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Abstract: In recent years, there has been a lot of interest in the development of organic compounds
emitting in the near-infrared (NIR) region due to their stimulating applications, such as biosensing
and light detection and ranging (LiDAR). Moreover, a lot of effort has been devoted to finding organic
emitters with optical gain in the NIR region for lasing applications. In this paper, we present the
ultrafast spectroscopy of an asymmetric AZA-BODIPY molecule that shows relevant photophysical
changes moving from a diluted solution to a concentrated solution and to a spin-coated film. The
diluted solution and the spin-coated film show a bleaching band and a stimulated emission band in
the visible region, while the very concentrated solution displays a broad (150 nm) and long-living
(more than 400 ps) optical gain band in the NIR region, centered at 900 nm. Our results pave the way
for a new organic laser system in a near-infrared spectral region.

Keywords: AZA-BODIPY; ultrafast spectroscopy; stimulated emission

1. Introduction

Organic optoelectronics and photonics based on the development of molecules and
polymers are playing an increasingly important role in biosensing and lasing applications.
In fact, in addition to having the characteristics of low cost, easy processability, and high
modulation [1,2], they also respond to the request for new sustainable materials, which
are necessary for the transition to green technology [3]. In fact, organic materials meet the
demand for biocompatibility and low toxicity, and can be obtained from abundant raw
materials [4,5].

In recent years, organic semiconductor laser diodes (OSLDs) [6,7] have been intensively
studied for the purposes of materials development [8-10], mechanism investigation, and
device optimization [11]. The use of OSLDs in optoelectronics has many benefits compared
to the conventional lasers based on inorganic materials. They are mechanically flexible,
easily processed, and their emission wavelength can be easily tuned. In particular, the laser
technologies have extended the operating range to 1—2 pum (short-wavelength infrared,
SWIR) for their many applications in telecommunications (signal processing, amplification)
and in defense (LiDAR, active imaging, telemetry, etc.) [12]. Moreover, in biosensing and
healthcare applications [13], OSLDs with emission in the near-infrared (NIR) region from
700 to 900 nm are desirable. Unfortunately, the PL quantum yields (®pr) of NIR emitters
are generally very low because of the increase in nonradiative transitions due to the well-
established energy gap law [14,15]. As a consequence, it is difficult to find organic material
with a high and long-living optical gain in the NIR region. Therefore, the development of
materials as well as device architectures with these particular properties has remained a
challenge. One of the most promising molecules able to absorb and emit in the 700-900 nm
region is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) [16-18]. BODIPY can be
described as a boradiazaindacene on account of the similarity with the all-carbon tricyclic
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ring having three p-delocalized rings (pyrrole, azafulvene and diazaborinin-type ring) and
the numbering of substituents follows rule setup for the carbon polycycles (see Figure 1a).
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Figure 1. (a) From indacene to AZA-BODIPY structure. (b) The dithieno-diphenyl-aza-BODIPY
(DTDPAB) structure.

“BODIPY” might be defined as porphyrin’s “half-brother”, and, in analogy with
porphyrinic structures, position 8 is habitually referred as the meso site [19]. The first
synthesis of BODIPY was described in 1968 by Treibs and Kreuzer, but the interest of the
scientific community in BODIPY has particularly developed in recent years. Its fortune is
mainly due to its outstanding photophysical characteristics, such as modulable absorption
and emission from the visible to near-infrared (NIR) optical region, combined with high
molar extinction coefficients, good fluorescence quantum yields, and excellent photo- and
chemical-resistance [20-26].

From a chemical point of view, BODIPY, thanks to its eight reactive positions, provides
a versatile platform for the further functionalization and the consequent fine modulation
of optoelectronic and photonic properties [27]. However, the maximum absorption and
emission of conventional BODIPY are around 700 nm. In order to red-shift the spectral
properties of BODIPY, in 2002 Killoran et al. [28] proposed the replacement of the carbon
in position 8, or the meso position, with a nitrogen with the formation of a C=N linkage,
which is isoelectronic with the C=CH group but has different geometric and electronic
requirements [29,30]. This modification led to the birth of a new family of materials, known
as AZA-BODIPY (Figure la), that retain the main characteristics of the BODIPY-based
molecules, but show a markedly red-shifted absorption and emission and specific linear
photophysical and nonlinear optical (NLO) properties [31]. Their use is a subject of great
interest for photonics applications, including important multidisciplinary areas such as
fluorescence bioimaging [32,33] and organic photovoltaics [34].

In this paper, in order to further shift the chromophore emission in the NIR, we re-
placed the peripheral positions of AZA-BODIPY with aromatic rings, specifically positions 1
and 7 with aryls, and positions 3 and 5 with thiophenic moieties [35] (see Figure 1b). This
new AZA-BODIPY molecule presents an emission in the 700-900 nm region. By ultrafast
spectroscopy, we found a large gain region peaking at 900 nm in a concentrated solution.
Our results pave the way for a new organic laser system in the near-infrared spectral region.

2. Results and Discussion

The dithieno-diphenyl-aza-BODIPY (DTDPAB) is synthetized, according to the
literature [35,36], in a four-step reaction, as reported in the experimental section and in
Scheme 1. In the first step, the chalcone M1 is obtained from the condensation between



Molecules 2022, 27, 4538

3of11

2-acetylthiophene and benzaldehyde. In the second step, the chalcone reacts quantita-
tively with nitromethane and potassium carbonate to give the compound phenyl 4-nitro-3-
thienylbutan-1-one M2, which is used to obtain the azadipyrromethene derivative M3 after
reaction with ammonium acetate. The product dithieno-diphenyl-aza-BODIPY is finally
obtained after reacting azadipyrromethene and N,N-diisopropylethylamine with boron
trifluoride diethyl etherate.
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Scheme 1. Synthesis of DTDPAB.

DTDPAB

The presence of a nitrogen atom instead of a carbon atom in the meso position induces
the desired red-shift without increasing the molecular size and weight, maintaining a good
solubility. The greater electronegativity of nitrogen in the meso position compared to
carbon induces a preferable stabilization of the LUMO state, reducing the energy gap. The
red-shift can be reinforced through the appropriate lateral substituents, including the aryl
rings and electron-rich groups such as the chosen thiophenes, which are able to increase
the delocalization (conjugation) with a consequent shift toward the NIR region [37]. The
introduction of the thienyl group in positions 3 and 5 has a double effect. It enhances
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the electron delocalization due to the increased coplanarity, which can be ascribed to
the lesser steric hindrance of a five-member ring as compared to the six-member phenyl
ring. Contemporarily, the electron-donating thiophene substituent increases the HOMO
level, while the LUMO level remains nearly constant, resulting in a reduced gap with a
bathochromic shift.

Figure 2 shows the absorption and the photoluminescence (PL) spectra of the diluted
solution, the concentrated solution, and the spin-coated film (10% dye in polystyrene
(PS)—see Materials and Methods for details). The absorption spectra of the diluted and
concentrated solutions show a main peak at 720 nm with a shoulder at 655 nm. The PL
spectra for the two solutions are different. The diluted solution shows a main peak at
735 nm with a shoulder at 810 nm, while the concentrated one shows a 10 nm red-shift of
the main peak, with the same shoulder at 810 nm and a new weak band at around 900 nm.
The red-shift of the first peak is probably due to self-absorption, due to the small Stokes
shift and the high optical density of the concentrated solution. The two shoulders in the
PL spectra of the concentrated solution could either both be vibronic replicas of the first
singlet state (probably, in the diluted solution, the second band is too weak to be detected),
or the 900 nm weak band could be associated with an emission from the aggregates [12].
The spectra of the spin-coated film are quite different from the solution ones.

—— Diluited solution
] (a) —— Concentrated solution
— Blend spin coated film

Normalised Absorption

Normalised PL

b

400 500 600 700 800 900 1000 1100
Wavelength (nm)

Figure 2. (a) Absorption spectra. (b) Photoluminescence spectra. Diluted solution (black line),
concentrated solution (red line), and spin-coated film using the blend 10% dye in the Polystyrene
matrix (blue line).

The absorption spectrum shows a main peak at 730 nm and a shoulder at 670 nm.
The main absorption band is much broader (FWHM =~ 74 nm (160 meV)) than the ones
for the two solutions (FWHM =~ 37 nm (68 meV)). The PL spectrum, then, is dominated
by a large band peaked at 900 nm, with a weak shoulder at 750 nm. The broadened
absorption spectrum of the film reduces the emission intensity in the 700 nm region due to
self-absorption, while the lower energetic band becomes predominant.

We performed transient absorption (TA) measurements of the three samples to elu-
cidate the photophysics of the molecule and to look for optical gain in the NIR region.
This technique allowed us to temporally resolve the photophysics of the molecule after
photonic excitation. In general, positive differential transmissions are assigned to ground-
state photobleaching (GSB) or stimulated emission (SE), while negative features of the TA
spectra are attributed to photoinduced absorption (PIA) bands [38]. To distinguish between
a GSB and SE signal, we need to look at the absorption and the emission spectra. When the
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positive transient signal overlaps spectrally with the absorption spectrum, the TA signal is
attributed to GSB; otherwise, it is an indication of the presence of stimulated emission, also
called optical gain.

Figure 3 shows the transient transmission spectra of the diluted solution after pumping
at 670 nm. The pump-probe spectrum is composed of a positive peak at 725 nm with
a shoulder at 660 nm. In the NIR region, a photoinduced absorption band is evident
at ~900 nm. In the figure, the temporal change of the spectrum is shown for the first
400 ps after excitation at delays of 1, 4, 40, and 400 ps after the pump excitation. To better
understand these features, the absorption and the PL spectra for the diluted solution are
shown in the same plot, translated vertically on the y-axis.

Diluted solution

Normalised abs. and PL

550 600 650 700 750 800 850 900 950 1000 1050

Wavelength (nm)

Figure 3. Absorption (red line + symbol) and PL (black line + symbol) spectra (translated vertically).
Transient transmission spectra at different probe delays in the visible and NIR spectral regions.

The positive band in the visible region represents the bleaching of the ground state
overlapping with the stimulated emission at wavelengths larger than 720 nm. In the NIR
region, a broad photoinduced absorption band with a peak at 900 nm is present.

The temporal dynamics at different wavelengths show a peculiar behavior (see
Figure 4), revealing the presence of complex photophysical processes, which are described
below. The decay of the bleaching at 700 nm (black line) shows an initial fast component
(T = 1 ps) followed by a very slow one. The 730 nm component (bleaching + stimulated
emission, red line) displays a 1ps formation time and then a long-decay component. The
decay of the PIA band at 900 nm (blue line) has the same formation time and decay as the
730 nm component. This result indicates that the two main absorption bands at 720 nm
and 655 nm (see Figure 2a, black line) can be attributed to Sy (singlet ground state)-S; (first
singlet electronic state) and Syp—S; (second singlet electronic state) transitions, respectively.
After excitation at 670 nm, the S, (singlet electronic state) is instantaneously populated, and
at around 1 ps it decays (see the black line in Figure 4) and populates the S; state. This is
revealed by both the dynamics at the 730 nm wavelength (red line in Figure 4), assigned to
51-Sp stimulated emission, and at 900 nm wavelength (blue line in Figure 4), assigned to the
photoinduced S1-S,, (1 singlet electronic state) transition. Normally, the energy relaxation
from S; to Sy is in the order of tens of femtoseconds. Probably, in this case, it is slower due
to the different characters of the two singlet states.

In fact, many reports [12,39] show that the singlet states of BODIPY compounds with
an AZA-core have a different charge transfer (CT) character. The very strong electron-
withdrawing AZA-BODIPY core acts as an accepting trap, preventing complete delocaliza-
tion across the whole 7-conjugated scaffold.

Figure 2b shows that by increasing the concentration of the molecule in the solution,
a weak band in the NIR region (see the red line) becomes visible in the PL spectrum. To
understand the origin of this band, we performed transient transmission measurements in
this optical region. The results are shown in Figure 5.
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Figure 4. Pump—probe dynamics at different wavelengths.
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Figure 5. Concentrated solution. (a) Transient transmission spectra at different probe delays in
the NIR spectral region. The weak PL band is also shown for clarity (grey line with open circles).
(b) Dynamics at different probe wavelengths: 825 nm (black line), 900 nm (red line), and 930 nm (blue
line). In the inset, the same dynamics over a 400 ps temporal window are shown.

First of all, we note that the spectra of the concentrated solution are completely
different from those of the diluted one. After 1 ps from the pump excitation, and until
almost 40 ps, the TA signal is positive all across the NIR region between 820-970 nm (see
Figure 5a, black, red, and blue lines). Due to the overlap with the broad emission spectrum
(Figure 5a, back line + symbols), this signal can be attributed to the presence of optical
gain. Unfortunately, after 40 ps, a negative band appears in the region at around 900 nm.
Figure 5b shows the temporal decays at different wavelengths. All the temporal traces
show a formation time of 2 ps; however, the trace at 900 nm (red line), similarly to the other
two in the first 10 ps, becomes negative after 40 ps. This behavior indicates the overlap
between a positive signal (SE) and a PIA band.

The analysis of the decays shows that the emissive state is not instantaneously popu-
lated. Similar to the diluted solution, in the concentrated ones, the pump excites a higher
singlet state, which populates the emissive one. However, for the concentrated solution,
a PIA band at 900 nm is also present. This negative contribution lowers and, after 40 ps,
completely overcomes the gain in the region between 840 and 920 nm. In any case, the
signal remains positive until 400 ps in the other part of the spectrum.
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After this good result, we studied the photophysics of the blend 10% DTDPAB + PS
in the spin-coated thin film. The PL of this film shows a large band centered at 900 nm
(Figure 2b, blue line), so we expected to find a large optical region, as in the case of the
concentrated solution.

Figure 6 shows the transient transmission spectra of the spin-coated film of the blend
10% dye in PS in the visible and NIR regions. The spectra are composed of a positive
peak at 745 nm with a shoulder at 675 nm. In the near-infrared region, a photoinduced
absorption band is evident at ~900 nm and at higher energy with a peak at 580 nm. The
photophysics seem to be more similar to those of the diluted solution than those of the
concentrated solution. The two positive peaks are attributed to the bleaching of the ground
state and the negative PIA band at 900 nm at the 5;-5;, transition.

15

— 1ps blend spin coated film
— 4ps o
— 40 ps he]
104 —— 400ps S
= ——abs »
- . o
— i =]
- 0.5 g
©
E
0.0 zo

550 600 650 700 750 800 850 900 950 1000
Wavelength (nm)

Figure 6. Absorption (black line + symbol) and PL (red line + symbol) spectra (translated vertically).
Transient transmission spectra at different probe delays in the visible and NIR spectral regions.

However, in this sample, the signal all across the spectral region is instantaneous
(see Figure 7), within the 100 fs time resolution of the system, indicating that, with this
morphology, the S,-S; transition is very fast. Moreover, the bleaching band at 745 nm
shows two population contributions: a fast one (T ~ 5 ps) and a slow one. Probably, the
slow component is the same population responsible for the bleaching at 675 nm and the
PIA band at 900 nm, while the fast one is a new population that could be attributed to
the aggregated species. More measurements are required to understand the nature of this
population. However, unfortunately, it is clear that the stimulated emission in the NIR
region that was observed in the concentrated solution is not present in this film.

(a) ——675nm| |(b) —— 675 nm
—— 900 nm —— 745 nm
e —— 770 nm

Normalised AT/T

6 8 10 0 2 4 6 8 10
Probe delay (ps) Probe delay (ps)
Figure 7. (a) Dynamics at different probe wavelengths: 675 nm (black line) and 900 nm (red line).

(b) Dynamics at different probe wavelengths: 675 nm (black line), 745 nm (blue line), and 770 nm
(red line).
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This behavior could be related to the choice of the matrix. In fact, the BODIPY
derivatives are particularly sensitive to the environment that surrounds them, and show
a marked solvatochromism [35,40,41]. At this moment, to our knowledge, there are no
studies on the effect of polymeric matrices on the optical properties of thin films based on
AZA-BODIPY.

3. Materials and Methods

General information for synthesis. All reagents were purchased from commercial sources,
Sigma-Aldrich Chemistry (Schnelldorf, Germany) and TCI (Fukaya, Japan), and were used
without further purification. All solvents have been degassed with bubbling nitrogen prior
to use. All reactions were carried out in an inert atmosphere.

The 1H-NMR spectra (see Supplementary Materials) were recorded with a Bruker
DRX 600 MHz spectrometer (Bruker, Karlsruhe, Germany) and a Bruker ARX 400 MHz
spectrometer (Bruker, Karlsruhe, Germany). Gas-phase mass determination was carried
out using the Agilent Technologies 7890A GC System (Santa Clara, CA, USA) coupled
with an Agilent Technologies 5975C VL MSD (Santa Clara, CA, USA) with a triple-axis
mass detector. Elemental analyses were performed on an Elementar Vario EL (Elementar
Analysensysteme GmbH, Langenselbold, Germany).

Synthesis of thienyl-3-phenylprop-2-en-1-one M1. A mixture of 2-acetylthiophene (5 g,
39.6 mmol, 1 eq.) and benzaldehyde (4.2 g, 39.6 mmol, 1 eq.) was added to a pre-degassed
round-bottom flask, followed by three vacuum/nitrogen cycles. Then, degassed ethanol
(200 mL) and potassium hydroxide (KOH) 5% solution (100 mL) in water were added. The
mixture was left under stirring at room temperature. After 24 h, a white precipitate was
formed. The precipitate was filtered, washed with water, and recrystallized from ethanol
(8 g, 94% yield). 'H NMR (600 MHz, DMSO) & 8.35 (d, 1H), 8.06 (d, 1H), 7.89 (m, 3H),
7.73 (d, 1H), 7.47 (m, 3H), 7.32 (m, 1H).

Synthesis of Phenyl 4-Nitro-3-thienylbutan-1-one M2. A mixture of chalcone M1 (3 g, 14 mmol,
1 eq.), nitromethane (4.27 g, 70 mmol, 5 eq.), and potassium carbonate (K,COj3, 39 mg, 2% mol)
was added to a pre-degassed round-bottom flask, followed by three vacuum /nitrogen cycles.
Then, degassed ethanol (14 mL) was added, and the mixture was heated under stirring at
reflux for 12 h. After cooling the mixture at room temperature, the solvent was removed
under reduced pressure. The crude was then redissolved in ethyl acetate and washed
three times with water and brine. The organic phase was then dried over sodium sulfate
and the solvent was removed to give a yellowish oil in quantitative yield. The compound
was used in the next step without further purification.

Synthesis of Azadipyrromethene M3. A mixture of 4-nitro-3-phenyl-1-(2-thienyl)butan-
1-one (M2, 3.95 g, 14 mmol, 1 eq.) and ammonium acetate (37.7 mg, 490 mmol, 35 eq.)
was dissolved in degassed butanol (185 mL) and left under stirring at reflux for 24 h.
After cooling the crude at room temperature, the reaction mixture was diluted with water
and extract with dichloromethane and washed three times with brine. The combined
organic layer was then dried over sodium sulfate, and the solvent was removed under
reduced pressure to give a dark blue solid. The product was purified by silica gel column
chromatography, using hexane/chloroform as an eluent to give a crystal powder (480 mg,
8%). 'H NMR (600 MHz, CDCl3) & 8.18 (d, 2H), 8.04 (d, 2H), 7.80 (d, 2H), 7.73 (m, 2H),
7.60 (d, 1H), 7.53 (m, 3H), 7.42 (m, 3H), 7.36 (m, 1H), 7.20 (t, 1H), 7.15 (t, 1H), 7.07 (s, 1H).

Synthesis of DTDPAB. To a solution of M3 (200 mg, 0.433 mmol, 1 eq.) in dry dichloroethane
we added N,N-diisopropylethylamine (DIPEA, 280 mg, 2.16 mmol, 5 eq.), and the mix-
ture was left under stirring for 1 h. Then, boron trifluoride diethyl etherate (BF;-OET);)
was added, and the mixture was heated to reflux. After 2 h, the mixture was cooled to
room temperature and the crude mixture was diluted with dichloromethane and washed
with water and brine. The organic layer was dried over magnesium sulphate and the
solvent was removed under reduced pressure. The product was purified by silica gel
chromatography using hexane/ethyl acetate as an eluent and, subsequently, a further
purification by reversed-silica gel chromatography using acetonitrile/methanol (7:3) as an
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eluent was performed to give an optical-grade purified compound as a coppery, shining
powder (180 mg, 81% yield). 'H NMR (600 MHz, CDCl3) 6§ 8.41 (d, 2H), 8.08 (d, 2H), 7.66
(d, 2H), 7.47 (m, 6H), 7.30 (t, 2H), 7.21 (s, 2H). MS, (GC-MS) m/z: 509 (M+). Elemental
analysis: calculated for Cy3H1gBF2N3S;,: C 66.02, H 3.56, N 8.25, 5 12.59; found: C 66.09,
H 3.70, N 7.54, S 12.22. The diluted solutions, for measurements, have a concentration
of 5 x 107° M in CHCl3, while the concentrated solutions have a concentration of about
5 x 1074 M in CHCl;,

Film preparation. The films were deposited by spin-coating (2000 rpm) from a solution
of 3 mg of DTDPAB molecule and 27 mg of polystyrene matrices (10% dye by weight with
respect to the polymeric host) dissolved in 0.9 mL of CHCl;.

CW absorption. The linear absorption spectra were acquired with a JASCO V-750
spectrophotometer (Jasco Europe S.R.L., Cremella (LC), Italy). The measurements were
taken in air and at room temperature. The absorption spectra were corrected by the
contribution of the UV quartz cuvettes, used for the solutions, and the quartz substrate
cuvettes, used for the spin-coated film.

CW Photoluminescence. PL spectra are obtained with a NanoLog (Horiba Italia Srl,
Milano, Italy) composed by a iH320 spectrograph equipped with a Synapse QExtra charge-
coupled device by exciting with a monochromated 450 W Xe lamp. The spectra, obtained
by exciting at 650 nm, are corrected for the instrument response.

Ultrafast TA spectroscopy. For the pump—probe experiment, we used a Ti: sapphire
laser (Libra, Coherent) (Coherent, Santa Clara (CA), USA) characterized by a 100 fs pulse
duration, 1 kHz repetition rate, and an 800 nm central wavelength. A pump excitation
wavelength of 670 nm was used for the characterization of the samples. The pump light
comes from a non-collinear optical parametric amplifier (NOPA). The broadband probe
extending in the visible and NIR regions results from white-light continuum generation in
a 3 mm-thick sapphire plate pumped by 800 nm light. Using bandpass filters, we selected
either the visible range or the NIR range. The delay between the pump and the probe
pulses was controlled by a translation stage, and the pump beam was modulated by a
mechanical chopper with a 500 Hz frequency. The differential transmission (AT/T) of the
probe was measured as a function of the probe wavelength and pump—-probe delay using
an SP2150 Acton spectrometer from Princeton Instruments. The pump energy was adjusted
to a fluence of around 10 pJ cm 2 for measurements in the visible region and around
45 pJ cm~2 for measurements in the NIR region. The measurements were performed with
parallel polarizations between the pump and the probe beams.

4. Conclusions

In this paper, we synthetized an asymmetric tetra-substituted AZA-BODIPY molecule
which displays, in diluted solutions, narrow absorption-emission spectra with a small
Stokes shift, red-shifted with respect to BODIPY. A weak emission band at 900nm was de-
tected by increasing the solution concentration. Polystyrene films containing 10% DTDPAB
displayed a broad NIR emission at 900 nm. Due to the appropriate choice of electron-donor
substituents, and to the limited steric hindrance of the thiophenic groups, the dye showed
promising gain characteristics in the NIR area.

Transient absorption measurements were performed on the samples. The results
for the diluted solutions show ground-state bleaching at 700 nm, overlapping with the
stimulated emission at about 730 nm, while in the NIR region, a PIA signal peaking at
around 900 nm can be observed. A fast formation time was revealed for the SE signal at
730 nm, suggesting its origin from a higher singlet excited state. The concentrated solution
displayed a long-living optical gain in a large (150 nm) NIR optical region (820-970 nm),
even if it partly overlapped with the PIA. Unfortunately, we found that an optical gain
region in the spin-coated film was absent. This result may be due to the polymeric host
used, and it will be the subject of further study. However, the evidence of the presence of a
long-living optical gain in concentrated solutions fosters the conditions for the development
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of a material capable of retaining the same properties, even in the solid state, without being
completely quenched by aggregation phenomena.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules27144538 /s1, Scheme synthesis and IH-NMR of M1, M3,
and DTDPAB.
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