-Photon Absorption in Boron-Dipyrromethene (BODIPY) Derivatives
by Guanzheng Song, Zhongguo Li, Yanbing Han, Jidong Jia, Wenfa Zhou, Xueru Zhang, Yuxiao Wang and Yinglin Song
Molecules 2022, 27(9), 2849; https://doi.org/10.3390/molecules27092849 - 29 Apr 2022
Cited by 8 | Viewed by 2467
Abstract
The linear and nonlinear optical properties of two BODIPY derivatives, 1,7-Diphenyl-3,5-bis(9,9-dimethyl-9H-fluoren-2-yl)-boron-diuoride-azadipyrromethene (ZL-61) and 1,7-Diphenyl-3,5-bis(4-(1,2,2-triphenylvinyl)phenyl)-boron-diuoride-azadipyrromethene (ZL-22), were comprehensively investigated based on experimental and theoretical studies. It was found that both compounds show a strong two-photon absorption response in the near-infrared regime, and the two-photon-absorption [...] Read more.
The linear and nonlinear optical properties of two BODIPY derivatives, 1,7-Diphenyl-3,5-bis(9,9-dimethyl-9H-fluoren-2-yl)-boron-diuoride-azadipyrromethene (ZL-61) and 1,7-Diphenyl-3,5-bis(4-(1,2,2-triphenylvinyl)phenyl)-boron-diuoride-azadipyrromethene (ZL-22), were comprehensively investigated based on experimental and theoretical studies. It was found that both compounds show a strong two-photon absorption response in the near-infrared regime, and the two-photon-absorption cross-section values of ZL-61 and ZL-22 were determined to be 8321 GM and 1864 GM at 800 nm, respectively. The improvement of the two-photon absorption cross section in ZL-61 was attributed to the enhancement of the donor group, which was confirmed by transient absorption measurements and DFT calculation. Our results indicate that these BODIPY derivatives are a promising candidate for optical limiting and two-photon imaging applications. Full article
(This article belongs to the Topic Recent Advances in Nonlinear Optics and Nonlinear Optical Materials)
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 2085 KiB  
Article
Design of Promising aza-BODIPYs for Bioimaging and Sensing
by Dmitry Merkushev, Olga Vodyanova, Felix Telegin, Pavel Melnikov, Nikolay Yashtulov and Yuriy Marfin
Designs 2022, 6(2), 21; https://doi.org/10.3390/designs6020021 - 1 Mar 2022
Cited by 7 | Viewed by 3609
Abstract
The obtainment of new luminophores for molecular sensorics of biosystems is becoming one of the urgent tasks in the field of chemical synthesis. The solution to each practical problem imposes its own limitations in the design of new structures with practically useful properties. [...] Read more.
The obtainment of new luminophores for molecular sensorics of biosystems is becoming one of the urgent tasks in the field of chemical synthesis. The solution to each practical problem imposes its own limitations in the design of new structures with practically useful properties. The relationship between the structure and spectral properties is still to be unveiled. Three aza-BODIPY complexes with substituents of different natures were studied using time-resolved and steady-state fluorescence and absorption spectroscopy. The solvatochromic properties of aza-BODIPYs were studied with the use of a combined polyparametric approach and analysis by chemoinformatics methods for the first time. It was found that red shift of aza-BODIPY dyes was due to the increase of their structural lability. Predictive and experimental methods showed that the investigated aza-BODIPYs exhibited a positive solvatochromic effect, in contrast to classic BODIPYs (bearing C in the meso-position of the dipyrromethene core), which represents the negative solvatochromic properties. Spectral maxima in the area of the therapeutic window, low and predictable solvatochromism, and the ability to fine-tune the spectral characteristics make the investigated aza-BODIPYs promising scaffolds for the construction of bioengineering devices. Generalizations on the aza-BODIPYs’ design patterns were made in accordance with further bioimaging applications. Full article
(This article belongs to the Section Bioengineering Design)
Show Figures

Figure 1

12 pages, 2168 KiB  
Article
Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid
by María Dolores Fernández-Ramos, Fátima Mirza-Montoro, Luis Fermín Capitán-Vallvey and Isabel María Pérez de Vargas-Sansalvador
Coatings 2021, 11(2), 163; https://doi.org/10.3390/coatings11020163 - 30 Jan 2021
Viewed by 2830
Abstract
In this study we present an NIR carbon dioxide gas sensor based on an inner filter process that includes an ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), to improve its stability, dynamic behavior and lifetime, which are usually the main drawbacks with [...] Read more.
In this study we present an NIR carbon dioxide gas sensor based on an inner filter process that includes an ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), to improve its stability, dynamic behavior and lifetime, which are usually the main drawbacks with these sensors. The presence of CO2 causes a displacement of a simple boron-dipyrromethene-type fluorophore, azaBODIPY, as the pH indicator towards its acid form. This increases the emission intensity of Cr(III)-doped gadolinium aluminium borate (GAB) as the luminophore. The characterization of the prepared sensor was carried out and a discussion of the results is presented. The response and recovery times improved considerably, 23 and 49 s, respectively, with respect to the sensor without IL, at 60 and 120 s, respectively,. Additionally, the measurement range is extended when using IL, able in this case to measure in the complete range up to 100% CO2; without IL the measurement range is limited to 60% CO2. The detection limit ranges from 0.57% CO2 without IL to 0.26% CO2 when IL is added. The useful lifetime of the sensing membrane was 20 days for membranes with IL and only 6 days for membranes without IL, with the sensor always kept in the dark and without the need to maintain a special atmosphere. Full article
(This article belongs to the Special Issue Gas Sensing Film Coating)
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Far-Red to Near Infrared Emissive Aqueous Nanoparticles Based on a New Organic Material with Three BODIPY Dyes at the Periphery of the Core: A Combined Experimental and Theoretical Study
by Benedetta M. Squeo, Aggelos Avramopoulos, Alkmini D. Nega, Aristea Pavlou, Michael G. Siskos, Panagiota Koralli, Andriana Schiza, Antonia Dimitrakopoulou-Strauss, Vasilis G. Gregoriou and Christos L. Chochos
Electron. Mater. 2021, 2(1), 24-38; https://doi.org/10.3390/electronicmat2010003 - 18 Jan 2021
Cited by 1 | Viewed by 4265
Abstract
A new organic material with three 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene dyes (BODIPYs) at the periphery of the central core is successfully synthesized (3BDP3T) and its corresponding aqueous nanoparticles are prepared via the encapsulation approach and characterized in detail both experimentally and theoretically with the [...] Read more.
A new organic material with three 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene dyes (BODIPYs) at the periphery of the central core is successfully synthesized (3BDP3T) and its corresponding aqueous nanoparticles are prepared via the encapsulation approach and characterized in detail both experimentally and theoretically with the aid of the Density Functional Theory (DFT). The linear and non-linear optical properties of the synthesized material are also studied. Until now, the development of organic materials with three BODIPYs as substituents is limited and their properties are not fully resolved. The obtained 3BDP3T-based nanoparticles exhibit far-red and near infrared (NIR) emission with photoluminescence quantum yields of 0.021, which is promising as a new fluorescent contrast agent in the far-red and NIR spectral regions. Full article
(This article belongs to the Special Issue Conjugated Polymers for Bioimaging Applications)
Show Figures

Figure 1

21 pages, 9900 KiB  
Article
Quantum Chemical Study Aimed at Modeling Efficient Aza-BODIPY NIR Dyes: Molecular and Electronic Structure, Absorption, and Emission Spectra
by Alexander E. Pogonin, Artyom Y. Shagurin, Maria A. Savenkova, Felix Yu. Telegin, Yuriy S. Marfin and Arthur S. Vashurin
Molecules 2020, 25(22), 5361; https://doi.org/10.3390/molecules25225361 - 17 Nov 2020
Cited by 11 | Viewed by 3680
Abstract
A comprehensive study of the molecular structure of aza-BODIPY and its derivatives, obtained by introduction of one or more substituents, was carried out. We considered the changes in the characteristics of the electronic and geometric structure of the unsubstituted aza-BODIPY introducing the following [...] Read more.
A comprehensive study of the molecular structure of aza-BODIPY and its derivatives, obtained by introduction of one or more substituents, was carried out. We considered the changes in the characteristics of the electronic and geometric structure of the unsubstituted aza-BODIPY introducing the following substituents into the dipyrrin core; phenyl, 2-thiophenyl, 2-furanyl, 3-pyridinyl, 4-pyridinyl, 2-pyridinyl, and ethyl groups. The ground-state geometries of the unsubstituted Aza-BODIPY and 27 derivatives were computed at the PBE/6-31G(d) and CAM-B3LYP/6-31+G(d,p) levels of theory. The time-dependent density-functional theory (TDDFT) together with FC vibronic couplings was used to investigate their absorption and emission spectra. Full article
Show Figures

Figure 1

12 pages, 1861 KiB  
Review
A Palette of Efficient and Stable Far-Red and NIR Dye Lasers
by Edurne Avellanal-Zaballa, Leire Gartzia-Rivero, Jorge Bañuelos, Inmaculada García-Moreno, Antonia R. Agarrabeitia, Eduardo Peña-Cabrera and Maria Jose Ortiz
Appl. Sci. 2020, 10(18), 6206; https://doi.org/10.3390/app10186206 - 7 Sep 2020
Cited by 7 | Viewed by 3451
Abstract
The disposal of long-wavelength-emitting sources is of paramount relevance in technology and biophotonics due to the low interference with the surroundings that these kinds of far-red and near-infrared radiations hold. As a result of the continued efforts carried out during the last few [...] Read more.
The disposal of long-wavelength-emitting sources is of paramount relevance in technology and biophotonics due to the low interference with the surroundings that these kinds of far-red and near-infrared radiations hold. As a result of the continued efforts carried out during the last few years by our research group to design new boron-dipyrromethene (BODIPY) dyes with improved photonic performance, two approaches were tested to develop a new generation of organic dyes able to display efficient and long-lasting laser emission in both target spectral regions. On the one hand, the annulation of aromatic benzofuran at the dipyrrin backbone leads to conformationally restricted dyes yielding photostable and bright laser emission beyond 600 nm at the far-red spectral region. On the other hand, a more pronounced shift to longer wavelengths reaching 725 nm at the near-infrared region is feasible, while keeping a reasonably high laser efficiency and tolerance to prolonged and intense pumping, based on aza-BODIPYs bearing peripheral aryl rings. These two complementary strategies yield a library of laser-emitting compounds comprising the 600–725 nm spectral region. Moreover, their laser performance is better than the commercially available dye lasers active in this spectral window. Full article
(This article belongs to the Special Issue 10th Anniversary of Applied Sciences: Invited Papers in Materials)
Show Figures

Figure 1

14 pages, 2327 KiB  
Article
Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications
by Ghadir Kalot, Amélie Godard, Benoît Busser, Jacques Pliquett, Mans Broekgaarden, Vincent Motto-Ros, Karl David Wegner, Ute Resch-Genger, Ulli Köster, Franck Denat, Jean-Luc Coll, Ewen Bodio, Christine Goze and Lucie Sancey
Cells 2020, 9(9), 1953; https://doi.org/10.3390/cells9091953 - 25 Aug 2020
Cited by 36 | Viewed by 7253
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 μm). To be efficient, a sufficient [...] Read more.
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 μm). To be efficient, a sufficient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for efficient approach of BNCT. Full article
(This article belongs to the Special Issue Biology of Boron Neutron Capture Therapy (BNCT))
Show Figures

Graphical abstract

Back to TopTop